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CHAPITRE I :    CINÉMATIQUE 

 

A- Introduction 

Les notions du repère, de trajectoire, de vecteur vitesse,…vous sont familières depuis la classe de 

seconde. 

Après les avoir rappelées et décrites de façon analytique, ce chapitre introduit une grandeur 

nouvelle : le vecteur accélérateur. 

Ce concept joue un rôle fondamental en mécanique, tant au niveau de la description des 

mouvements (la cinématique) que leur prévision théorique à partir des forces (la dynamique). 

 

1- NOTION DE REFERENTIEL ET DE REPERE 

a.  référentiel : la trajectoire d’un mobile dépend du référentiel par rapport auquel on décrit le 

mouvement. En mécanique, on choisit le référentiel en fonction de l’étude que l’on veut 

faire et de façon que les lois de la physique s’y appliquent. 

La terre est un bon référentiel pour les études des mouvements de courte durée faites au 

voisinage de la surface terrestre. 

b. Repère d’espace : Pour décrire avec précision la trajectoire d’un mobile, on utilise un 

repère que l’on rattache au référentiel. 

Un repère est l’association : 

- D’un point o fixé au référentiel ; 

- D’une base composée de trois vecteurs unitaires. Le repère s’écrit donc : (𝑜, 𝑖, ⃗ 𝑗 , 𝑘⃗ ) 

 

2- REPERAGE DE TEMPS 

Qu’est-ce que le temps ? 

Le temps est une grandeur difficile à définir ; il est depuis toujours sujet à beaucoup de réflexions 

poétiques et philosophiques. En fait, le temps est perceptible par son écoulement et on le mesure 

avec une très grande précision. 

Il faut distinguer deux aspects de la mesure de temps : 

- La notion d’instant t (ou la date) où un évènement se produit ; 

- La notion de la durée d’un phénomène : c’est l’intervalle de temps qui s’écoule entre son 

début et sa fin 

NB : l’unité S.I de temps est la seconde (s). 

 

B- Position d’un mobile. 

1- Trajectoire d’un mobile 

Un mobile m se déplaçant dans l’espace et par rapport à un repère déterminé, prend différentes 

positions. L’ensemble de ces différentes positions constitue la trajectoire du mobile. 

3- REPERAGE EN COORDONNEES CARTESIENNES. 

a- CHOIX D’UNE ORIGINE DES TEMPS ET DES « ESPACES » 

Il faut choisir avant toute chose : 

- Une origine des temps (t = 0) correspondant à un évènement donné, en général, c’est le 

début de l’expérience ou le début du mouvement ; 

- Une origine des « espaces » : le point 0 attaché au référentiel 
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b-) Les coordonnées cartésiennes et les équations horaires 

Pour décrire le mouvement d’un point mobile M, il faut donner, à chaque instant t, sa position par 

rapport au repère (𝑜, 𝑖, ⃗ 𝑗 , 𝑘⃗ ) 

 

 

 

 

 

 

 

 

 

 

 

 

On définit alors le vecteur position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   du mobile qui s’écrit :  

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗   𝑜𝑢  𝑒𝑛𝑐𝑜𝑟𝑒  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  (𝑥; 𝑦; 𝑧) 

Le vecteur position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   détermine la position du mobile M à chaque instant. 

 

Les coordonnées x, y, z dépendent du paramètre temps. L’ensemble des fonctions 

 

{

𝑥 =  f(t)
𝑦 = 𝑔(𝑡)
𝑧 = ℎ(𝑡)

             avec t ϵ D 

Constitue l’équation horaire du mouvement du mobile M. Ce sont les fonctions paramétriques du 

temps qui sont définies sur un ensemble de définition D donné du temps 

 

4- Repérage en abscisse curviligne 

Soit un mobile se déplaçant le long d’une trajectoire donnée ; il est en M à la date t. Une origine des 

« espaces » a ayant été fixée sur la trajectoire et un sens de parcours ayant été choisi, on définit 

l’abscisse curviligne s du mobile par la valeur algébrique de l’arc A͡M 

 

S= mes(A͡M) 

L’abscisse curviligne est une fonction paramétrique du temps et s’écrit : 

              

              𝑆(𝑡) = 𝑓(𝑡) avec t ϵ D 

 

 

 

 

 

C- VECTEUR VITESSE 
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1- Vitesse moyenne 

Soit M1 et M2, les positions respectives du mobile aux instants des dates 𝑡1 et 𝑡2. La vitesse 

moyenne du point M est donnée par la relation : 

 

𝑉⃗ 𝑚𝑜𝑦 =
𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑡2 − 𝑡1
 

 

 

 

 

 

 

 

 

D- VECTEUR VITESSE INSTANTANEE 

 Définition : le vecteur vitesse instantanée est défini comme 

 

𝑉⃗ = lim
𝑡2→𝑡1

(
𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑡2 − 𝑡1
) = lim

𝑡2→𝑡1
(
 𝑂𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑂𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑡2 − 𝑡1
) =

𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
 

 

Finalement            

 

 

 

Le vecteur vitesse v d’un mobile ponctuel M est dérivée par rapport au temps de son vecteur 

position OM 

NB : le vecteur vitesse d’un mobile est tangent à sa trajectoire. 

