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CHAPITREI: CINEMATIQUE

A- Introduction
Les notions du repere, de trajectoire, de vecteur vitesse,...vous sont familiéres depuis la classe de
seconde.
Apres les avoir rappelées et décrites de facon analytique, ce chapitre introduit une grandeur
nouvelle : le vecteur accélérateur.
Ce concept joue un réle fondamental en mécanique, tant au niveau de la description des
mouvements (la cinématique) que leur prévision théorique a partir des forces (la dynamique).

1- NOTION DE REFERENTIEL ET DE REPERE

a. référentiel : la trajectoire d’un mobile dépend du référentiel par rapport auquel on décrit le
mouvement. En mécanique, on choisit le référentiel en fonction de 1I’étude que 1’on veut
faire et de facon que les lois de la physique s’y appliquent.
La terre est un bon référentiel pour les études des mouvements de courte durée faites au
voisinage de la surface terrestre.

b. Repére d’espace : Pour décrire avec précision la trajectoire d un mobile, on utilise un
repere que I’on rattache au référentiel.

Un repere est 1’association :
- D’un point o fix¢é au référentiel ;

—

- D’une base composée de trois vecteurs unitaires. Le repére s’écrit donc : (0,1, ], k)

2- REPERAGE DE TEMPS
Qu’est-ce que le temps ?
Le temps est une grandeur difficile a définir ; il est depuis toujours sujet a beaucoup de réflexions
poétiques et philosophiques. En fait, le temps est perceptible par son écoulement et on le mesure
avec une tres grande précision.
Il faut distinguer deux aspects de la mesure de temps :

- Lanotion d’instant t (ou la date) ou un éveénement se produit ;
- Lanotion de la durée d’un phénomene : c’est I’intervalle de temps qui s’écoule entre son
début et sa fin
NB : I'unité S.I de temps est la seconde (s).

B- Position d’un mobile.

1- Trajectoire d’un mobile
Un mobile m se déplacant dans 1’espace et par rapport a un repére déterminé, prend différentes
positions. L’ensemble de ces différentes positions constitue la trajectoire du mobile.

3- REPERAGE EN COORDONNEES CARTESIENNES.

a- CHOIX D’UNE ORIGINE DES TEMPS ET DES « ESPACES »
11 faut choisir avant toute chose :

- Une origine des temps (t = 0) correspondant a un évenement donné, en général, c’est le
début de I’expérience ou le début du mouvement ;
- Une origine des « espaces » : le point 0 attach¢ au référentiel



b-) Les coordonnées cartésiennes et les équations horaires
Pour décrire le mouvement d’un point mobile M, il faut donner, a chaque instant t, sa position par

rapport au repére (0,77, k)

Trakectoire de B

Bait)

On définit alors le vecteur position OM du mobile qui s’écrit :
OM = xT+ yj + zk ou encore OM(x;y; z)

Le vecteur position OM détermine la position du mobile M a chaque instant.

Les coordonnées X, y, z dépendent du parametre temps. L’ensemble des fonctions

x = f(t)
y =g(t) avecte D
z = h(t)

Constitue I’équation horaire du mouvement du mobile M. Ce sont les fonctions paramétriques du
temps qui sont définies sur un ensemble de définition D donné du temps

4- Repérage en abscisse curviligne
Soit un mobile se déplagant le long d’une trajectoire donnée ; il est en M a la date t. Une origine des
« espaces » a ayant été fixée sur la trajectoire et un sens de parcours ayant été choisi, on définit
I’abscisse curviligne s du mobile par la valeur algébrique de I’arc AM

S= mes(AM)
L’abscisse curviligne est une fonction paramétrique du temps et s’€crit :

S(t) =f(t)avecteD

Caine de Falavae

candlgre

C- VECTEUR VITESSE




1- Vitesse moyenne
Soit M; et My, les positions respectives du mobile aux instants des dates t; et t,. La vitesse

moyenne du point M est donnée par la relation :

. M, M,
moy - tz _ tl

L |

¥

o' |
=ly

k]

D- VECTEUR VITESSE INSTANTANEE
e Définition : le vecteur vitesse instantanée est défini comme

_

- . MlMZ . 0M2 - 0M1 dOM
V = lim = lim =
tr—tq tz - tl ty-t tz - tl dt

—

; _ doM
— dt

Finalement

Le vecteur vitesse v d’un mobile ponctuel M est dérivée par rapport au temps de son vecteur
position OM
NB : le vecteur vitesse d’un mobile est tangent a sa trajectoire.

e Son expression en coordonnées cartésiennes

. dOM _ d(xi+yj+zk) d, - N d -
V== a = @) g l) T o

Puisque 7, J et k sont des vecteurs constants, on aura :

Ry Or dX—Vx;%sz et L=z

V_dtl dt dt dat dt

D’ou

V=Vxi+Vyj+Vzk




Exemple : la position d’un point est donné a chaque instant dans le repere (o,?j,z) par les équations
X = 2t
paramétriques iy = 2t + 3
z=0
Calculer les composantes et I’intensité du vecteur vitesse aux t; = 0s et t; = 1s.

Solution
OM =21+ +3)f

V=2
=  dOM _ d,n>, /2 _ _
V—T—&(2tl+(t +3)D— Vy—2t
V,=0
2 2
at=0 VO =10 at=1s V() =1{2 => V=+v22+22=22m/s
0 0

E- Son expression dans la base de Frenet

Tangents e b [

DEFINITION DE LA BASE DE FRENET

Soit N et T deux vecteurs unitaires liés au mobile.
e Levecteur T est tangent a la trajectoire en M, et orienté dans le sens des abscisses
curvilignes S croissantes ;
e Levecteur N est normal i la trajectoire en M, et orienté vers I’intérieur de la concavité de la
trajectoire.
Ces deux vecteurs constituent une base locale appelée base de Frenet.
- Expression du vecteur vitesse en M;
Sur le parcours M1M2, la vitesse moyenne vaut :
_mesMM, S,—S; dS
moy T et t,—t, dt
On obtient la vitesse instantanée ou vitesse a I’instant t; par passage a la limite :

Vi = lim —

Cette limite représente la dérivée par rapport au temps, de ’abscisse curviligne.

4



D’ou
,_ds o _ds
17 dte -

Dans la base de Frenet, les composantes de V sont :

ds
2N BT
VN:0

F- LE VECTEUR ACCELERATION
L’accélération caractérise la variation du vecteur vitesse pendant une durée donnée.

a- Vecteur accélération moyenne a,,
On définit le vecteur accélération moyenne a,, du mobile, par la relation :

vV, V;
a =
T ot—t

b- Vecteur accélération instantanée
Le vecteur accélération instantanée représente le vecteur dérivé par rapport au temps du vecteur

vitesse. Il représente aussi le vecteur dérivé second par rapport au temps du vecteur positionOM.

. dV _d?0M
Cdt dt?
c- SON EXPRESSION EN COORDONNEES CARTESIENNES
L dv d
a= =— (Vxl +Vyj+ Vzk)

dt

_ d?yj . d?zk
T ( ) dt (dt)k dt2 + dt? + dt?

~{

dt+ dt dt

_dvxd) | dvy)) d(Vzk) ( )

“T T T are
2
a=1 _ dv,) d®y
Y dt dt?
_d(ly) d?
%2 = T4t T de

Exemple : dans le repere (o,i’,j’,E), la position d’un point M est définie a chaque instant par :

X=2t
oM | y=+t
Z=0

Calculer les composantes et 1’intensité du vecteur accélération aux t =0s et t = Is
Solution :

—

Composantes et intensité de a :



(d(V)  d%x

“ETq Tz
S d(vy) d?y
a =\ — Yy _ =7
Gy dt dt? 6t
_d(v,)  d?z
(% ="q a2

Son intensité :  a = V6t
At=0, a0)=0m/s; at=1s a(l)=6m/s

d- VECTEUR ACCELERATION DANS LA BASE DE FRENET

Dans la base de Frenet (T, N) et par rapport au repere d’espace (o,?,f,E), ona:
a= ay + az

et on démontre que :

trajectoite

~4

dv g s .
ar = accélération tangentielle

2 117 .
ay = V7/R accélération normale
R est le rayon de courbure.
. 2 .. 5 17 . . e . g
Puisque V7/R est positif, I’accélération est toujours positive, donc : le vecteur accélérateur est
toujours dirigé vers ’intérieur de la concavité de la trajectoire.
Remarque : en fonction de 1’abscisse curviligne, les composantes du vecteur accélération sont :

_dv _ d?s
T
_vZ _1/ds\?
av =7 =5(a)

e- Mouvement uniformément varié
Par définition, un mouvement est uniformément vari¢ quand la mesure algébrique de I’accélération
tangentielle (ar) reste constante.
- Sile mouvement est accéléré alors le produit scalaire d. v > 0
- Si le mouvement est retardé (décéléré), le produit scalaire d@. v <0
- Si le mouvement est uniforme, le produit scalaire d. ¥ =0



a=0 = constante @ mouvement uniforme
a#0 et U estperpendiculaire a d

E- APPLICATION DE LA CINEMATIQUE A QUELQUES MOUVEMENTS
PARTICULIERS
1- MOUVEMENT RECTILIGNE UNIFORME
a. Définition

Un mobile est animé d’un mouvement rectiligne uniforme :
- Si sa trajectoire est une droite ;
- Silavitesse V reste constante
b. Equation cinématique du mouvement rectiligne uniforme
Soit le repére (o, 7), le vecteur vitesse
V = constante = Vil = Vol

Vox = % La primitive de Vg est x = Vol +k
Conditions initiales : siat=0,x=x0=0+k = k=X
D’ou
X=Vot +Xo Loi horaire du mouvement rectiligne uniforme

Dans un mouvement rectiligne uniforme, 1’abscisse est une fonction affine du temps

2- MOUVEMENT RECTILIGNE UNIFORMEMENT VARIE
Définition : Un mobile est animé d’un mouvement rectiligne uniformément varié si son vecteur
accélération est constant, donc a = ag = constante

a- Loi horaire

Soit le repere (o, 1) choisi sur la trajectoire rectiligne du mobile
d

a= —\t/ = constante, V est donc de la forme V =at+k

t=0,V=Vo=0xt+k = k=V,

a
D’ou
v=at+vp ‘

d .
V= d—)t( =at+ Vg, I’abscisse x est de la forme x= %at2 + Vot +k
k étant une constante qui dépend des conditions initiales
at=0, X:XOZ%aXO'FVoXO-Fk;Xo:k

d’ou

1
X= Eat2 + Vot + %o

Lot horaire du mouvement rectiligne uniformément varié
Cas particulier : si V; et X, sont nuls, les équations se simplifient :

1
V =-at? et x = ~at?
2 2



Remarque : en dérivant x deux fois par rapport au temps, on obtient d’abord V puis a :

d d
S = <(Cat’ + Vit + xo)

dt dt
dx
Ezat+Vo+0=V

d’x/dt*=a+0=a

C- Quelques relations importantes
X ==at’ + Vot +x0 (1)

vV-vo (2)

a

- e e () e

a
1 (V=Vy)? V,V -V,

X :Ea az + a +X0

VZ4+VE -2V, 2(VV,—VZ
_VEAVE 2V 20—V

2a 2a
CVEHVE - 2VV + 2VV, — 2V
B 2a

2a(x —x9) = V2 = V¢

V=at+Vy, = t=

(2) dans (1)

X_XO

2aAx = AV? Et on a aussi = AV = aAt

Exercices d’application
Exercice 1: a un instant initial, une moto démarre, son mouvement est rectiligne uniformément
varié ; elle atteint la vitesse de 72km/h en 10s. Calculer la valeur de ’accélération de cette moto
Solution : a ’instant initial, V; =0, V= 72km/h = 20m/s
AV =aAt => Vi—Vi=a(tr—t) a=(Ve—=V)/(te—t)
AN:  a=(20 - 0)/(10 — 0) = 2m/s

Exercice 2: sur une route rectiligne, un véhicule est animé d’une vitesse de 72km/h s’arréte sur
50m. Donner les caractéristiques de I’accélération supposée constante au cours du mouvement.
Solution : caractéristiques de 1’accélération :
Soit (x’x) repere choisi sur la trajectoire
AV?=2aAx => V¢ - Vi=2a(x¢—xj) ax = (V{ — VA)/2(x¢— x;) = (0 — 400)/ 2(50 — 0)

ay = -4m/s> ce qui signifie que I’accélération a la direction de x’x, son sens est contraire au
mouvement. Sa norme est a = 4m/s’

D- MOUVEMENT CIRCULAIRE UNIFORME
Définition : Un point mobile est animé d’un mouvement circulaire uniforme si sa trajectoire est un
cercle et si sa vitesse a une valeur constante.




a) Etude de I’abscisse curviligne

Sur cette trajectoire, 1’abscisse curviligne du mobile au point M :

_ . ds .
S=MOM etsavitesse V= pro Vo = la primitive de V est

S=ViT+5,

b) Accélération
Dans la base de Frenet (tangentielle et normale), 1’accélération s’écrit :

> = > dVs YT T
a=apT+ayx avec ar=—- = et la valeur de I’accélération se réduit a :

d =a,X avec a, =1;72
Le vecteur accélération du mobile dans un mouvement circulaire uniforme est toujours dirigé vers
le centre du cercle : il est dit centripéte.

c) Etude des variations angulaires

- abscisse angulaire :
N
C’est I’angle 6 = (OM(OM) (rad)

S=MM et 0=MM/R =S/R

S=R.0
=
e vitesse angulaire
ds de , .. de , .
Comme S =R.0 avec R = constant, on a: e R % o har définition, p représente la vitesse
angulaire de rotation du mobile notée ®
de . -
pramlOX d’une part on saitque 6 =S/R ; 0 = e Vs/R=w

= Vs=R.o

Pour un mouvement circulaire uniforme, la vitesse angulaire @ comme la vitesse curviligne Vs est
constante.

o de . . : .
La primitive de o = — est 0=wt+6p loi horaire du mouvement circulaire
Conditions initiales : siat=0; 6p=0 = 0= ot

e Accélération angulaire

s dw )
6= = (rad/s”)



. . . dw
Dans le cas du mouvement circulaire uniforme,  est constante = 0= e 0

Toujours dans un mouvement circulaire uniforme, 1’accélération angulaire comme 1’accélération
tangentielle est nulle mais le point posséde une accélération normale

V2 2
a=— etcomme Vs=Ro = a,=oR
b- Période et fréquence

F- La période T est la durée nécessaire pour effectuer un tour, soit un angle 6 = 2xn
0=2n=0T = 21T

w

e Lafréquence N est ’inverse de la période

d. Mouvement rectiligne sinusoidal
Un mouvement est rectiligne sinusoidal si son équation horaire est de la forme :
x(t) = xm cos(wt + @)

x(t) : élongation (metre)
Xm : amplitude (ou élongation maximale) en metre
o : pulsation en rad/s
(ot + @) : phase du mouvement
® : phase a I’origine de temps
a. Position du mobile
Comme cos(wt + @) € [-1 ; 1] alors X € [-Xy ; Xm]. Le mobile se déplace entre les positions
d’abscisses —xp, et Xp, il 2 un mouvement de va et vient autour d’un point O.

e Vecteur vitesse : V=V, 1
dx d
Vx =—=—(xm cos(wt + ¢))
Vx = —wxm ssin(wt + @)
Vx est extrémale si x = 0 (pour (wt + @) = (2k + 1) g)

Vx est nulle si x = +xm (pour (wt + @) = k)

o Accélération

L _dv _av. avx
a=—=—1 :>ax=F=—wzxmcos(wt+<p) Or xmcos(wt + @) = x
2 ax =-w?x = ax+ w?’x=0 or ax =¥

=2 X+ w?x =0 :c’est ’équation différentielle du mouvement sinusoidal.
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CHAP. 2 : MOUVEMENT DU CENTRE D’INERTIE D’UN SOLIDE

- RELATION FONDAMENTALE DE LA DYNAMIQUE
1- CENTRE D’INERTIE D’UN SOLIDE
a. Caractéristique d’un systéme
Un systéme est un ensemble des points matériels. Si la distance entre deux points quelconques, reste

constante, ce systeme est indéformable et on lui donne le nom de solide. La masse M d’un systéme
est la somme de la masse m; du systeme.

M=m+my,+my..+m, =>"m
b. Centre d’inertie et barycentre d’un systéme

Un systéme a un centre d’inertie G. le centre d’inertie est appelé aussi barycentre ou centre de
masse, ou encore centre de gravité.

2
m; GG; =0
i=1
mlﬁl + mzﬁz =0 (1)
Injectons le point O dans (1), il vient :
m, (GO + 0G,) + my(GO + 0G,) = 0
m, GO + m,0G, + m,GO + m,0G, = 0
(my + mz)aj + m10_G)1 + mzmz =0
—(my + mZ)O_G> + mlml + mzmz =0

m. —— —
10G1+my0G

= OG — 1 2 2
mi+ms,

2- QUANTITE DE MOUVEMENT D’UN SOLIDE
Le vecteur quantité de mouvement P d’un systéme solide est le produit de sa masse par le vecteur
vitesse de son centre d’inertie.

p):MVG

3- PRINCIPE DE L’INERTIE — REFERENTIEL GALILEEN
a- ENONCER DU PRINCIPE DE L’INERTIE
Un systeme isolé ou pseudo-isolé :

1) S’il est au repos, il conserve son état de repos ;

2) S’il est en mouvement, alors il est animé d’un mouvement rectiligne uniforme.
b- REFERENTIEL GALILEEN
On appelle référentiel galiléen, un référentiel dans lequel le principe de ’inertie est vérifié.
On montre que tout référentiel en translation rectiligne par rapport a un référentiel galiléen est
galiléen.

11



c- RELATION FONDAMENTALE DE LA DYNAMIQUE ( RFD)
Enoncé : dans un référentiel galiléen, la somme vectorielle de toutes les forces extérieures

appliquées a un solide est égale a la dérivée par rapport au temps de la quantité de mouvement du
solide a cet instant.

za t_dﬁ
fext =

d- THEOREME DU CENTRE D’INERTIE
Enoncé : dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées a un
solide est égale au produit de sa masse par le vecteur accélération de son centre d’inertie.

Zfext = mdg

e C(Cas particulier
. - - N — N — N d‘_/)G —
SlZfext=0=>maG:0:>aG:0 or aG:?:()
7 oqe .
= | V; = constante => G a un mouvement rectiligne uniforme

VG =0=>Gestau repos

e- THEOREME DE L’ENERGIE CINETIQUE APPLIQUEE A UN SOLIDE EN TRANSLATION

Enoncé : dans un référentiel galiléen, la variation de 1’énergie cinétique d’un solide entre un état
initial et un état final est égale a la somme des travaux des forces extérieures appliquées au solide a
cet instant.

AE, = E —E, = Z W fext
f- UTILISATION PRATIQUE DE LA RFD
1) Vérifier que le référentiel considéré est galiléen ;
2) Préciser le systeme a étudier ;

3) Définir et analyser les forces extérieures, les représenter sur un schéma suffisamment clair

4) Préciser la relation liant les forces extérieures (théoréme du Centre d’Inertie, RFD, théoreme
de ’Energie Cinétique) ;

5) Exploiter cette relation si elle est vectorielle, on I’utilise en projetant les vecteurs dans un
systeme d’axes ;

6) En déduire éventuellement les conséquences cinématiques.

g- DYNAMIQUE DU MOUVEMENT UNIFORME

Soit le centre d’inertie G d’un solide qui se déplace d’un mouvement circulaire uniforme sur le
cercle de centre O et de rayon R. En appliquant le théoréme du centre d’inertie, le point G est
soumis a n forces et on a :

QU

- - N
“.fext=F =ma; avec
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> F = md, puisque a, est centripéte, F Dest ¢galement
On lui donne le nom de force centripéte Fc

2
. mv
Fc=md, = A = mw?R7

Dans un référentiel galiléen, un mouvement circulaire uniforme est provoqué par des forces dont la
somme vectorielle est la force centripete d’intensité

muv? X
Fc = 7 = mw*“R

h- APPLICATION DE LA RFD
Etude d’une chute libre : la chute libre est le mouvement d’un corps 1aché sans vitesse initiale au
voisinage de la terre et soumis a la seule action de son poids.

Position du probléme : une bille d’acier tombe en chute libre a partir d’un point O situé a Sm du sol.

Etudier le mouvement du centre d’inertie de la bille (I’équation horaire). Calculer le temps mis pour
atteindre le sol. m = 50g ; h=5m ; g = 10m/s’
Solution

75

e Repere descendant
1) Référentiel : terre supposé galiléen
2) Repere (o, 1, j)
3) Systéme : bille de masse m
4) Bilan des forces : le poids P
La RFD permet d’écrire :
Y fext =md; © P =md, <=>mg = md,
ag =g <=> ag = gj
a, =0 V, =0 x=0
dg = Vs 0G =
a, =g V, = gt + Vot (avec V, = 0) yzzgt2
y = % gt? est1’équation horaire de la bille.

La date d’impact au sol :
1 2h
y=h=5m=>§gt2=5=>t= ?=>t=1s

e Repére ascendant
RFD donne toujours : P = ma; = g = ag

i =0 V., =0

a, = —g V, = —gt+ Vyt (avec ¥ = 0) ] }F=—%Hf2



i. Palet autoporteur

Un palet autoporteur de masse m est laché sans vitesse initiale d’un point A, sur une table inclinée
d’un angle a sur le plan horizontal.

I- On néglige les frottements

3) Déterminer les caractéristiques du vecteur accélération

4) Quelle est la nature du mouvement du centre d’inertie G du palet ?

5) Calculer la vitesse V du mobile en B aprés un parcours de longueur L.

2- En fait, sa vitesse en B est V’<V. en déduire la valeur de la force de frottements exercée par

la table et supposée constante.

Données : m= 600g ; 1=52cm ; V=0,94m/s ; 0=6° ; g=9,8m/s

Solution :
Systéme : palet autoporteur
Référentiel terrestre supposé galiléen
Bilan des forces :

1) Le poids P

2) Laréaction R de I’air pulsé

1) D’apres la RFD
Zfext=ma =>P +R =md (1)
Soit I’axe x’x parallele a la ligne de plus grande pente et y’y perpendiculaire a x’x
Projections de (1) sur les axes :
P, + R, = ma, Psina+ 0 =ma, (2)
P,+R, =ma, =>| —Pcosa+R =0 (3)
Donc : mg sina = ma, , d = a,l = (g sin a)T=>"accélération de x’x de sens X vers x et de

valeur a = g sina

2) nature du mouvement de G
a = gsina = g = constante et sina = constante = a = constante : ¢’est un mouvement
rectiligne uniformément varié.

3- Calcul de vitesse V en B

D’apres le théoréme de I’énergie cinétique entre A et B,on a :

1 1
Eng—EmVAZ=WP+WR orVy,=0etWg=0

1 1
= EmVB? =W, > EmVB2 =mgh avec h=lsina
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1
= EmVB2 =mglsina = Vg =./2glsina

2) valeur de la force de frottements : le théoréme 1’énergie cinétique donne

1 2 1 o,
EmVB _EmVA = Wp + Wr + Wpg
1T, . 1, )
-mVg =mglsina — fl = —mV; —mglsina = —fI1

2 2

1
fl =mglsina —EmVB2

_ 1
f=m(g sma—zVBz)

z

e PENDULE OSCILLANT

Un pendule est constitué par une sphére petites dimension, de masse m, suspendue a un point fixe par un fil
inextensible de longueur 1. le pendule est écarté d’un angle o, de sa position d’équilibre et abandonné sans
vitesse initiale.

Déterminer la vitesse V du pendule lorsqu’il passe par sa position d’équilibre. Quelle est alors la tension T
du fil ?

Solution
Systéme : la boule assimilée & un point materiel
- référentiel terrestre qu’on suppose galiléen.

- Bilan des forces : P et T. Le TEC donne :

1 1 - —
Emv2 — Erll_}_ﬂé =w(P) + WE)T)
%mvz = w(P) avecw(P)=mgh  h = I(1 - cosa,)
1

Emvz = mghl(1 — cosay) =V = /2gl(1 — cosay)

La tension du fil : le théoréme du centre d’inertie donne :




P+T=md
Lorsque le pendule passe par sa position d’équilibre, la direction des deux vecteurs P et T, et donc

celle de a, est verticale, normale a la trajectoire. En projection sur la normale orientée, on a :

172
T —mg = ma = ma, @T—mg=m7

T =mg +%(2gl(1 - cosao))

T =mg(3 — 2cosay)

CHAPITRE 3 : INTERACTION GRAVITATIONNELLE ET MOUVEMENTS DES
PLANETES ET SATELLITES.
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I- VARIATION DE L’ACCELERATION DE LA PESANTEUR G AVEC
L’ALTITUDE

L’accélération de la pesanteur g diminue quand 1’altitude augmente. Notons g et g, ses valeurs au
sol (altitude : z= 0) et a I’altitude z.
Les lois de I’interaction permettent d’établir la loi de variation de g avec z :

R2
(R + 2)?

1- MOUVEMENT DE SATELLITES EN ORBITE CIRCULAIRE
1.1- VITESSE DU SATELLITE
Le satellite S de masse m, parcourt la trajectoire circulaire dont le centre est O (centre de la terre) et
le rayon r =R + z (z : altitude du satellite et R : rayon terrestre). Si I’altitude est suffisante, il évolue
dans le vide et la seule force qui s’applique sur lui est son poids P.

g = 9o

La RFD donne :
Zfextzmc‘i—ﬁzmc‘i >mg=md>g=d
Dans le repere mobile de frenet (T ; N),ona:

av
g:=0 A = =7
gJ= a= Commed =g « g, = a,(1) et gy = ay(2)
V2
9x =9 ay = —

r

(M a;=9:(9:=0)= at=2—:=0$V=VO=Constante

Le mouvement du satellite en orbite est circulaire uniforme
R2
(2) gy =ay avec gy =g = go R+2)2

RZ VZ RZ VZ
= —_— = =R+h>=> =
GO Rz~ 7 WET =R T T R
RZ
— _=YV2
9o R + 2)2
Yo
V=R
R+2z

1.2- PERIODE DE ROTATION DU SATELLITE

17



La période de révolution ou période T d’un satellite est le temps qu’il met pour effectuer une
révolution compléte sur sa trajectoire.