 

 Son expression en coordonnées cartésiennes 

 

𝑉⃗ =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
=  
d(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗ )

dt
=  
d

dt
(𝑥𝑖 )+

d

dt
(𝑦𝑗 )+

d

dt
(𝑧𝑘⃗⃗ ) 

 

Puisque 𝑖 , 𝑗  et 𝑘⃗  sont des vecteurs constants, on aura : 

 

 𝑉⃗ =  
dx

dt
𝑖 +

dy

dt
𝑗 +

dz

dt
𝑘⃗          Or     

dx

dt
= 𝑉𝑥 ;  

dy

dt
= 𝑉𝑦  et  

dz

dt
= 𝑉𝑧 

 

D’où    

 

 

𝑉⃗ =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
 

𝑉⃗ = 𝑉𝑥𝑖 + 𝑉𝑦𝑗 + 𝑉𝑧𝑘⃗        
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Exemple : la position d’un point est donné à chaque instant dans le repère (o,𝑖 ,𝑗 ,𝑘⃗ ) par les équations 

paramétriques  {
x =  2t 
y =  2t + 3
𝑧 = 0

 

Calculer les composantes et l’intensité du vecteur vitesse aux t1 = 0s et t2 = 1s. 

 

Solution 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   = 2𝑖  + (t
2
 + 3)𝑗  

                                                    𝑉𝑥= 2 

𝑉⃗ =
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
=
d

dt
(2t𝑖  + (t

2
 + 3)𝑗 ) =    𝑉𝑦= 2t 

                                                     𝑉𝑧= 0 

à  𝑡 = 0        𝑉(0) = {
2
0
0
                 à  𝑡 = 1𝑠     𝑉(1) = {

2
2
0
      =>   𝑉 = √22 + 22 = 2√2 𝑚/𝑠  

 

E- Son expression dans la base de Frenet 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEFINITION DE LA BASE DE FRENET 

Soit 𝑁⃗⃗  et 𝑇⃗  deux vecteurs unitaires liés au mobile. 

 Le vecteur 𝑇⃗   est tangent à la trajectoire en M1 et orienté dans le sens des abscisses 

curvilignes S croissantes ; 

 Le vecteur 𝑁⃗⃗   est normal à la trajectoire en M1 et orienté vers l’intérieur de la concavité de la 

trajectoire. 

Ces deux vecteurs constituent une base locale appelée base de Frenet. 

- Expression du vecteur vitesse en M1  

Sur le parcours M1M2, la vitesse moyenne vaut : 

𝑉𝑚𝑜𝑦 =
𝑚𝑒𝑠𝑀1𝑀2̂
𝑡2 − 𝑡1

=
𝑆2 − 𝑆1
𝑡2 − 𝑡1

=
𝑑𝑆

𝑑𝑡
 

On obtient la vitesse instantanée ou vitesse à l’instant t1 par passage à la limite : 

𝑉1 = lim
𝑑𝑡→0

𝑑𝑆

𝑑𝑡
 

Cette limite représente la dérivée par rapport au temps, de l’abscisse curviligne. 
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D’où 

𝑉1 =
𝑑𝑆

𝑑𝑡
          𝑜ù        𝑉1⃗⃗  ⃗ =

𝑑𝑆

𝑑𝑡
𝜏  

 

Dans la base de Frenet, les composantes de V sont : 

                          𝑉⃗          
V𝑇 = 

dS

dt

𝑉𝑁 = 0
 

                              

                                    

F- LE VECTEUR ACCELERATION 

L’accélération caractérise la variation  du vecteur vitesse pendant une durée donnée. 

a- Vecteur accélération moyenne 𝒂𝒎 

On définit le vecteur accélération moyenne 𝒂𝒎 du mobile, par la relation : 

 

𝑎 𝑚 =
𝑉⃗ 2−𝑉1⃗⃗  ⃗

𝑡2 − 𝑡1
 

 

b- Vecteur accélération instantanée 

Le vecteur accélération instantanée représente le vecteur dérivé par rapport au temps du vecteur 

vitesse. Il représente aussi le vecteur dérivé second par rapport au temps du vecteur position𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  . 