. 2T %4
Onsaitque T = — avec w =— avecr=R+z;V=R/ﬂ
w r R+2z

2rr 2r(R+z) 2m(R+z) 2n(R+2z).(R+ 2)1/2

T = =
|4 9o R‘/% R\/go
R |z+z JR+2)
2m 21
= T= (R + 2)3/2 ouencoreT = r3/2
Yo R\ 90

Remarque : La période T est indépendante de la masse du satellite. Des satellites de masses
différentes évoluant a la méme altitude ont la méme période.

1.3- Lol DE KEPLER

Cette loi est une conséquence de la formule donnant la période T en fonctionde r :

21 r3/2

R0

, , 4m? T?
Elevons au carré = T? = ﬁﬁ = — = constante
0

Enoncé de la loi : le carré de la période de révolution de satellite est proportionnel au cube de rayon
de son orbite.

1.4- SATELLITE GEOSTATIONNAIRE
a. La période géostationnaire
Elle vaut un jour sidéral : 86164s =~ 23h56mn
On remarque un jour solaire : 24h = 86400s
b. Définition.
Un satellite géostationnaire est fixe par rapport a un point du globe.
Te=Tr > ws=wr=729.10"rad/s
Le satellite a la méme vitesse angulaire que la terre.

¢. Son altitude z

_2m 3/ 2 4m? 3 3 _ T?R%gp
T_Rgo(R+Z) 2 = T _RZgO(R+Z) = (R+2) = "amz
3[T2R2 g,
zZ= -

412
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Exercice d’application
Exercice n°1
L’accélération de la pesanteur g a pour valeur a 1’altitude :

R2
(R + 2)?

Ou g est I’accélération de la pesanteur au niveau du sol (z=0) et R le rayon terrestre.

Un satellite artificiel de la terre tourne autour du centre de celle-ci d’un mouvement circulaire a
I’altitude z=36000km.

Calculer sa vitesse V et sa période de révolution T. on donne : gy = 9,8m/s2 ; R = 6400 km
Résolution

g = 9o

Calcul de la vitesse :
LaRFDdonne: P =ma =>mg=ma < g=a
Sur le repere de Frenet :

dv
=0 e = —
g7 P Y
g = o=
Uy = 4 y = :

g=a< gr=ar(1)et gy =ay (2)

(1) =gr=ar < 0=Z—I:
2 2
(2):9N=aN(_)go(1:__Z)2=VT avec 1 = (R +2)?

2 2
R VY Sy=R /% = AN: V = 6,4.10° [—>— = 3.08.103m/s

90 Riz2 ~ Rez 4.24.107

La période de révolution T est le temps mis pour effectuer un tour :

2T d 2n(R+z
T: (R+Z)3/2:—:¥
9o vV %
B 2m.4,24.107 _ 8.66.10*
~7308.103 0>

Remarque : le temps mis par la terre pour effectuer un tour complet est un jour sidéral (86140s)
alors que le jour solaire (le jour habituel de 24h= 86400s) est le temps qui sépare deux passages
consécutifs du soleil a la verticale d’un lieu.

Les satellites géostationnaires jouent un role fondamental en télécommunication, en particulier
comme relais de télévision.

En effet leur « immobilité » apparente permet de les viser avec facilité pour leur envoyer des ondes
a relayer ou recueillir les ondes transmises. Un satellite ne peut €tre géostationnaire que dans le plan
équatorial.
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Exercice N°2
La terre est assimilée a une sphere de rayon R = 6370 km, animée d’un mouvement de rotation
uniforme autour de la ligne des poles (qui est perpendiculaire au plan de 1’équateur). On supposera
que le repere géocentrique, dont les axes ont une direction fixe par rapport aux étoiles, est galiléen.
A la surface de la terre, I’intensité du champ de pesanteur est g, = 0,8 N/kg. A I’altitude h, elle est
¢gale a
R2
9n = Yo (R-I——h)2
1- Un satellite assimilé a un point matériel, décrit un mouvement uniforme sur une orbite
circulaire a I’altitude h = 400km.
L’orbite est dans le plan de 1’équateur
a. Déterminer la vitesse V du satellite dans le repere géocentrique
b. Déterminer, dans le méme repére, la période T et la vitesse angulaire ®( du satellite
c. Le satellite se déplace vers I’Est. Calculer I’intervalle du temps qui sépare deux passages
successifs du satellite a la verticale d’un point donné de 1’équateur (la vitesse angulaire
de rotation de la terre dans le repére géocentrique est wr = 7,29.10 °rad/s, et on
rappelle que, dans ce repére, la vitesse d’un point de 1’équateur est dirigée vers 1’Est).

2- Un satellite géocentrique reste en permanence a la verticale d’un méme point du globe. Son
orbite dans le plan de I’équateur.

a. Quelle est la vitesse angulaire de ce satellite dans le repere géocentrique ?

b. Calculer le rayon de son orbite.

Solution

a) calcul de la vitesse
LaRFDdonne: P=ma = mg=ma & g=a
Sur le repére de Frenet

dv _

=10 o S — =
gr T 0

Ve
v =49 Gy =

g=a & gr=ar (1) gn =ay (2)

dv
(1) gT:aT:‘gT:E:O

D gy=ay e go——=2 =R+h V=R |2
(2) gn = ay 9o genz = 7 avecr= T U\ R+h

9,8
6370.103+400.103

AN: V =6370. 103m.\/ = V=7664m/s

b) Calculde T
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et r=R+h

~ =

21

T = R
= 7 +h)

AN/T = 726—71(6370 +400)103 = T = 5550,22s

64

c) Calcul de vitesse angulaire ®

21
5550,22

AN: w = = 1,13210"?°rad/s

wr = 7,2910"°rad /s

Entre deux rencontres :
3) Laterre a tourné d’un angle a
4) Le satellite a tourné d’un angle de (2 + @)
a = wrt (3)
2+ a) = wot (4)
(4)-(3) membre a membre
2n+a —a = wot — wrt

2m
2n =t(wg—wy) = t=——
Wo — W
AN: t= = 593257s
1,132.1073-7,29.10
Satellite géostationnaire < wg = wy; Ts = Tr; & wg=729.10"%rad/s
21 T 2m
= — = —
@ T w
T=—" ___g61891
= = — =
7,29.10°5 s
2 _ Am? 3
T = e (R+h)
Posons R + h = r = rayon de I’orbite
T? = 42”2 r3= rd3= —TZRZZQO
R“go 41
AN: = 7 = ((86139,1)2.(6370.103)2.9,8)1/3

4m2

r = 4,213239.10"m = 4,21.10*km = 42,132km
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CHAPITRE 4 : MOUVEMENT D’UNE PARTICULE SOUMISE A UNE FORCE CONSTANTE

I- MOUVEMENT D’UN PROJECTILE DANS UN CHAMP DE PESANTEUR
UNIFORME
1- POSITION DU PROBLEME

Dans un repére (0 ; T ;E), ¢tudier le mouvement d’un projectile de masse m, lancé d’un point O avec
une vitesse initiale V faisant un angle o avec I’horizontal. Le référentiel d’étude est supposé
galiléen, la résistance de ’air étant négligée.

a- ACCELERATION.

Lol

. . . \ . = - N I3 “ . .
Le projectile n’est soumis qu’a son poids P = mg , d’aprés le théoréme du centre d’inertie, nous
avons :

-

Zfext=m& emg=md>d=4

b- VECTEUR POSITION

La vitesse du centre d’inertie en un point M a la date t est : V= gt + 170
Le vecteur position OM, primitif de Vest:
W=%§t2 + Vot + OM,
Les conditions initiales sont celles du lancement
Alors OM, = 0= OM =%§t2 +V,t
A tout instant le centre d’inertie du projectile est le plan vertical formé par g et V(;
c- EQUATION CARTESIENNE ET TRAJECTOIRE

Dans le repére (0 ;i:k), choisi dans le plan § ; V,

Les projections du d et Vo sont :

a, =0 ]—/0 _ {VOx =Vycosa

d=g4 =>d= = .
9 { Vo, = Vo sina
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Soit V la primitive de a

V= { V., =Vycosa
V,=—gt+V,sina
. x= Vycosa)t (1)
OM primitive de V est OM = 1 .
P z= —Egt2 + (Vysina)t (2)
Le mouvement du projectile selon 1’axe x’x est uniforme et selon I’axe z’z, le mouvement est
uniformément varié. En éliminant les variables t entre les lois horaires, on a :

(1)$t=ﬁ (3) pour aiig
(3) Dans (2)
1 X ) _
vr= _Eg(Vocosa) Vo Slna'Vocosoz
x? sina
z=-g

> + x
2Vy“ cos? a cosa

= z=— mxz + xtana : C’est I’équation cartésienne de la trajectoire, c’est une
0
parabole.
<1 . . : 1
Dans le cas ou I’angle de tir est de 90°, les lois deviennent x = 0 etz = — Egt2 + Vot

La trajectoire est la verticale de lancement. Le mouvement du centre d’inertie est rectiligne
uniformément vari€. Le mobile monte en ralentissant atteint un point culminant puis redescend en
accélérant.

d- CARACTERISTIQUES DE LA TRAJECTOIRE.

Portée : c’est la distance d(op) entre le point de chute de P sur I’horizontal passant par le point de

lancement O ; sa valeur est xp.

A , g 2
Alaporttez=0=> ——5—x xptana =0
portee 2Vo% cosza " P tXp
g sina
2Vy“ cos“ a cosa
Vo2 cosasina _ _
= Xp = or 2cosasina = sin2a
g
Vo sin 2a
> Xp=——7—
g
y . . . T
La portée est maximale pour sin2a = 1, soit pour un angle a = Zrad (45°)
2
Xpmae = L2
Pmax —

Le tir est dit tendu pour a < % et plongeant ou tir en cloche pour a > %
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La fléche : La fleche, c’est Ialtitude maximale z atteinte par le projectile en S sommet de la

parabole. L’ abscisse du point S se détermine par la condition : (%) =0
s

D’ou I’instant tg de passage a S :

) Vo sina
—gts +Vysina =0 = ¢ ZT
On note que ts = %tp : le temps mis pour aller de O a S est le méme que pour aller de O a P.
1 (Vpsina\? ~ Vysina Vésin2a V¢sin?a
Z=——g(—) + Vpsina = - +
2 g 29 g
V¢ sin? a
2>z7=—"
29
Pour une vitesse initiale V, donnée, la plus grande valeur de la fléche z correspond a sin?a = 1
. i1 %4
soita =-rad = Zmgyx = i

e Vitesse du projectile lorsqu’il frappe le sol

Les coordonnées du vecteur V en P : I’impact au sol a lieu a I’instant

Ve, =Vycosa

2Vysina R (

tp =— douV = 2V sina _
9 Vz:‘QT+Vosma

Ve =V, - N o

V= {VZX= _I(}chlsncix >V = VO cosal+ (_VO sin a)]

=5 V= Vo
La vitesse a ’impact au sol est la méme qu’au départ.

e- ENERGIE CINETIQUE, ENERGIE POTENTIELLE DE PESANTEUR, ENERGIE MECANIQUE
1- ENERGIE CINETIQUE

L’énergie cinétique du projectile en translation dans un état donné est :

E 1 V2
C_Zm

. , 1
Soit dans I’état (1) = E(qy = Eme

. , 1
Soit dans I’état (2) = E() = ;szz
La variation de I’énergie cinétique du systeme entre ces états est d’apres le théoréeme de 1’énergie
cinétique :

Ecoy—Ecy =WPas2y = Ec)y —Ecy = mg(z, — z;)

2- ENERGIE POTENTIELLE DE PESANTEUR
L’énergie potentielle de pesanteur du systéme est :
Ep =mgz
La variation de I’énergie potentielle entre les états (1) et (2) est :
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Ep@) — Ep(ry = mgz; —mgz;

Epa) — Epry = mg(z; — 21)
Epz) — Epry = —~W152(P)

Epy — Epcry = —(Epa) — Epy) (1) ou encore AEp = —AE,
3- ENERGIE MECANIQUE
Par définition, I’énergie mécanique d’un systéme dans un état donné est la somme de son énergie
cinétique et de son énergie potentielle.
En,=E.+Ep
L’expression (1) conduit a
Ecy + Epy = Ec Y Epy © Emq) = Eme2)

Ceci traduit la conservation de I’énergie mécanique du projectile dans le champ de pesanteur.

I- MOUVEMENT D’UNE PARTICULE CHARGEE DANS UN CHAMP
ELECTROSTATIQUE
1- CHAMP ELECTROSTATIQUE UNIFORME

Le vecteur champ électrostatique E, obtenu entre les armatures A et B d’un condensateur plan
soumis a une différence de potentiel Uyg est tel que :

Uy =E.AB
Le vecteur champ électrostatique E est :
1) Perpendiculaire aux plaques ;
2) Dirigé de la plaque positive vers la plaque négative ou bien la plaque de plus haut potentiel
vers la plaque de plus bas potentiel.

1.1- FORCE ELECTROSTATIQUE

Dans un champ électrostatique E, une particule de charge q est soumise a la force électrostatique
F=qE

Cette force est constante si le champ est uniforme. Le poids de la particule est négligeable devant
cette force.

si g>0> F et E ont meme sens

si q<0 = F et E sont de sens contraire
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1.2- ACCELERATION DANS UN CHAMP E UNIFORME
Dans le référentiel du laboratoire supposé galiléen, la particule n’est soumise qu’a la seule force
¢lectrostatique et d’apres le théoréme du centre d’inertie :

Zfextzm& o q.E=md =

E

Q

4
m

Le vecteur accélération a la méme direction que E mais son sens dépend du signe de la charge q. sa
valeur dépend de la particule.

a) Vecteur position

Une particule de charge >0 pénétre en un point O avec la vitesse V( dans une région ou régne un
champ électrostatique uniforme.

A un instant t quelconque, elle est au point M.

Soit Vy, la primitive de a = %

-

qE

m
OM primitive V est : %%tz + Vot + OM,
A t=0, la particule est au point 0 = WO =0
. 1qE ,
:>OM=—q—t2+V0t
2m

La trajectoire de la particule est donc plane dans le plan formé par EetV,

1.3- EQUATION CARTESIENNE ET TRAJECTOIRE
Les coordonnées des vectrices accélérations et vitesse dans un systéme d’axe (xy) sont :

a, =0
e

m

V primitive de a est : V=
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N - . X = Vot
OM primitivede V est: OM = { _ 1qEt?

2 m

En éliminant la variable t entre les lois horaires, I’équation cartésienne s’écrit :
1qE

2m

2

La trajectoire est un arc de parabole.
1.4- TRAJECTOIRE ET SES CARACTERISTIQUES

e Vitesse de la particule en A
A est le point ou la particule sort du champ. Pour le point A : x =1

Et I’instant de passage en A vaut :

l
x:VOt C}l:VOtA :tA:V
0

On en déduit les coordonnées de la vitesse en A :

v (V qE 1 >
” m v,
5 N . _ 2 qEl 2
D’ousanorme: V, = |V,* + (_mVO)
. qEt?
Remarque : la particule sort du champen Atel que: A (xA =L y,= — )
0

e Déviation électrostatique a
A la sortie du champ en A, la particule n’est plus soumise a aucune force et sa trajectoire est une
droite de méme direction que le vecteur I7A
L’angle a peut se calculer de deux manieres :

g ’ . . El
Premiére méthode : V, a pour coordonnées (Vo ; —g m)
0
tanag = —2 = 1 >
Vax  ml,

Deuxieme méthode : le coefficient directeur de la trajectoire en A est égal au nombre de dérivé en A
de la fonction y(x)

. qE dy  qE _qE
y(x) = SX° ;== 5.2x = 5 X
2mV, dx 2mV, mV,
dy qEl
tana = (—) = >
d.x A mVO

e DEFLEXION ELECTROSTATIQUE
C’est la distance y = IA’ qui sépare le point I ou vient la particule en I’absence de champ (E = 0) et
le point A’ ou elle frappe 1’écran fluorescent.
Pour calculer y, admettons le théoréme suivant : le prolongement du V,, c’est-a-dire la tangente en
A a la parabole, passe par le milieu C du segment OH.
Notons D = CI
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qEl

tanaz%: y=Dtana or tana = >

mly,
DqEl
— y = >
ml,
Soit U, la tension entre les plaques de déviation, le champ électrostatique vaut :
e . l
E =Y etladéflexion devient y = Dq—Ez
d deO

1.5- ENERGIE CINETIQUE ET ENERGIE POTENTIELLE ELECTROSTATIQUE OU ELECTRIQUE

Lorsqu’une particule se déplace d’un point A vers un point B dans un champ ¢€lectrostatique

uniforme E , le travail (W) de la force d’origine €lectrostatique est égal a :

m(g):q.g or EAB=V,—-Vz=U
3
> W) = qU = g, - V)

Si F est la seule force appliquée, le théoréme de 1’énergie cinétique donne :

1 , 1 2

EmVB _EmVA =q(Va—Vs) = qVs— qVp
1 2 1 2
EmVA +qV, =EmVB + qVp

© Ecy +Epw) = Ecs) + Epp)

Cette équation traduit la conservation de 1’énergie totale.

1.6- THEOREME DE L’ENERGIE CINETIQUE
Des particules de charge g>0 sortant de la chambre d’ionisation par I’orifice O;, sont accélérés entre

deux plaques A et B. sachant que ces particules sortent par O, avec une vitesse initiale nulle,
calculer leur vitesse a la sortie de 1’orifice O,.
Le théoreme de 1’énergie cinétique permet d’écrire :

AE, = Zerxt
1 , 1 ) —
EmVB _EmVA =qE.AB
1 2
EmVB =qU
1 2qU
Eszz = QU => V2 = 7
a1+ -

[ =]
l'-"'.ll

ol o2

AR
zo0




CHAPITRE 5 : LES OSCILLATIONS MECANIQUES

Introduction : un oscillateur mécanique est un objet qui se déplace en repassant périodiquement
par une position d’équilibre.
Exemple : amortisseurs des camions ; balancoires...

I- FORCE DE RAPPEL ET INERTIE.
Les vibrations des systémes mécaniques résultent de la compétition entre 2 types de phénomene :
3) L’existence d’une force de rappel ; équivalente a I’action d’un ressort qui tend a faire
revenir I’objet mobile vers sa position d’équilibre ;
4) L’inertie de I’objet dont la tendance naturelle est de poursuivre un mouvement rectiligne et
uniforme en I’absence d’action et qui continue ainsi a se mouvoir lorsqu’il passe par sa
position d’équilibre ou la force de rappel est nulle.

1- ETUDE THEORIQUE D’UN OSCILLATEUR MECANIQUE
a) PENDULE ELASTIQUE HORIZONTAL
Soit un ressort dont I'une des extrémités est fixée en un point O et I’autre extrémité est accroché a
une masse m qui repose sur une table a coussin d’air. L’effet du poids P est annulé par la réaction

du coussin d’air :

P+R=0
La seule force active est I’action F du ressort. F est proportionnelle a I’allongement du ressort a
partir de sa position d’équilibre 1.

-

| —
: P

T

Soit F = KIM. Lorsqu’il fonctionne dans ces conditions, le ressort est dit a réponse linéaire. Que le
ressort travaille en extension ou en compression, la force qui existe pointe toujours vers la position
d’équilibre I. pour cette raison, elle est nommée force de rappel. Elle s’exprime vectoriellement par
F = —kIM, la valeur algébrique IM prend souvent le nom d’¢élongation.
MISE EN EQUATION

1) Le référentiel d’étude est supposé galiléen

2) Repere (0 ;1)

3) Systéme : masse-ressort

4) Bilan des forces: P; R ;T
Le théoreme du centre d’inertie donne :
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P+R+T=md orP+R=0
= T=md = —kIM = mad
Sur (o ;7), il vient :
. d?x
IM =xi & —kx =ma, orax=E=x

>mi+kx=0= X+ %x =0 (1) :Equation différentielle régissant le pendule élastique.

L’¢écart x d’un oscillateur de sa position d’équilibre évolue sinusoidalement en fonction du temps.
Alors la solution de 1’équation :

X+ %x =0 (1) semble étre dutype: x = x,, cos(wot + @) oux,,; wy et @ sont des

constantes.
dx | )
If = X = wxy sin(wot + @)
d*x 5
o S A= 0, cos(wot + @) or x = xp, cos(wyt + @)
> ¥=-w?x (2)

(H)=2) > —-w*x= —%x = Wy = \/% : pulsation propre de 1’oscillateur

On en déduit la période propre :

T = 2w 5 m
© 7wy & k

La fréquence est donc :
1 1 |k

b) ENERGIE MECANIQUE DE L’OSCILLATEUR

1
E, = E. + Ep, EC=§mV2 avecx =V

.2 1, 2

= EC=§mx et Epe=§kx

1 .1
= E, = mez + Ekx2 = constante
e CONSERVATION DE L’ENERGIE MECANIQUE
dEn i 2 =0
T = Em = omak + okt =

kx kx
m)'c5c'+kx5c=0:>5cm<5c'+—>:0 avecx+—=0
m m

= E, =0 E, = constante. L’énergie mécanique de I’oscillateur se conserve.

e PENDULE ELASTIQUE VERTICALE
Position du probléme : soit le systéme masse-ressort d’axe vertical(x’x) a partir de la position
d’équilibre.
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Un opérateur tire vers le bas le systéme de a (cm) puis I’abandonne sans vitesse initiale. Etudier le
mouvement de I’oscillateur.

Conditions d’équilibre
P+T=0 avecP=mg etT =kAl
mg — kAl =0 Al=1-1,

=>mg—k(l—-1,)=0(1)

(1) permet d’écrire ¥, fext = md
P+T=md
Sur la verticale descendante, on obtient :
P—T =ma, avec T = k(Al + x) a, =X
=>mg — k(Al + x) = mik
>mg —kAl—kx=mX or mg—kAL=0
=>—kx=mi = mi+kx=0

o kx
>xXx+—=0
m
e ENERGIE MECANIQUE, SA CONSERVATION
Em =E.+ Epe + Epp

Avec Ec = %mV2 ; Epe= %k(Al +x)? ;  Epp =mgz=—-mgx

Convention : la position d’eéquilibre est choisie comme origine des Ep),.

1 1 1 1
= b = Emvz +Ek(Al +x)? —mgx = mez +§k(Al +x)? —mgx

Sa conservation

dEy, . .
?=Em =mxX +k(l— 1y +x)x —mgx

=mx¥X + k(l —ly)x + kxx —mgx

kx
=mx (x + ;) — X(mg —k(l— lo))
| kx
or i+—=0 et mg—k(l—-1))=0
m
= E, =0 & E,, = constante

31



c) OSCILLATEUR SINUSOiDAL EN ROTATION
- PENDULE DE TORSION

Un pendule de torsion peut étre constitué par un solide A fixé a un fil d’acier passant par le centre
d’inertie G du solide et tendu entre deux support. Le fil de tension constitue un axe (A) autour
duquel le solide A écarté de sa position d’équilibre d’un angle a peut effectuer un mouvement
oscillatoire de rotation. Il effectue alors les oscillations libres non amorties.

Tout oscillateur sinusoidal de translation, I’E,,, du pendule de torsion se conserve :

1 1
E, = Ecaz +5]w2 =cste (1)

c: Constante de torsion du fil
J: Moment d’inertie du solide par rapport a I’axe de rotation A

bl

i

Dérivons I’expression (1) par rapport au temps :

dEy, '+ Jowd
— =caa + Jow
dt
Pour un mouvement circulaire w = a et w =&
dE,,
— =caa + Jaa
dt J
=a(d] + ca)
a =0 = Le solide est au repos ;
. c
En mouvement : d@]+ca=0 ou d+ja=0

Equation différentiel du pendule de torsion
Cette équation est identique a celle de 1’oscillation sinusoidale en translation et admet donc une
solution sinusoidale de la forme :

a(t) = a,, cos(wot + @)

A = —woQ,y, sin(wyt + @)
i = —wo?a, cos(wot + @) avec a, cos(wot + @) = a
c
= 0= —wyla o —wla=—-«a
C . .
wy = 7 : pulsation propre du pendule de torsion
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La période propre : Ty = 2o \/g

wWo
En prenant le solide oscillant A comme systéme, les moments de son poids et la réaction R du fil
par rapport a (A) sont nuls. La seule action mécanique du moment non nul a pour origine la torsion

du fil de moment - ca donc :

ZMA=—ca(1) etona ZMA=]OZ(2)
>1)=02) > —ca=]Ja

.. C
= ada+-a=0

J

- PENDULE PESANT

Un solide oscillant autour d’un axe horizontal fixe sous la seule action de son poids constitue un
pendule pesant.

Ecartons un tel systéme de sa position d’équilibre d’un angle a, d’une longueur £ et cachons-le.

Gy
My(P) = —||P||l sina
= —mglsina
D’autre part : Y M) = Jd& & —mgsina =Jd

=> gf + mgsina =0
Pour des petites oscillations sina = «

. l ) , l
a+ %a qui a pour solution a = a,, cos(wyt + @) avec wy = % et Ty =21 ’ngl

Si le pendule était simple :
‘mgl ‘mgl ,g ’ [
Wy = T: W:)(DO: T etTOZZTT E
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a) ETUDE ENERGETIQUE

L’¢énergie potentielle de pesanteur est prise égale a zéro a I’équilibre, 1’énergie potentielle élastique
n’intervient pas.

L’énergie mécanique d’un pendule simple non amorti dans le cas des oscillations de faibles
amplitudes est :

mgla?
Bn = =5
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CHAPITRE 6 : ELECTROMAGNETISME

Définition : I’¢lectromagnétisme est la partie de la physique qui étudie les champs magnétiques
produits par les courants électriques mais aussi toutes les interactions qui existent entre une
particule chargée en mouvement et un champ magnétique.