 

𝑎 =
𝑑𝑉⃗ 

𝑑𝑡
=
𝑑2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡2
 

c- SON EXPRESSION EN COORDONNEES CARTESIENNES 

𝑎 =
𝑑𝑉⃗ 

𝑑𝑡
=
d

dt
(𝑉𝑥𝑖 + 𝑉𝑦𝑗 + 𝑉𝑧𝑘⃗ ) 

= 
d(V𝑥𝑖 )

dt
+
d(𝑉𝑦𝑗 )

dt
+
d(𝑉𝑧𝑘⃗ )

dt
=
d

dt
(
dx

dt
) 𝑖 +

d

dt
(
dy

dt
) 𝑗 +

d

dt
(
dz

dt
) 𝑘⃗ =

𝑑2𝑥𝑖 

𝑑𝑡2
+
𝑑2𝑦𝑗 

𝑑𝑡2
+
𝑑2𝑧𝑘⃗ 

𝑑𝑡2
 

 

𝑎 =

{
  
 

  
 𝑎𝑥 =

d(𝑉𝑥)

dt
=
𝑑2𝑥

𝑑𝑡2

𝑎𝑦 =
d(𝑉𝑦)

dt
=
𝑑2𝑦

𝑑𝑡2

𝑎𝑧 =
d(𝑉𝑧)

dt
=
𝑑2𝑧

𝑑𝑡2

 

Exemple : dans le repère (o,𝑖 ,𝑗 ,𝑘⃗ ), la position d’un point M est définie à chaque instant par : 

            X = 2t 

 𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗      y = t
3 

            Z = 0 

 

Calculer les composantes et l’intensité du vecteur accélération aux t = 0s et t = 1s 

Solution : 

Composantes et intensité de 𝑎 ⃗⃗⃗  : 
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𝑎 =

{
  
 

  
 𝑎𝑥 =

d(Vx)

dt
=
𝑑2𝑥

𝑑𝑡2
= 0

𝑎𝑦 =
d(Vy)

dt
=
𝑑2𝑦

𝑑𝑡2
= 6𝑡

𝑎𝑧 =
d(Vz)

dt
=
𝑑2𝑧

𝑑𝑡2
= 0

 

 

Son intensité :     𝑎 = √6𝑡 

À t = 0,  a(0) = 0m/s ;    à t = 1s      𝑎(1) = 6 𝑚/𝑠 

d- VECTEUR ACCELERATION DANS LA BASE DE FRENET 

Dans la base de Frenet (T, N) et par rapport au repère d’espace (o,𝑖 ,𝑗 ,𝑘⃗ ), on a : 

𝑎 = 𝑎𝑁⃗⃗ + 𝑎𝜏⃗  

et on démontre que : 

 

 

 

 

 

 

 

 

 

 

 

 

            aT = 
dV

dt
     accélération tangentielle 

 

           aN = V
2
/R  accélération normale 

R est le rayon de courbure. 

Puisque V
2
/R est positif, l’accélération est toujours positive, donc : le vecteur accélérateur est 

toujours dirigé vers l’intérieur de la concavité de la trajectoire. 

Remarque : en fonction de l’abscisse curviligne, les composantes du vecteur accélération sont : 

𝑎𝜏 =
dV

dt
=
𝑑2𝑆

𝑑𝑡

𝑎𝑁 =
𝑉2

𝑅
=
1

𝑆
(
𝑑𝑆

𝑑𝑡
)
2 

 

e- Mouvement uniformément varié 

Par définition, un mouvement est uniformément varié quand la mesure algébrique de l’accélération 

tangentielle (aT) reste constante. 

- Si le mouvement est accéléré alors le produit scalaire 𝑎 . 𝑣  ˃ 0 

- Si le mouvement est retardé (décéléré), le produit scalaire 𝑎 . 𝑣⃗⃗⃗   ˂ 0 

- Si le mouvement est uniforme, le produit scalaire 𝑎 . 𝑣  = 0 
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       a = 0    ⇒  constante ⇒ mouvement uniforme 

       a ≠ 0  et  𝑣  est perpendiculaire à 𝑎  

 

E- APPLICATION DE LA CINEMATIQUE A QUELQUES MOUVEMENTS 

PARTICULIERS 

1- MOUVEMENT RECTILIGNE UNIFORME 

a. Définition 

Un mobile est animé d’un mouvement rectiligne uniforme : 

- Si sa trajectoire est une droite ; 

- Si la vitesse V reste constante 

b. Équation cinématique du mouvement rectiligne uniforme 

Soit le repère (o, 𝑖 ), le vecteur vitesse 

                         V = constante = Vx𝑖  = Vox𝑖  

                 Vox = 
dx

dt
   La primitive de Vox est  x = Vox𝑖  + k  

Conditions initiales : si à t = 0, x = x0 = 0 + k     ⇒     k = x0  

D’où   

                                                        Loi horaire du mouvement rectiligne uniforme 

 

Dans un mouvement rectiligne uniforme, l’abscisse est une fonction affine du temps 

2- MOUVEMENT RECTILIGNE UNIFORMEMENT VARIE 

Définition : Un mobile est animé d’un mouvement rectiligne uniformément varié si son vecteur 

accélération est constant, donc a = a0 = constante 

a- Loi horaire 

Soit le repère (o, i) choisi sur la trajectoire rectiligne du mobile 

 a = 
dV

dt
 = constante, V est donc de la forme   V = at + k 

à t = 0, V = V0 = 0xt + k   ⇒       k = V0  

D’où    

v = at + v0 

 

V = 
dx

dt
 = at + V0 ,  l’abscisse x est de la forme    x = 

1

2
at

2
 + V0t + k 

k étant une constante qui dépend des conditions initiales 

à t = 0,  x = x0 = 
1

2
ax0 + V0x0 + k ; x0 = k 

d’où  

 

                                                                          

  Loi horaire du mouvement rectiligne uniformément varié 

Cas particulier : si 𝑉0 et 𝑋0 sont nuls, les équations se simplifient : 

                 𝑉 =
1

2
𝑎𝑡2              et               𝑥 =

1

2
𝑎𝑡2 

X = V0t + x0 

X = 
1

2
at2 + V0t + x0 
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Remarque : en dérivant x deux fois par rapport au temps, on obtient d’abord V puis a :                  
dx

dt
 = 

d

dt
(
1

2
at

2
 + V0t + x0) 

 
dx

dt
 = at + V0 + 0 = V 

d
2
x/dt

2
 = a + 0 = a 

 

C- Quelques relations importantes 

X = 
1

2
at

2
 + V0t + x0 (1) 

V = at + V0   =>      t = 
V−V0

a
  (2) 

(2) dans (1)      =>      𝑥 =
1

2
(
V−V0

a
)
2

+ 𝑉0 (
V−V0

a
) + 𝑋0 

𝑋 =
1

2
𝑎
(𝑉 − 𝑉0)

2

𝑎2
+
𝑉0𝑉 − 𝑉0

2

𝑎
+ 𝑋0 

=
𝑉2 + 𝑉0

2 − 2𝑉𝑉0
2𝑎

+
2(𝑉𝑉0 − 𝑉0

2)

2𝑎
+ 𝑋0 

𝑋 − 𝑋0 =
𝑉2 + 𝑉0

2 − 2𝑉𝑉0 + 2𝑉𝑉0 − 2𝑉0
2

2𝑎
 

2𝑎(𝑥 − 𝑥0) = 𝑉
2 − 𝑉0

2 

                    

 Et on a aussi ⇒ 

 

Exercices d’application 

Exercice 1: à un instant initial, une moto démarre, son mouvement est rectiligne uniformément 

varié ; elle atteint la vitesse de 72km/h en 10s. Calculer la valeur de l’accélération de cette moto 

Solution : à l’instant initial, Vi = 0, Vf = 72km/h = 20m/s 

ΔV = aΔt     =>        Vf – Vi = a(tf – ti)       a = (Vf – Vi)/(tf – ti) 

             AN:    a =(20 – 0)/(10 – 0) = 2m/s
2
 

Exercice 2: sur une route rectiligne, un véhicule est animé d’une vitesse de 72km/h s’arrête sur 

50m. Donner les caractéristiques de l’accélération supposée constante au cours du mouvement. 

Solution : caractéristiques de l’accélération : 

Soit (x’x) repère choisi sur la trajectoire 

ΔV
2
 = 2axΔx    =>      Vf

2
 – Vi

2
 = 2a(xf – xi)         ax = (Vf

2
 – Vi

2
)/2(xf – xi) = (0 – 400)/ 2(50 – 0) 

   ax = -4m/s
2
  ce qui signifie que l’accélération a la direction de x’x, son sens est contraire au 

mouvement. Sa norme est a = 4m/s
2
 

D- MOUVEMENT CIRCULAIRE UNIFORME 

Définition : Un point mobile est animé d’un mouvement circulaire uniforme si sa trajectoire est un 

cercle et si sa vitesse a une valeur constante. 

 

 

 

 

 

 

2aΔx = ΔV2 ΔV = aΔt 
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a) Etude de l’abscisse curviligne 

 

  

 

 

 

 

 

Sur cette trajectoire, l’abscisse curviligne du mobile au point M : 

S = 𝑀0𝑀̂  et sa vitesse    Vs = 
dS

dt
 = V0     ⇒        la primitive de V0 est   

S = V0T + S0 

 

 

b) Accélération 

Dans la base de Frenet (tangentielle et normale), l’accélération s’écrit : 

 

𝑎  = 𝑎T 𝑇⃗  + 𝑎x𝑥        avec   aT =
dVs

dt
= 0    et la valeur de l’accélération se réduit à : 

 

𝑎   = 𝑎x𝑥       avec   𝑎𝑥 = 
𝑣2

𝑅
 

Le vecteur accélération du mobile dans un mouvement circulaire uniforme est toujours dirigé vers 

le centre du cercle : il est dit centripète. 

c)    Etude des variations angulaires 

- abscisse angulaire : 

C’est l’angle θ = (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  0𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) (rad) 

 

S = M͡0M  et   θ = M͡0M/R = S/R            

 

⇒ 

 vitesse angulaire 

Comme S = R.θ   avec R = constant, on a:   
dS

dt
 = R 

dθ

dt
    , par définition, 

dθ

dt
 représente la vitesse 

angulaire de rotation du mobile notée ω 

 
dθ

dt
 = ω, d’une part on sait que θ = S/R ; 𝜃̇ =

𝑆̇

𝑅
 = Vs/R= ω 

                          ⇒          

 

Pour un mouvement circulaire uniforme, la vitesse angulaire ω comme la vitesse curviligne Vs est 

constante. 