I- CHAMP MAGNETIQUE
1- PHENOMENES MAGNETIQUES
e Propriétés des aimants : les aimants et les objets aimantés ont la propriété de s’orienter

de fagon privilégiée au voisinage de la terre. Ils sont dits magnétites. Certaines
substances qui sont attirées par ces aimants sont dits magnétiques.

e Champ magnétique : il régne un champ magnétique dans une région de 1’espace
lorsqu’une aiguille aimantée y subit des actions

e Source de champ magnétique : la terre est la source de champ appelé champ géo-
magnétique. Les courants et les aimants sont aussi les sources de champs magnétiques.

e Vecteur champ magnétique : I’orientation prise par 1’aiguille aimantée montre qu’elle
est sensible a une grandeur orientée appelé vecteur champ magnétique, désigné par B.

. = o . = . . . , .
par convention, le sens de B est choisi selon le sens SN de I’aiguille aimantée qui le
détecte. Sa valeur se mesure a I’aide d’un tesla métre.

a) INTERACTION D’ORIGINE MAGNETIQUE
Ces interactions sont dues soit :
1) A I’interaction aimant-aimant (deux extrémités de méme nature NN ou SS se repoussent) ;
deux extrémités de nature différente s’attirent ;
2) A I’interaction aimant-courant ;
3) A I’interaction courant-courant.

2- TOPOGRAPHIE D’UN CHAMP MAGNETIQUE
C’est la description de la structure spatiale du champ. Le vecteur champ magnétique est tangent aux
lignes de champ (on appelle ligne de champ magnétique, une ligne qui, en chacun de ses points est

tangente au vecteur B en ce point).
a- Spectre obtenu a partir d’aimants
Les lignes de champ d’un aimant droit, sortent par I’extrémité nord et entrent par I’extrémité sud de

[’aimant.

b- Spectre obtenu a partir du courant
Les lignes de champ d’un courant rectiligne sont circulaires, centrés sur le fil. Leur sens dépend du

celui du courant.
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Reégle de I’observation d’ampeére : le sens des lignes de champ est tel que quand un observateur,
placé le long du fil de fagon que le courant lui entre par les pieds et lui sorte par la téte, voit les
lignes orientées vers sa gauche.

Reégle de la main droite : la main droite entourant le fil de fagon que le pouce indique le sens du
courant, le sens des lignes de champ est donné par 1’orientation des autres doigts.

c- Spectre d’un solénoide

Un solénoide est constitué d’un fil conducteur enroulé en spirale, la longueur d’un solénoide
dépasse 5fois le diamétre d’une spire. A I’intérieur du solénoide, le champ est paralléle & I’axe du
solénoide et est uniforme. La régle de la main droite permet de déterminer le sens de B a partir du
sens du courant. Dans le cas du solénoide, les doigts sont le sens du courant, le pouce écarté indique
le sens de B.

d- Spectre d’une bobine plate : méme régle que celle du solénoide.
- Spectre des bobines de Helmholtz
Deux bobines plates, paralléle, distantes de rayon r, parcouru dans le méme sens par le méme
courant, constitue un dispositif appelé bobines de Helmholtz. Les lignes de champ sont quasi
paralléles entre les deux bobines.

B I
s =
\.\"—{ i 1 _j
"':;‘ 1|‘\ = ‘\ 7 ::;

e- Valeur du champ magnétique a l'intérieur d’un solénoide

Cette valeur est donnée par la relation :

B = M,.nl
M : constante appelée perméabilité du vide = 4. 1077
I : intensité du courant en ampére (A)
n : nombre de spire par metre
B : en tesla (T)
Si le solénoide a une longueur 1 et comporte N spires

N N
n=o = B=Myyl

f- Addition des vecteurs champs magnétiques

Le champ B résultant de la superposition de deux champs magnétiques B; et B,s’obtient en faisant
la somme géométrique de ces deux vecteurs.

Exemple : a I’intérieur d’un long solénoide S; comportant n; = 1000 spires par metre et parcouru
par un courant d’intensité I; = 2A. On a placé un solénoide S, dont 1’axe est perpendiculaire a celui
de S].

Le solénoide S2 est formé de 200 spires réguliérement enroulées sur une distance de Scm et
I’intensité du courant qui y circule vaut I, = 1A. Les sens des courants étant ceux indiqués au
schéma, déterminer le vecteur champ magnétique B au point O. Que devient ce champ magnétique
si on inverse le sens de chacun des deux courants ?
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s4n) B, E

af5:(na) ::
CE Y K
Solution

Le champ B estdonné par: B = B; + B,

On calcule :
B1 = Monlll = 47, 10_7. 103. 2= 2,5. 10_3T

.1=5,0.1073T

By = My-21, = 4m. 10~
2 = Mo 2 =420 5 g2
BZ == 2B1
Le parallélogramme est ici un rectangle : le vecteur B forme avec I’axe 0% (axe de S1) I’angle a tel

que :

B,
tana =—=2 => a = 63,4°
B,
Le théoréeme de Pythagore donne :

B= |B}+B} =.(25.10"3)2 + (5.1073)2 = 5,6.1073T

. . = = A . .
Si on inverse le sens des deux courants, By et B, changent de sens en conservant méme direction et

méme norme. En conséquence, il en est de méme pour le vecteur B.

- Action d’'un champ magnétique uniforme sur une particule chargée
g

1- FORCE MAGNETIQUE — FORCE DE LORENTZ

a. Expression
Les particules chargées lancées dans un champ magnétique peuvent prendre des trajectoires
circulaires ou hélicoidales. La force responsable de ces incurvations est appelée force magnétique
ou force de Lorentz, elle dépend de la charge des particules, de leur vitesse et de la valeur du
champ. Elle a pour expression :

F=qVAB
b. Caractéristiques de B
1- Sa direction est orthogonale au plan défini par VetF;
2- Son sens est tel que :
si la charge g > 0, V,B et F forment un triédre direct
si la charge g < 0, ils forment un triedre indirect
convention :
(x) vecteur rentrant
(®) vecteur sortant
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3- Savaleurest: F =qVBsina ou a= (17, §)
Reégle de la main droite : la main droite placée de sorte que le courant entre par les poignets et sorte
par les doigts, la paume dirigée dans le sens direct champ B alors le pouce tendu oriente la force de
Lorentz.

Pour retrouver le sens de la force F du champ B oude 17), on utiliser la régle des trois doigts (l7 =
pouce, B= index, F= majeur) ou la régle de la paume de main droite ouverte (main droite ouverte

=B ; les doigts = 74 ; le pouce écarté = ﬁ).

2- ETUDE DE LA TRAJECTOIRE CIRCULAIRE

La vitesse de la particule de masse m est orthogonale au champ B , on suppose q>0.
a. Analyse des actions

Le poids de la particule est négligeable vis-a-vis des forces magnétiques.

D’aprées le théoréme du centre d’inertie, on a :

Zfext=m& o F=md :qVA§=ma

qV A B
m

=>d 1L VetaB

a=
b. Choix du repére
Le mouvement de la particule est étudi¢ dans un repere terrestre supposé galiléen. L’origine O du
repére est le point d’entrée de la particule du champ magnétique, 1’axe ox est choisi colinéaire a V

et de meme sens, oy est perpendiculaire a Betaox. Le repere est complété par un axe oz tel que
ox; oy et oz sont direct.

¢. Caractéristique du mouvement
. - =g - d?
Puisque a L B donc a L oz = az=d—tz=0 = V,=cste=0 =>z=cste=0
Ainsi la trajectoire est contenue dans le plan xoy L B. Dans le repere mobile de Frenet (IV ;7),
I’accélération tangentielle en un point M est :
Ldv
ar = —
T dt
= V =V, = la vitesse garde une valeur constante et le mouvement est uniforme

puis dLV= ar=0

L’accélération normale est :

V? . lql Vs mV,
ay = - puisque V 1L B = azﬁVOBzfz R=m

Le rayon de courbure est constant donc la trajectoire est circulaire.

d. Puissance d’une force magnétique
La puissance d’une force magnétique F est donnée par le produit scalaire
P=F.V comme F1LV=P=0
L’énergie cinétique d’une particule dans un champ magnétique ne varie pas. La force magnétique
peut incurver les trajectoires mais ne peut modifier la valeur de la vitesse des particules.

e. Quantité de mouvement
La quantité de mouvement est donnée par :
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lg|BR
P=mV, or VO:T = P =|q|BR

f. Vitesse angulaire

. 1% lq|BR lq|B
Onsaitque w =-2 or V,=2 > w=-"=
R m m

3- NOTION DE FLUX MAGNETIQUE
a- Choisir une orientation (arbitraire) sur la spire ;
b- Mettre en place la normale a la surface S de la spire (utiliser I’'une des régles d’orientation
de I’espace).
On calcule le flux par la formule :

& =B.n1S = @ = BS cos(B, S)

n = vecteur unitaire normal (B, ﬁ) =T

NB : pour une bobine a N spire,
® = NBS cos(B,n) ; L’unité du flux est le weber (wb)

4- LOIDE LAPLACE

a. Expression de la force de Laplace
Un conducteur de longueur | parcouru par une intensité I, est plongé dans un champ magnétique B
est soumis a ’action d’une force F appelée force de Laplace tel que :

F=IIAB

Ses caractéristiques sont :
- Sadirection est orthogonale au plan défini par le fil et le champ B

- Son sens est tel que le triedre défini par les vecteurs | [,B et F forment un triédre direct
(I’orientation dans le sens du courant)
- Savaleur est :
F =1IBsina

b. Application
-  Roue de Barlow
Chaque rayon du disque traversé par un courant est soumis au champ magnétique, subit la force
¢lectromagnétique, la roue tournera progressivement dans le sens indiqué sur la figure.
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T

F=IIAB oF=IBsin(LE), (F)=% etl=R = |F=IRB

2
La roue de Barlow est le moteur électrique le plus simple.

Puissance du moteur

P(F) = M(F).

4 R .. BIR?
Mo(F) =F.0A = BIR.5 = My(F) = avec w = 2mN
. BIR?
P(F) = 5w

107

AN:B=05T, I=44; R=5cm; w=10075/ . = >

0,5X4X(572)%X >
2

AN: P(F) =

5- BALANCE DE COTTON

a ‘- _[f
Etude de la balance

Bilan des forces :

- Sur A’A : force ﬁl

Sur AC : force F

Sur CC’ : force ﬁz

Au point O : la réaction R du couteau

Au point E : le poids P

Conditions d’équilibre :

Z My(fext) =0
M, (ﬁl) = 0 car la droite d’action de F; passe par le point O, de méme que M, (1?'2) =0
Mo(F) = —0K.F; My(R)=0 ; My(P)=0E.P
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ZMO(fext) =0 —O0K.F+OE.P =0 avec F =BIAC;0K =d OE =d'’
—dBIAC+d'mg =0
_mgd'
 IACd

Intérét de la balance : mesure des intensités du champ magnétique.

Exercice n°1

On considére le montage ci-apres, la tige de cuivre KM, de masse m est homogeéne et de section
constante, elle est placée dans un champ magnétique uniforme B sur une longueur 1 et elle est
parcourue par un courant I. on admettra que la tige ne peut se glisser sans frottement sur ses rails.

a.

e

De quel angle a peut-on calculer les rails ACDE et dans quel sens pour que la tige soit en
équilibre dans les deux cas suivants :

1 cas : B reste L aux rails

2°™ cas : B reste vertical

On incline le plan des rails suivant le sens défini a la question 1 (voir 1¥ cas) en donnant a o
la valeur de 30° (B L au plan des rails)

Quelle est la nature du mouvement de la tige KM ?

Calculer son accélération et sa vitesse 0,5s apres la fermeture du circuit.
e O
= g

5—r~.1l B

-

A N |

NB : On admettra dans cette partie que la résistance du circuit est suffisamment élevée pour qu’on
puisse négliger les phénomenes d’induction

Résolution

a.

1°" cas : Pour que la tige soit en équilibre, il faut soulever les extrémités A et C
B 1 au plan des rails.

Blc)
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Conditions d’équilibre
> f ext =0

P+ R +F =0 En projetant sur (x'xi) il vient
P.+0—F=0=Psina—BIl=0

, BIl BIl
sinag = —=——
P mg
AN < 05X4X6X107% .
: = = = ~ 37°
S = So0x10-3x10 *

2™ cas : B vertical au plan des rails

Principe d’inertie

P+R+F=0 > P +FE=0
_ F  BIl
mgsina —Fcosa =0 = tanag = — = —
mg mg
b. B 1 auplan des rails (ag = 37°)
Ora =30° & a < ag = latige se déplacera dans le sens de D—A

La condition d’équilibre n’est plus vérifiée, on a :

Zfextzma o P+R+F=md
Soit en projection sur (x'x, 7), il vient
psina — BIl =ma, = a, =gsina — %” = constante
Le mouvement est uniformément vari¢.
g AN: a, = 10X0,5 — 25X4X6107

— 2
o102 = a,=1m/s
h. calcul de vitesse:
V=at+V, avecV,=0

>V =at =-1X0,5=-0,5m/s

6- AUTO-INDUCTION

a. Obtention d’un courant induit
Un courant induit apparait dans un circuit si on déplace un aimant dans son voisinage ou si on
déplace le circuit devant un aimant.
Le courant induit s’annule lorsque le déplacement relatif cesse.

b. Sens du courant induit
Le sens du courant induit dans la bobine est celui qui tente de s’opposer au mouvement de 1’aimant.
c. Loide Lenz
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Le sens du courant induit est tel que le flux magnétique qu’il crée a travers I’induit s’oppose a la
variation du flux qui lui donne naissance.