La primitive de ω = 
dθ

dt
  est :                                             loi horaire du mouvement circulaire 

Conditions initiales : si à t = 0 ;  θ0 = 0     ⇒        θ = ωt 

 

 Accélération angulaire 

𝜃̈ = 
dω

dt
  (rad/s

2
) 

θ = ωt + θ0 

S = R.θ 

 

Vs = R.ω 
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Dans le cas du mouvement circulaire uniforme, ω est constante   ⇒     θ = 
dω

dt
  = 0 

Toujours dans un mouvement circulaire uniforme, l’accélération angulaire comme l’accélération 

tangentielle est nulle mais le point possède une accélération normale 

a = 
𝑉2

𝑅
  et comme Vs = Rω     ⇒       𝑎𝑛 = ω

2
R 

b- Période et fréquence 

F- La période T est la durée nécessaire pour effectuer un tour, soit un angle θ = 2π 

θ = 2π = ωT      ⇒     

 

 

 

 La fréquence N est l’inverse de la période  

    

 

 

 

d.  Mouvement rectiligne sinusoïdal 

Un mouvement est rectiligne sinusoïdal si son équation horaire est de la forme : 

x(t) = xm cos(𝜔𝑡 + 𝜑) 

x(t) : élongation (mètre) 

xm : amplitude (ou élongation maximale) en mètre 

ω : pulsation en rad/s 

(ωt + φ) : phase du mouvement 

Φ : phase à l’origine de temps 

a. Position du mobile 

Comme cos(𝜔𝑡 + 𝜑) ϵ [-1 ; 1]   alors X ϵ [-xm ; xm]. Le mobile se déplace entre les positions 

d’abscisses –xm et xm, il a un mouvement de va et vient autour d’un point O. 

 Vecteur vitesse : V = 𝑽𝒙𝒊   

 𝑉𝑥 =
𝑑𝑥

𝑑𝑡
=
𝑑

𝑑𝑡
(xm cos(𝜔𝑡 + 𝜑))    

 𝑉𝑥 = −𝜔xmsin(𝜔𝑡 + 𝜑)  

Vx est extrémale si x = 0 (pour (𝜔𝑡 + 𝜑) = (2𝑘 + 1)
𝜋

2
) 

Vx est nulle si 𝑥 = ±xm   (pour (𝜔𝑡 + 𝜑) = 𝑘𝜋) 

 Accélération 

𝑎 =
𝑑𝑉⃗⃗ 

𝑑𝑡
=
𝑑𝑉

𝑑𝑡
𝑖    ⇒ 𝑎𝑥 =

𝑑𝑉𝑥

𝑑𝑡
= −𝜔2xm cos(𝜔𝑡 + 𝜑) Or  xm cos(𝜔𝑡 + 𝜑) = 𝑥 

  𝑎𝑥 = −𝜔2𝑥    ⇒  𝑎𝑥 + 𝜔2𝑥 = 0  or  𝑎𝑥 = 𝑥̈ 

 𝒙̈ + 𝝎𝟐𝒙 = 𝟎  : c’est l’équation différentielle du mouvement sinusoïdal. 

 

 

 

 

T = 
2π

ω
   

N = 
1

T
=
ω

2π
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CHAP. 2 : MOUVEMENT DU CENTRE D’INERTIE D’UN SOLIDE 

 

I- RELATION FONDAMENTALE DE LA DYNAMIQUE 

1- CENTRE D’INERTIE D’UN SOLIDE 

a. Caractéristique d’un système 

Un système est un ensemble des points matériels. Si la distance entre deux points quelconques, reste 

constante, ce système est indéformable et on lui donne le nom de solide. La masse M d’un système 

est la somme de la masse mi du système. 

                   

                          𝑀 = 𝑚1 +𝑚2 +𝑚3…+𝑚𝑛 = ∑ 𝑚𝑖
𝑛
𝑖=1  

 

b. Centre d’inertie et barycentre d’un système 

Un système a un centre d’inertie G. le centre d’inertie est appelé aussi barycentre ou centre de 

masse, ou encore centre de gravité. 