7- FORCE ELECTROMOTRICE D’INDUCTION (F.E.M)
La f.e.m d’induction est égale a celle d’un générateur sans résistance interne, qui créerait dans le
circuit un courant de méme intensité que le circuit induit.

a. Loi de Faraday
La f.e.m d’induction e est I’opposée de la dérivée par rapport au temps du flux inducteur dans le
circuit.
—-do
dt
e Un sens positif est choisi sur le contour limitant le circuit :

SiA® < 0= e > 0, le courant circule dans le sens positif choisi
SiA® > 0 = e < 0, le courant circule dans le sens opposé au sens choisi.

e SiR est la résistance du circuit induit, en 1’absence de tout autre f.e.m dans le circuit,
I’intensité du courant induit est donnée par la relation :

==

R
. —-do , le]
Remarque : le plus souvent, on peut se borner a calculer |e| = | eti=—

Le sens du courant induit est directement donn¢ par la loi de Lenz.

8- PHENOMENES D’AUTO-INDUCTION
a. Auto inductance

Soit un circuit parcouru par un courant d’intensité variable et comportant une bobine, on montre
que :
- Le champ magnétique créé par le courant qui parcourt la bobine est proportionnel a celui-ci ;
- Le flux du champ magnétique au travers de la bobine est proportionnel a B et il est donc
proportionnel a 1, alors :
® =Li
L est le coefficient de proportionnalité qui ne dépend que de la géométrie de la bobine. L est appelé
auto inductance. Son unité est le Henry (H).
Pour un solénoide, I’inductance est :
M,yN?S
=—]
b. Force f.e.m d’auto-induction
La f.e.m d’auto-induction qui apparait dans une portion de circuit d’auto inductance L est:
—Ldi
dt
c. Différence de potentiel aux bornes d’une bobine
La DDP aux bornes d’une bobine d’un inducteur AB dont 1’auto inductance L a une résistance r,
parcouru par un courant d’intensité variable i est :

e =

.. = ‘+Ldi
AB =Tl dt

d. Etude énergétique

43



Puissance échangée
La puissance ¢€lectrique échangée par le dipdle que constitue la bobine avec le reste du circuit est :

P =U,zi = '2+L'di
=Uygl =i ldt
d /1
= P =ri? —(—L'Z)
ri +dt > L
P est la somme des deux bornes
P=P+P,

P; = ri? est toujours positive. Ce terme correspond a I’effet joule.

. d . . . . o .
Si P, = = GLLZ) > 0, la bobine se comporte comme un récepteur, elle recoit du travail électrique

du reste du circuit.

Si P, < 0, la bobine se comporte comme un générateur ; elle céde du travail électrique au reste du
circuit.

Energie d’une bobine

L’énergie emmagasinée par un conducteur dont 1’auto inductance est L et qui est parcourue par un
courant d’intensité i est :

1
W ==Li?
> Li
Application n°1

Un solénoide assez long, comprenant 100 spires par metre, chacune de rayon r = 5cm est parcouru
par un courant d’intensité i = 0,1 cos(1000t). Une bobine circulaire plate comportant 100 spires
de rayon moyen R = 8cm, entoure la région centrale du solénoide.
1. Déterminer I’expression en f(t) du flux inducteur a travers la bobine plate.
2. Labobine plate constituant un circuit fermé de résistance r = 0,252. Quelle est I’expression
de I’intensité qui 1’a parcourue ?
R=0,2Q
Solution :
n =100 spires/m ; r = 5cm = 5.10”m ; i = 0,1 cos(100t)

1) Détermination du flux inducteur a travers la bobine plate
® = NBS
N = 1000 spires
B = Champ a I’intérieur du solénoide
B = Myni = Myn. 0,1 cos (1000t)
S = Surface de la bobine = surface du solénoide = 71?2
Orientons la spire de la bobine dans le sens de B
= (B,S)=0= & =NBS
= ® = N.MyX0,1m7r? cos(1000¢)
= 100X47X10~7X(5.1072)2. 7 cos(1000t)
= 100X4m2.1077X2,5.10* cos(1000t)
@ =9,87.1078 cos(1000¢)
2) Intensité que parcourt la bobine
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do

i = ~@

e
= or e=
R

d
= e= —a(9,87. 1078 cos(1000t)

=9,87. 10_8f cos(1000t) dt

=9,87.1078X1000 sin(1000t)
e = 9,87.107° sin(1000¢t)

~9,87.1075

L= WSIH(lOOOt)

i =1,23.1073sin(1000t)

Application n°2

Calculer I’inductance d’un solénoide dont la longueur L=0,5m, est trés grande devant son rayon
r=2,5cm. Le nombre de spires par unité de longueur est n=2.10" spires/m.

Solution

=L (1) , ® = NBS = NBScos(B,S)
Orientons la spire : L, S et B ont méme sens.
(B, S)=0
S =mr?
B =My.n.i
N =nl

®=NBS > ®=nlMynimnr?>=M,n?lm.r% (2)
(D)=R2) © Li=M,n?lm.r?
L = Myn?lmr?
AN: L = 41.1077X(4.10%)2X0,5X7X (2,51072%)2
L=0,5H
L= N"IZVZS avec N = nl, S = nr?
= M = Nyn?lnr?

!
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CHAPITRE 7 : LES CIRCUITS OSCILLANTS

I- FREQUENCE DES OSCILLATIONS D’UN CIRCUIT (L, C)
A- EQUATION DIFFERENTIELLE D’UN CIRCUIT (L, C)
Considérons le circuit schématisé ci-apres : il comprend :
- Un condensateur de capacité C chargé sous la tension continue U = U, I’armature de haut porte

la charge q, ;
- Une bobine d’inductance L et de résistance négligeable.
A Pinstant t = 0, on ferme I’interrupteur k : le condensateur se décharge a travers la bobine ; on note
i Pintensité algébrique du courant a I’instant t et q la charge du condensateur (fig. b).

i est positive lorsque le courant circule dans le sens de la fleche rouge, négative dans le cas
contraire.
e (Calculons la tension Uyp

- Aux bornes du condensateur : U =

[SUES]

. d
- Aux bornes de la bobine : U = Ld—;
\ di
DouU=1=12 (1
c dt
La charge du condensateur passe par la valeur q a I’instant t a la valeur ¢ + dq a ’'instant t + dt ; la
quantité d’électricité qui quitte I’armature supérieure vaut :

dq du
dt = q — dq) =—-dq=>i=——=—-C— (2
idt = q —(q +dq) q=i=-— 7w @
Dérivons les deux membres de (2) par rapport a t et reportons dans (1) :
di c dU? di U U c dUu?
—_ = = — —_—e = D = —( —
dt dtz ' dt L L dt?
dUz U dUZ 1
gz t1c=0 ou W+w%U=O avecw(%:E

B- CALCUL DE LA TENSION U(t)
e La solution de I’équation différentielle précédente est de la forme :
U = Upax cos(wot — @)
Cela signifie que, la tension U entre les armatures, subit des oscillations sinusoidales caractérisées :
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- Parlapulsation wy= |—

LC
7 [OX) 1
- Qupar la fréquence Ny = — = ——
p q 0™ 21z 7 2mvIC

e La détermination des valeurs de U,,,, et de ¢, s’obtient en exprimant les conditions
initiales, ¢’est-a-dire les valeurs :

Uit=0)=1U, eti(t=0)=—%(t=0)=0

U(t =0) =Unaxcosp =Uy (3)

At=0, U=Uy= Uy cosp (¥); %zCi—Z or Z—It]

= —WoUpax sSin(—@) = 0= ¢ = {g
La condition (*) satisfaita ¢ = 0
D’ou
U = Uy cos(wyt)
Remarque : un circuit (L, C) est nommé, pour cette raison, circuit oscillant.

C- CALCUL DE L’INTENSITE i(t)

i= _CE = CUywq sin(wgt) = Lyax Sin(wot) enposant L., = CUyw,

- Représentation graphique
U =Ujp coswgt 1= Imaxsinwgt

, . 2T
De période Ty =—
Wo

I max
W |- 7&\' i g o e
/s N2 3Tuf/4/ ™ 2,
-uu —————— — — - R e e S S mee e e S e S e o e

-I max

. el s s . To 37 .
Notons que I’intensité { passe par un extremum aux instants : t = :0; RS lorsque la tension U

s’annule et vice versa. Ces fonctions sinusoidales U et i sont dites en quadrature.

II- ASPECT ENERGETIQUE
Dans le cas ou la résistance R est négligeable, cela signifie qu’il n’y a pas dissipation d’énergie par
effet joule. L énergie présente dans le circuit demeure donc constante ; a I’instant t, elle existe :

- Sous forme d’énergie électrostatique Er emmagasinée dans le

- condensateur : Ep = %CU2 = %CU@ cos?(wot).
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- Et sous forme d’énergie magnétique E}, dans la bobine : Ey; = %Li2 = %Irznax sin?(wyt) or
Lax = CUywo = Ey = %LCZwSUg sin?(wyt) = %CU& sin?(wot) car LCw3 =1
D’ou

Er+E —lCUz[cosz(a) t) + sin?(wyt)] —ECU2
E M_Z 0 0 0 _2 0

. I 1, 12 112 1
Puisque @Uy=2% = E.+E, =-C-2%&& =_-Mmax __]]2
q 07 cw, E M™% 202 7 2cw? T 27 Max

1 .o2_1 5
E=Eg+Ey= ECUO = ELImax = constante

Si I’énergie €lectrostatique diminue, 1’énergie magnétique augmente, a somme constante, et
inversement.
e Au cours des oscillations d’un circuit (L, C) non résistant, 1’énergie totale se conserve.
e Il yatransfert d’énergie du condensateur vers la bobine et inversement.

e Le cas ou le circuit posseéde une résistance, 1’énergie emmagasinée dans un circuit diminue

progressivement a cause de I’effet joule.

Exercice d’application :

On réalise un circuit oscillant en associant comme 1’indique la figure, un condensateur de capacité

C et une bobine d’inductance L = 40mH et de résistance négligeable. Le circuit est le siege
d’oscillation électrique de fréquence Ny = 800Hz

¢ __ | g-

a. Calculer la pulsation propre w, du circuit et la valeur de la capacité C.
b. A D’instant t = 0, I’intensité i est maximale et a pour valeur i = I,,,5,, = 2A. Donner
I’expressionde i en fonction det.
c. Exprimer la tension U aux bornes du condensateur en fonction de t.
A quelles dates la charge ¢ est-elle, pour la premiére fois
- Positive et maximale ?
- Négative et minimale ?
Calculer I’énergie présente dans le circuit a ces dates. Sous quelle forme(s) existe-t-elle ?
d. Calculer I’énergie électrostatique et ’énergie magnétique aux instants t'=6,25.10"'s et
£°=2.10".
Solution :
a. Pulsation propre :
wo = 2nN, = AN: w, = 2X3,14X800 = 5,027.103rad/s
La relation : LCw? = 1 permet de calculer C.
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1
©4.1072.(5,027.103)2
b. Dans un circuit (L, C), I’intensité i est une fonction sinusoidale du temps de pulsation wy,

C =99.10"7F = INF

donc :
[ = Iy cOS(wot + @)
On détermine la valeur de ¢ en écrivant la condition initiale :
i = Ipax pourt=0, soit Lygy = Lnex COS@; cos@p =1 = @ =0eti = ;4 cos(wot)

= i = 2cos(5027t) (iend ettens)
c. Latension U aux bornes du condensateur est aussi la tension aux bornes de la bobine :
U=L% ;= = —wolnay sin(wot) d'00 U = —Lwglyas sin(wot)
AN: U =—4.10"%2 x 5027 x 25sin(5027) = —402 sin(5027t)
o q=CU=—-LwylngsSin(wot) = —qmax Sin(wyt)

q = Qmax lorsque sin(wgt) =1, = wot = 37” =21

q atteint pour la premicre fois la valeur —@q,,,, a I’instant :

- 3m _2m o op = 3T,
L 2w, 1 0T, 1=
AN: t; = =9,375.107*
LT 4% 800 *
q = —Qmax lorsque sin(wot) = 1; = wot =§
q atteint pour la premicre fois la valeur —q,,,4, a I’'instant :
(= =lo AN: t; = ———=3,125.10"*
= = —" = ' = =5, .
27 20, 4’ 2= 2% 800 s
e Avec les conventions choisies : i = — % ; lorsque la charge g est maximale ou minimale, le

(. . d . o .

nombre dérivé d—z est nul et I’intensité i est nulle également.