 

∑𝑚𝑖

2

𝑖=1

𝐺𝐺⃗⃗⃗⃗  ⃗𝑖 = 0⃗  

𝑚1𝐺𝐺⃗⃗⃗⃗  ⃗1 +𝑚2𝐺𝐺⃗⃗⃗⃗  ⃗2 = 0⃗  (1) 

Injectons le point O dans (1), il vient : 

𝑚1(𝐺𝑂⃗⃗⃗⃗  ⃗ + 𝑂𝐺⃗⃗⃗⃗  ⃗1) + 𝑚2(𝐺𝑂⃗⃗⃗⃗  ⃗ + 𝑂𝐺⃗⃗⃗⃗  ⃗2) = 0⃗  

𝑚1𝐺𝑂⃗⃗⃗⃗  ⃗ + 𝑚1𝑂𝐺⃗⃗⃗⃗  ⃗1 +𝑚2𝐺𝑂⃗⃗⃗⃗  ⃗ + 𝑚2𝑂𝐺⃗⃗⃗⃗  ⃗2 = 0⃗  

(𝑚1 +𝑚2)𝐺𝑂⃗⃗⃗⃗  ⃗ + 𝑚1𝑂𝐺⃗⃗⃗⃗  ⃗1 +𝑚2𝑂𝐺⃗⃗⃗⃗  ⃗2 = 0⃗  

−(𝑚1 +𝑚2)𝑂𝐺⃗⃗⃗⃗  ⃗ + 𝑚1𝑂𝐺⃗⃗⃗⃗  ⃗1 +𝑚2𝑂𝐺⃗⃗⃗⃗  ⃗2 = 0⃗  

 𝑂𝐺⃗⃗⃗⃗  ⃗ =
𝑚
1𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ 1+𝑚2𝑂𝐺⃗⃗⃗⃗ ⃗⃗ 2

𝑚1+𝑚2
 

 

2- QUANTITE DE MOUVEMENT D’UN SOLIDE 

Le vecteur quantité de mouvement P d’un système solide est le produit de sa masse par le vecteur 

vitesse de son centre d’inertie. 

 

𝑃⃗ = 𝑀𝑉⃗ 𝐺 

 

3- PRINCIPE DE L’INERTIE – REFERENTIEL GALILEEN 

a-  ÉNONCER DU PRINCIPE DE L’INERTIE 

Un système isolé ou pseudo-isolé : 

1) S’il est au repos, il conserve son état de repos ; 

2) S’il est en mouvement, alors il est animé d’un mouvement rectiligne uniforme. 

b-   REFERENTIEL GALILEEN 

On appelle référentiel galiléen, un référentiel dans lequel le principe de l’inertie est vérifié. 

On montre que tout référentiel en translation rectiligne par rapport à un référentiel galiléen est 

galiléen. 
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c-    RELATION FONDAMENTALE DE LA DYNAMIQUE ( RFD) 

Énoncé : dans un référentiel galiléen, la somme vectorielle de toutes les forces extérieures 

appliquées à un solide est égale à la dérivée par rapport au temps de la quantité de mouvement du 

solide à cet instant. 

 

∑𝑓 𝑒𝑥𝑡 =
𝑑𝑃⃗ 

𝑑𝑡
 

d-     THEOREME DU CENTRE D’INERTIE 

Énoncé : dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un 

solide est égale au produit de sa masse par le vecteur accélération de son centre d’inertie. 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎 𝐺  

 

 Cas particulier 

Si ∑𝑓 𝑒𝑥𝑡 = 0⃗  => 𝑚𝑎 𝐺 = 0⃗   => 𝑎 𝐺 = 0⃗   or   𝑎 𝐺 =
𝑑𝑉⃗⃗ 𝐺

𝑑𝑡
= 0⃗    

 

    𝑉⃗ 𝐺 = constante => G a un mouvement rectiligne uniforme 

   𝑉⃗ 𝐺 = 0⃗  => G est au repos 

e-      THEOREME DE L’ENERGIE CINETIQUE APPLIQUEE A UN SOLIDE EN TRANSLATION 

Énoncé : dans un référentiel galiléen, la variation de l’énergie cinétique d’un solide entre un état 

initial et un état final est égale à la somme des travaux des forces extérieures appliquées au solide à 

cet instant. 

 

∆𝐸𝑐 = 𝐸𝑐𝑓 − 𝐸𝑐𝑖 =∑𝑊𝑓 𝑒𝑥𝑡 

f-      UTILISATION PRATIQUE DE LA RFD 

1) Vérifier que le référentiel considéré est galiléen ; 

2) Préciser le système à étudier ; 

3) Définir et analyser les forces extérieures, les représenter sur un schéma suffisamment clair 

4) Préciser la relation liant les forces extérieures (théorème du Centre d’Inertie, RFD, théorème 

de l’Energie Cinétique) ; 

5) Exploiter cette relation si elle est vectorielle, on l’utilise en projetant les vecteurs dans un 

système d’axes ; 

6) En déduire éventuellement les conséquences cinématiques. 