L’énergie magnétique : Ey, = 3 Li? est nulle, toute I’énergie du circuit est sous forme
d’énergie ¢électrostatique Er emmagasinée dans le condensateur.

1qmax _ 1 2 1 -6 2 ~ -2
=37C =§CUmax=>AN: EE:EX 107° x (402)° = 8.107¢]
At=0;i=IL,g4. Orvoussavez que dans un circuit (L, C), I’intensité est extremale

Eg

lorsque la tension U s’annule et réciproquement :
i =Inax s Ew=5LI2ax:U=0; -CU2=0
e Posonst =t; out,:q estextremale, donci =0; E', = 0. Toute I’énergie est sous
forme d’énergie électrostatique :
Ey+E;=Ey+E; & %L[rznax +0=04+Ey=>Ey= %LI,Znax
AN: E'y = % X 4.1072 x 4 = 8.107%Jt
d. Calculons les tensions U’ et U”’ :

1
U’ = —4025sin(5027 X 6,25.10™%) = 0; E'p = ECU'Z =0

U" = —402sin(5027 x 2.107%) = —339V
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EII i 1CU”2 _ 10_6
E™2 2

E'y+Eg=E"y+E"y=8.10"%] = constante
E', =8102—E'; =8.107%]
E', =8102—F",=810"%—5810"% = 2,2.107%

X(339)% = 5,8.1072/

Exercice : Bac D 97
Un condensateur de capacité¢ C = 12,5NF est chargé grace a une batterie de f.¢.m. E =12V et
résistance négligeable (I’interrupteur K, étant ouvert et I’interrupteur K; fermé).

1. Calculer la charge maximale prise par le condensateur et préciser I’armature qui s’est
chargée positivement.

2. Le condensateur peut ensuite se décharger dans une bobine d’inductance L=0,8H, supposée
d’abord de résistance nulle, pour cela, on ouvre K; et a la date t = 0, on ferme K.

a. Quelle est a la date t =0, la valeur U, de la tension Uy et I’intensité i, du courant dans
le circuit LC ?

b. A I’instant t, la tension aux bornes du condensateur vaut U, = U,5. Comment varie U,
en f(t) ? Calculer la pulsation propre w, et la fréquence propre du circuit LC, et donner
I’expression de U en f(t, woU,,).

3. Onvisualise U sur I’écran d’un oscillographe dont le balayage horizontal du spot
correspond a 5.10-3s/cm et dont la sensibilité est 6v/cm. Représenter la courbe U, = f(t)
que I’on observera sur 1’écran de largeur 8cm.

4. Labobine a, en réalité, une résistance R. dessiner une des allures de courbes possibles que
I’on pourra observer sur 1’écran. Quel est le role de R ?

:

A

e
il

C

—_— e L

Corrigé
C=125NF; L=0,8H; U=E=12V
e Charge maximale
Gmax = CU  AN: Qo = 12,5.107°X12 =  Qmax = 1,5.107%
L’armature A se charge positivement.

e K, fermé

a. LavaleurUy=Uyg = Uyg = % =U,
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1
)

i
-

U

Le condensateur a I’instant t se décharge dans la bobine. Si la charge varie, c’est que la tension U

aussi varie au cours du temps.

q di . _dq dq _ .
Uc‘l‘UL:O, UC:E etUL:La OTl=E=q=> UL:LE:Lq
q., .. .
>—=+Lj=0=> —q=0(1
ctLld q+7c4 D
=CU .. 1
q {"=CU +1C (2)
(1) Est de la forme : § + wZq =0 (3)
1 1
B)=02) ©® wy=— = AN: w, = = 316,29 rad/s
LC J/0,8X12,5.10-¢
N 1 T_Zn_ 21 _ 2 10-?
o T T, 31629 T °
:>N0=2.10_2=50Hz

Ucen f(t,wg et Uy) :
Q(t) = Qmax COS((UOt + 90)
Q(t) = —Woqmax sin(a)ot + (P)
at=0; 90=qQmax0s® >0;q,>0 ; Gmax >0 = cosp >0
N . . 0
at=0; o= —wWoGQmaxSinp =0 = ¢ = {n

@ = 0 est compatible avec la condition
or qo = qm = 1,5.107%¢
q(t) = 1,5.107* cos(316,29t)
—4
U@ =% = %cosGl&Z%)
U(t) = 12 cos(316,29t)
Autre méthode
U+w3=0
U = Upax cos(wot + @)
{U = —wWoUnmax Sin(wot + @)
at=0; U=Uy=Upgxcosp >0; U, >0 = cosp >0
U=—woUpgysing =0
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Wog#0; Upgre #0 :>sin<p:0=><p:{g Uy = Upar = 12V
D’ou
U(t) = 12 cos(316,29t)
e Sensibilité verticale
S=6V/cm
lem — 6V
Xem — 12V

S>Sx=—=2
X c cm

e Balayage 5.10” s/cm
lem — 5.107s
Y — 2.107%s
2.1072
Y =5.10°
1 période s’étale 4cm d’écran, avec 8cm d’écran, on aura 2périodes.

=4cm

5. SiRn’est pas nulle, il y a amortissement des amplitudes
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CHAPITRE 8 : CIRCUITS (R, L, C) EN REGIME SINUSOIiDAL FORCE
I- ETUDE THEORIQUE DU CIRCUIT (R, L, C) SERIE
1- EQUATION DIFFERENTIELLE DU CIRCUIT
Soit le circuit (R, L, C) ci-apres, on a choisi un sens positif et la tension aux bornes du circuit est :
Uap = Uap + Upp + Upg

C

Uup = Ri ;(loi d’ohm aux bornes de R)
di . dq .

UBD=LE OTL=E=> UBD=LCI9

_a.

UBE - c’

D’ou I’équation différentielle

U=Ri+Lo+1=Ri+Lj+% & U=Ri+Lj+ ¢R

/.

_.I-l-

L ]
o E
-—

u

- qp = CUpg ouq = CUpg

. d o . , .
- 0= d—z lorsque le sens positif est dirigé vers 1’armature qui porte la charge q.

2- LES GRANDEURS EFFICACES
a. L’intensité efficace d’un courant alternatif sinusoidal

Un condensateur ohmique de résistance R est parcouru par le courant alternatif sinusoidal :
i = Lax cOs(wt)
L’intensité efficace se calcule par :
Iin

1 T T
1? = —j 12, cos?(wt)dt = —J cos?(wt)dt
T Jo T Jo

1+ 2wt
Jcosz(wt)dt = f#dt

1 1
= Efdt+§fcos(2wt) dt

1
f cos(Rwt) dt = %sin(Zwt) + cste

1 1
J cos?(wt)dt = =t + —sin(2wt) + cste
2 4w

T 1 1
J;) cos?(wt)dt = > [t]} + . [sin(wt)]?
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1 1 _ 1
= E(T -0)+ v [sin(2wT) —sin 0] = ET +0
Car sin(2wT) =sin4mr =0

D’ou finalement :

T 1
f cos?(wt)dt = =T
0 2

12 T IZ T 12

== 2(wt)dt =X ==—

T ), (i) 79272
V2

b. Tension efficace

La loi d’ohm aux bornes du circuit (RLC) est de forme :
U=RI

U étant la tension variable aux bornes du condensateur ohmique.
Pour le courant alternatif sinusoidal :

i = I, cos(wt)
Donc

U = RI,, cos(wt) = RIN2 cos(wt)

On note que U et i sont en phase.
Si I’on exprime U sous la forme habituelle

U = U, cos(wt)

U,, étant la valeur maximale de la tension alternative sinusoidale U(t), on peut écrire :
U,, = RlL, = RI\2
Lorsque le conducteur ohmique est parcouru par le courant continu d’intensité I, la tension a ses
bornes vaut U tel que :
U=RI
Et les grandeurs U,, et U sont liés par :

{Um:RI\/E=> Up=UV2 oul =
U=RI

SIEy

3- NOTION DE PHASE
Considérons les deux grandeurs alternatives sinusoidales :
i =1, cos(wt) et U= U, cos(wt+ @).
Définition : ¢ est la phase de la fonction U(t) par rapport a la fonction i(t). ¢ est en radian.

On dit également que :
e (¢ mesure ’avance de phase de U(t) par rapport a i(t) ou le retard de phase de i(t) par rapport
a U(t). I’angle ¢ est algébrique.
e Si@ > 0; lafonction U(t) est en avance de ¢ radians sur la fonction i(t) ; bien entendu i(t)
est en retard de ¢ radians par rapport a U(t).
e Lorsque ¢ = 0; les deux grandeurs sont en phase.
Exemple : i = I,,, cos(wt) et U = U, cos(wt)

e Pour ¢ = tnrad ; elles sont dites en opposition de phase
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Exemple : i = I,, cos(wt) et U = Uy, cos(wt + m) = —U,, cos(wt)
e Quand ¢ = ig rad ; elles sont en quadrature.

Exemplel : i = I, cos(wt) et U = U,, cos (a)t + g) = —U,, sin(wt)

U est en quadrature avance par rapport a i

Exemple 2 : i = I,,, cos(wt) et U = U, cos(wt — g) = U,, sin(wt)

U est en quadrature retard sur i.

4- RESOLUTION DE L’EQUATION DIFFERENTIELLE PAR LA METHODE DE FRESNEL
Rappel :

. di 1,
U :Rl+Ld—t+E.l-ldt (1)
i = I, cos(wt)
U = Uy, cos(wt + @)
di

o= “Imw sin(wt) = wl,, cos (a)t + g)

[idt =? iz% avecq=CU:>U=%0rU=Umcos(a)t)
1 1 1 T
Ef Up cos(wt) dt = —sin(wt) = —cos (wt — E)

cw
(1) Devient
Up, cos(wt + @) = Rl, cos(wt) + Lwl,, cos (cut + g) + é—’:cos (wt — g)
Orl, =2 et U,=U2

m  IV2 s
UV2 cos(wt + @) = RIN2 cos(wt) + LwlV?2 cos (a)t + E) + Ecos (wt — E)

Par simplification par V2, on a :

U cos(wt + ¢) = RI cos(wt) + Lwl cos (wt + E) + Lcos (wt — E)
2/ Cw 2

Chacun des membres de cette égalité représente une grandeur sinusoidale ; les vecteurs de Fresnel

correspondants sont donc égaux. Cherchons le vecteur de Fresnel associé au second membre.
norme: RI

0X, V) =0

norme: Lwl

(0X,V, = g

e Rlcoswt :>V1={

. Lwlcos(wt+g):> sz{

I
! . norme: —-
. —cos(wt—;) = V; = @

cw 0X,V3) = —7
Vig |7
Vial| puw
Ly SERCROEE
(iwi} | 4 U l —
Sy
|
Vet ™ X
Il apparait donc dans la figureun ~ »ow| = triangle rectangle d’hypoténuse U
Vs
et de coté Rl et (La) - i) I; d’apres le théoréme de Pythagore,
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ona:
2

1
U? = R?I? + (La) — —) I1?
Cw

112
:>U2=12<R2+<Lw——) >
Cw

S 1)2
> — = —_—
12 “"Te

u_ .,
Posons z = — = impédance,

2

1
S 2= R2+(La)——>
Cw

Z s’exprime en ohm (L) et I’avance de phase ¢ de U par rapport a i est tel que, dans le méme

triangle :

Lw — i
R

e Si@ > 0;U esteffectivement en avance sur i, c’est le cas quand Lw > i car tangp >0

tang =

e Sigp < 0;Usetrouve en retard de |¢@| sur i ; cela se produit lorsque
Lw < — car tangp < 0.
Cw

5- METHODE A UTILISER DANS UN PROBLEME PORTANT SUR UN CIRCUIT (RLC) SERIE
Assimiler les éléments suivants :

a) On applique la formule U = z/

Soit pour le circuit entier soit pour un dip6Ole appartenant a ce circuit. Aux bornes du condensateur,
par exemple, la valeur efficace de la tension est U, tel que :

UC = ch
Avec z. : impédance du condensateur
, 1\? Lw — i
z= |R +<Lw——) et tangp =——
Cw ¢ R

Si le dipdle considéré ne comporte pas de résistance, on fait disparaitre le terme en R (R=0) ; s’il est
non inductif, on ¢élimine le terme L (L=0) et s’il ne contient pas de condensateur, c’est le terme C

\ . 1
que I’on enléve (ce qui correspond a == 0).

Exemple :
e Circuit (RL):

Lw
z=+R?>+ [?w? ; tanqo:?
e Circuit (RC)

1

= |R%2+ pt =—
z C?w? NP = Rw
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¢ Inductance pur L
s
z=Lw ; tangp =+ (carR =0eto =—)
2
e Capacité pur C:

s
z=0c- tang = —oo (car R = 0); p=-3

b) Etude de quelques circuits
- Résistance pure : R

; R Z 4
o—— ] s o=
———— R i

u

Z =R ; U etisont en phase.