 

g-      DYNAMIQUE DU MOUVEMENT UNIFORME 

Soit le centre d’inertie G d’un solide qui se déplace d’un mouvement circulaire uniforme sur le 

cercle de centre O et de rayon R. En appliquant le théorème du centre d’inertie, le point G est 

soumis à n forces et on a : 

 

                             ∑ 𝑓 𝑒𝑥𝑡𝑛
𝑖=1 = 𝐹 = 𝑚𝑎 𝐺      avec      𝑎 𝐺 = 𝑎 𝑛 
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 𝐹 = 𝑚𝑎 𝑛  puisque 𝑎𝑛 est centripète, 𝐹  l’est également 

On lui donne le nom de force centripète 𝐹𝑐 

𝐹 𝑐 = 𝑚𝑎 𝑛 =
𝑚𝑣2

𝑅
𝑛⃗ = 𝑚𝜔2𝑅𝑛⃗  

Dans un référentiel galiléen, un mouvement circulaire uniforme est provoqué par des forces dont la 

somme vectorielle est la force centripète d’intensité 

 

      

 

h-      APPLICATION DE LA RFD 

Étude d’une chute libre : la chute libre est le mouvement d’un corps lâché sans vitesse initiale au 

voisinage de la terre et soumis à la seule action de son poids. 

Position du problème : une bille d’acier tombe en chute libre à partir d’un point O situé à 5m du sol. 

Étudier le mouvement du centre d’inertie de la bille (l’équation horaire). Calculer le temps mis pour 

atteindre le sol. m = 50g ; h = 5m ; g = 10m/s
2
 

Solution 

 

 

 

 

 

 

 

 Repère descendant 

1) Référentiel : terre supposé galiléen 

2) Repère (o, i, j) 

3) Système : bille de masse m 

4) Bilan des forces : le poids P 

La RFD permet d’écrire : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎 𝐺    𝑃⃗ = 𝑚𝑎 𝐺 <=> 𝑚𝑔 = 𝑚𝑎 𝐺 

𝑎𝐺 = 𝑔 <=> 𝑎𝐺 = 𝑔𝑗  

            𝑎𝑥 = 0                    𝑉𝑥 = 0                                                      𝑥 = 0 

𝑎 𝐺 =                      𝑉⃗ 𝐺 =                                                       𝑂𝐺⃗⃗⃗⃗  ⃗ =     

           𝑎𝑦 = 𝑔                    𝑉𝑦 = 𝑔𝑡 + 𝑉0𝑡 (𝑎𝑣𝑒𝑐 𝑉0 = 0)                  𝑦 =  
1

2
𝑔𝑡2 

𝑦 =
1

2
𝑔𝑡2     est l’équation horaire de la bille. 

La date d’impact au sol : 

𝑦 = ℎ = 5𝑚 => 
1

2
𝑔𝑡2 = 5 => 𝑡 = √

2ℎ

𝑔
=> 𝑡 = 1𝑠 

 Repère ascendant 

RFD donne toujours : 𝑃 = 𝑚𝑎𝐺 ⇒ 𝑔 = 𝑎𝐺 

𝐹𝑐 =
𝑚𝑣2

𝑅
= 𝑚𝜔2𝑅 
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i. Palet autoporteur 

Un palet autoporteur de masse m est lâché sans vitesse initiale d’un point A, sur une table inclinée 

d’un angle α sur le plan horizontal. 

1- On néglige les frottements 

3) Déterminer les caractéristiques du vecteur accélération 

4) Quelle est la nature du mouvement du centre d’inertie G du palet ? 

5) Calculer la vitesse V du mobile en B après un parcours de longueur L. 

2- En fait, sa vitesse en B est V’<V. en déduire la valeur de la force de frottements exercée par 

la table et supposée constante. 

Données : m= 600g ; l=52cm ; V=0,94m/s ; α=6° ; g=9,8m/s 

 

Solution : 

Système : palet autoporteur 

Référentiel terrestre supposé galiléen 

Bilan des forces : 

1) Le poids P 

2) La réaction R de l’air pulsé 

 

 

 

 

 

 

 

 

 

 

1) D’après la RFD 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎 => 𝑃⃗ + 𝑅⃗ = 𝑚𝑎  (1) 

Soit l’axe x’x parallèle à la ligne de plus grande pente et y’y perpendiculaire à x’x 

Projections de (1) sur les axes : 

𝑃𝑥 + 𝑅𝑥 = 𝑚𝑎𝑥               𝑃 sin 𝛼 + 0 = 𝑚𝑎𝑥    (2) 

𝑃𝑦 + 𝑅𝑦 = 𝑚𝑎𝑦    =>     −𝑃 cos 𝛼 + 𝑅 = 0  (3) 

Donc : 𝑚𝑔 sin 𝛼 = 𝑚𝑎𝑥 ,  𝑎 = 𝑎𝑥𝑖 = (𝑔 sin 𝛼)𝑖  => l’accélération de x’x de sens x’ vers x et de 

valeur 𝑎 = 𝑔 sin 𝛼 

2) nature du mouvement de G 

𝑎 = 𝑔 sin 𝛼 ⇒ 𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑒𝑡 sin 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 ⇒ 𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 : c’est un mouvement 

rectiligne uniformément varié. 