La tension aux bornes d’une résistance est en phase avec 1’intensité.
- Inductance pur : L

Cu
' 3
+ 7 L L
'—.’.__fm\__. U est &n avance sur &
+n
— 2

u ‘\ T
i

e bmvuas

Y .
z = Lw ; U est en avance de S suri

La tension aux bornes d’une inductance pure est en quadrature sur 1’intensité.
- Capacité pure : C

2| |
l'-rl...
=

Licw

()

1 T .
z=—/;Uestenretard de ——suri
Cw 2
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- Circuit (RL)

u
L
C —
S ———
u & )
R
_ p2 2.2 . . _ Lo
z=+vVR*+ L“w*; Uenavancesuri; tan¢ ==
a- Circuit (RC)
R
—>+
i [ ] | | P 1few
R | |
R
— z
u
(U}
z= |R?2+——:Uesten retard suri; tang = L
CZw?’ i RCw
- Circuit (LC)
F “-“'
Lw
L c
- IMML | |
&
- I | +71
g NE
1fow
1 1 T .
Lw > — ;i z=Lw—— ; Uestenavance de —suri.
Cw Cw 2

Exercice d’application
Un circuit est constitué¢ d’une résistance de R = 200 Q, d’une bobine inductive (inductance
L=0,1H ; résistance négligeable et d’un condensateur de capacit¢ C= 1 NF placés en série. Il est
alimenté par un générateur B.F. qui délivre a ses bornes une tension alternative sinusoidale U de
fréquence 250Hz et de valeur efficace U=5V.

a) Calculer I’intensité dans le circuit.

b) Sil’on se donne la tension instantanée U sous la forme : U = U,, cos(wt) ; quelle est la loi

de la variation de I’intensité instantanée 1 en fonction de t ?

¢) Calculer les tensions :

- Ug : aux bornes de la résistance ;

- Ug : aux bornes de la bobine ;
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- U¢ : aux bornes du condensateur
Comparer la somme Uy + Up + U, a la tension efficace appliquée U et conclure.
d) Quelles sont les valeurs des impédances :
- Z:ducircuit (RLC) série ;
- zp :de larésistance ;
- zp :delabobine ;
- Z¢ : du condensateur
Comparer la somme zp + zg + z, a z et conclure.

Solution

is

a) Pour calculer I’intensité efficace I, on applique la formule U = z.I a ’ensemble du circuit.

1 2
- -2
z +|(Lw Co
- R=2002;N =250Hz; w=2nN = 500nrad/s

- Lw=10,1X500r = 157,10

L=l 63660
Cw 10~6X500m

- Lw— i ~ 1571 — 636,6 = —479,50)

D’ou

zZ = \/2002 + (—479,5)% = 5,196. 1020
On a alors immédiatement 1’intensité

U
I = ~ =>AN: 1 9,623.10734 =>1=9,6mA

~ 5,196. 102

b) Laregle a retenir est : U est en avance par rapport a 1 de ¢. Calculons ¢.
1

Lo—co 4792

tan @ = - = 240
an@ R 200

@ =—67,36°0ou —1,176rad
U = U,, cos(wt) et U est en avance de ¢ par rapport a1 ; il faut donc poser :
i = I, cos(wt — @)

Etici ¢ est négatif.
Ip, =1N2 =9,623.1073XvV2 = 1,36.10724 ; ¢ = —1,176rad = —1,18rad
D’ou
i =1,36.1072 cos(500mt + 1,18)
c) On applique la formule U = z.I successivement aux bornes des trois dipoles du circuit :
- Auxbornesde R : Uy = zg.I avec z = 20002 => AN : U, = 200X9,623.1073
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Up = 1,92V
- Aux bornes de la bobine : Ug = zz.I avec zg = Lw = 157,112
=> AN: Up = 157,1X9,623.1073 = 1,51V

- Aux bornes du condensateur : z, = i = 636,612
=> AN: U, = 636,6X9,623.1073 = 6,13V
- Ug + U+ U; = 9,6V alors que U=5V
On en déduit le résultat a connaitre : les tensions efficaces ne s’additionnent pas.
d) Les impédances en série ne s’additionnent pas.

Finalement les seules grandeurs qui s’additionnent en alternatif, sont les tensions

R

instantanées U.

II- CIRCUIT (RLC) SERIE A LA RESONANCE, PUISSANCE EN ALTERNATIF
Etude théorique de la résonance :

1- FREQUENCE DE RESONANCE
Reprenons la valeur de I’impédance d’un circuit (RLC) série :

1 2
- [re+ (o)
Z \/ + w Coo

On obtient z a partir d’'une somme de deux termes, le premier est constant et le second dépend de w.

Z est donc minimal et, puisque I = g, I’intensité efficace I est maximale lorsque w = w, tel que :

Lwog——=——=0 oulwy=——=>LCw:=1
° ¢ Wy °7 ¢ Wy 0
* wy= \/% est la pulsation propre du circuit
1 , o
e Ny= p—r est la fréquence propre du circuit

o T, =2mVLC estlapériode propre du circuit

2- IMPEDANCE DU CIRCUIT A LA RESONANCE

) , 1
A larésonance, Lw — o= 0 donc z=R

A la résonance, I’impédance du circuit est minimale et égale a sa résistance. On en déduit la valeur

maximale [, de I’intensité efficace I :

I =— avecz=R=> [,=—
A ec 0 R

Remarque : a la résonance, U et i sont en phase. = tangp = 0= ¢ = 0.

3- CONDITION DE FRESNEL
Considérons ici que la bobine est assimilable a une inductance pure L (r=0), la résistance totale

étant encore notée R.

Les vecteurs de Fresnel associés a I’inductance et a la capacité, ont la méme longueur, puisque :
1
Lwy = —
CCUO
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Elle montre que :
- Z =R (résultat connu)
- U etisont en phase (résultat connu)

. . , . T .

- Latension instantanée U; aux bornes de I’inductance est en avance de Ssuri;
. . , s .

- Latension instantanée U, aux bornes du condensateur en retard de S suri.

On en déduit donc que Uj, et U, sont en opposition de phase et puisque :
UL = ZLI = Lwol
1 >U,=U
Ue=zcl =——1=Lagl 7 747 ¢
c ¢ = T 0
Et les deux tensions instantanées U, et U, se compensent a chaque instant : U, + U = 0
Tout se passe comme si le circuit s’ identifiait a la résistance R.

4- DEFINITION DE LA BANDE PASSANTE D’UN CIRCUIT (RLC)
La bande passante d’un circuit (RLC) désigne I’ensemble des fréquences pour lesquelles la réponse
en intensité est a 71% de la réponse a la résonance.

Courbe a la résonance :
La courbe de la résonance traduit les variations de 1’intensité efficace I dans le circuit en fonction de
la fréquence N lorsque la valeur efficace U de la tension d’alimentation reste constante.

L
Il = =
i M M’
) \
! i
o ﬁ-i My IN.: T
A

Cherchons les valeurs de N pour lesquelles :

_U_5Hh _U 1 = 2 = 2R?
I_z_ﬁ_R'ﬁ soit z=RvV2 ou z?=2R
2
zZ=R2+(Lw——> = 2R?
Cw
112
Lw——) = R?
( Cw
Et en prenant la racine : = Lo —— = +R

Cw
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Les valeurs w, et w, sont les solutions positives des équations qui sont du second degré :
Lwl—Csz= —R; sz_CLa)zz +R
LCw?+RCw;—1=0 (1)

{LCw% +RCw,—1=0 (2)

2%me .
LC(w% — w?) = RC(w, + wq)
= L(w; — w)(w; + 1) = R(wy + wq)
R

Aw=a)2—w1=z

Retranchons la premiére de la

t pui Aw =2nAN = AN = —
et puisque Aw = 21 o

5- FACTEUR DE QUALITE D’UN CIRCUIT
Le facteur de qualité est donné par

Ny  wg
C=aN T 1o
po=R | g _tes
L Aw R
D’ou la valeur a mémoriser est :
Lw,
R
Q dépend que des caractéristiques du circuit, on peut aussi lui donner les autres formes :
1 1 . 1
Lwy = tor = Q= RCwq OU encore puisque wo = 7=

LX 1 1 |2 1 |[L
= = — —_— —_—= — —
¢ R /LC R.LC R.C

6- PUISSANCE EN REGIME ALTERNATIF SINUSOIDAL
a. Puissance instantanée
Soit pour un circuit (RLC) série, la puissance P est donnée par :
P =Ui

b. Puissance moyenne

P =Ulcos ¢
P : en watt (W)
U :en volt (V)
I: en ampere (A)
c. Valeur du facteur de puissance et application
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L

La construction de Fresnel permet de calculer cos ¢ pour le circuit (RLC) série

R
cosg =—

On en déduit une autre formule donnant la puissance moyenne :

R
P =Uicosg ; U=zI;cos<p=;

R
zz.].].;= RI? = P =RI?

Exercice.
Un circuit (RLC) série a les caractéristiques suivantes : R=10Q ; L=0,1H ; C = 0,4NF
On branche a ses bornes un générateur basse fréquence qui établit une tension alternative
sinusoidale : U = 10v2 cos(wt).
a) Quelle doit étre la valeur w, de la pulsation w pour que le circuit soit a la résonance ?
b) Quelle est la puissance moyenne P qu’il consomme a la résonance ?
c) Quelle est la puissance moyenne P’ qu’il consomme lorsque w prend [’une des valeurs
w41 0U W, qui limitent la bande passante. Conclure.

Solution :
a) A larésonance :

1 1
LCw2 =1 w, = = = wy = 5.103rad/s
° " VIC 01x04.10° /
N, = 20 5107 796 = N, = 796H
= — = = = =
" o 21 0 z

b) A larésonance, I’'impédance du circuit est égale a sa résistance d’ou I’intensité I (qui est la

valeur maximale) :
U

10
IO=§ avec U =10V = AN:IO=E=1A

D’ou la puissance moyenne est :
P = RI?> =10X1% = 10W
c) Pour les pulsations wq et w, qui limitent la bande passante :
Io

I = 7% ou on en déduit la valeur de la puissance moyenne P’
2 P
PP=RI?=R—=—==5W
2 2

La puissance est la moiti¢ de celle dissipée
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CHAPITRE : OSCILLATIONS ELECTRIQUES FORCEES

1- Etude théorique

Position du probléme

Connaissant les caractéristiques du circuit (RLC) et celle de la tension U(t) imposée (pulsation w et
amplitude U,,), nous allons calculer les parameétres qui caractérisent I’intensité i(t) du courant
sinusoidal.

La tension et I’intensité sont des fonctions sinusoidales (étude expérimentale) qui ont la méme
pulsation w et présentent généralement une différence de phase.

Soit ¢ la phase de la tension par rapport a I’intensité.

Ainsi i = [, cos(wt) et U = U, cos(wt + @)

La tension instantanée U(t) = Uyg(voir fig.) se répartit a chaque instant aux bornes des différents
dipoles du circuit (RLC)

Uag = Usp + Upp + Upg
Explicitons les termes de cette somme :
- Aux bornes du conducteur ohmique (DE)

Upg = Ug =71'i = r'l, cos(wt) ;
- Aux bornes de la bobine (BD)

Ugp = Uy =i + L = t) + Lwl (t+n)
gp=U,=r1i dt—rmcos(w) wl, cos|w >

- Aux bornes du condensateur (AB) :

da _ 94
U =U,=—=—
Ori= —ZZ , q est la primitive de i qui s’annule pour t = 0 (en supposant le condensateur

déchargé a I’origine des dates), soit :
ft'dt f[ (wt +5) dt
= | idt = cos |wt + =
__rt. _Im T Iy T
q=, ldt—zcos(a)t—g) et Upp =2-cCOS (wt—;)

La tension aux bornes de 1’association ou série vaut donc :

U—(+')'+Ldi+1ft'dt R=r+71r'
=r+r)i dtCol ; avecR=r+r

T I T
U = RI,, cos(wt) + Lwl,, cos (wt + E) + %cos (wt — E)
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Nous devons ainsi faire la somme des trois fonctions sinusoidales de méme pulsation.

Construction de Fresnel
Placons-nous a la date t = 0 et faisons correspondre un vecteur a chaque terme de la somme, on
obtient la figure ci-contre :

e MN représente la tension Ui : Ugp = R, cos(wt)
e NP représente la tension U, : U, = Lwl,, cos (wt + g)
e PQ représente la tension U, : Uy = é—rz)cos (o)t - g)

e MQ représente la tension U : U = U, cos(wt + @)
Ces quatre vecteurs sont tels que : MQ = MN + NP + PQ

MQ = \/MN2 + (NP — PQ)?

2
- — 2 _1 - - Ne — MN
Soit U,, = Im\/R + (Lw Cw) on obtient tan ¢ = oy Ct cosg = 0

tang =

Soit R
cos@ =

R2+(Lcu—i)2
Cw

Remarque : I’angle ¢ représente la phase de U par rapport a i. on dit que U est en avance de ¢ sur i.
il revient au méme de dire que i est en retard de ¢ sur U, et I’on pourra écrire, en déplacant 1’origine
des dates : i = I,;, cos(wt — ¢) et U = U, cos wt.
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