3- Calcul de vitesse V en B 

D’après le théorème de l’énergie cinétique entre A et B, on a : 

1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑊𝑃 +𝑊𝑅  𝑜𝑟 𝑉𝐴 = 0 𝑒𝑡 𝑊𝑅 = 0 

⇒ 
1

2
𝑚𝑉𝐵

2 = 𝑊𝑃 ⇒ 
1

2
𝑚𝑉𝐵

2 = 𝑚𝑔ℎ   𝑎𝑣𝑒𝑐  ℎ = 𝑙 sin 𝛼 
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⇒ 
1

2
𝑚𝑉𝐵

2 = 𝑚𝑔𝑙 sin 𝛼 ⇒  𝑉𝐵 = √2𝑔𝑙 sin 𝛼 

 

2) valeur de la force de frottements : le théorème l’énergie cinétique donne 

1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑊𝑃 +𝑊𝑓 +𝑊𝑅 

1

2
𝑚𝑉𝐵

2 = 𝑚𝑔𝑙 sin 𝛼 − 𝑓𝑙 ⇒  
1

2
𝑚𝑉𝐵

2 −𝑚𝑔𝑙 sin 𝛼 = −𝑓𝑙 

𝑓𝑙 = 𝑚𝑔𝑙 sin 𝛼 −
1

2
𝑚𝑉𝐵

2 

𝑓 = 𝑚(𝑔 sin 𝛼 −
1

2𝑙
𝑉𝐵
2) 

 

 

 

 

 

 

 

 

 

 PENDULE OSCILLANT 

 

Un pendule est constitué par une sphère petites dimension, de masse m, suspendue à un point fixe par un fil 

inextensible de longueur l. le pendule est écarté d’un angle α0 de sa position d’équilibre et abandonné sans 

vitesse initiale. 

Déterminer la vitesse V du pendule lorsqu’il passe par sa position d’équilibre. Quelle est alors la tension 𝑇⃗  

du fil ? 

Solution  

Système : la boule assimilée à un point materiel 

- référentiel terrestre qu’on suppose galiléen. 

- Bilan des forces : 𝑃⃗⃗  ⃗ et 𝑇⃗ . Le TEC donne : 

1

2
𝑚𝑣2 − 

1

2
𝑚𝑣0

2⏟
0

 = 𝑤(𝑃⃗ ) + 𝑤(𝑇⃗ )⏟  
0

 

1

2
𝑚𝑣2 =  𝑤(𝑃⃗ ) avec 𝑤(𝑃⃗ ) = mgh        ℎ =  𝑙(1 − 𝑐𝑜𝑠𝛼0) 

1

2
𝑚𝑣2 =  𝑚𝑔ℎ𝑙(1 − 𝑐𝑜𝑠𝛼0)        ⇒ 𝑉 = √2𝑔𝑙(1 − 𝑐𝑜𝑠𝛼0) 

La tension du fil : le théorème du centre d’inertie donne : 
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𝑷⃗⃗ + 𝑻⃗⃗ = 𝒎𝒂⃗⃗   

Lorsque le pendule passe par sa position d’équilibre, la direction des deux vecteurs 𝑷⃗⃗  𝑒𝑡 𝑻⃗⃗ , et donc 

celle de 𝑎 , est verticale, normale à la trajectoire. En projection sur la normale orientée, on a : 

𝑇 −𝑚𝑔 = 𝑚𝑎 = 𝑚𝑎𝑛  ⇔ 𝑇 −𝑚𝑔 = 𝑚
𝑣2

𝑙
  

𝑇 = 𝑚𝑔 +
𝑚

𝑙
(2𝑔𝑙(1 − 𝑐𝑜𝑠𝛼0))  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPITRE 3 : INTERACTION GRAVITATIONNELLE ET MOUVEMENTS DES 

PLANÈTES ET SATELLITES. 

 

𝑇 = 𝑚𝑔(3 − 2𝑐𝑜𝑠𝛼0) 
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I- VARIATION DE L’ACCELERATION DE LA PESANTEUR G AVEC 

L’ALTITUDE 

L’accélération de la pesanteur g diminue quand l’altitude augmente. Notons g0 et g, ses valeurs au 

sol (altitude : z= 0) et à l’altitude z. 

Les lois de l’interaction permettent d’établir la loi de variation de g avec z : 

𝑔 = 𝑔0
𝑅2

(𝑅 + 𝑧)2
 

1- MOUVEMENT DE SATELLITES EN ORBITE CIRCULAIRE 

1.1-     VITESSE DU SATELLITE 

Le satellite S de masse m, parcourt la trajectoire circulaire dont le centre est O (centre de la terre) et 

le rayon r = R + z (z : altitude du satellite et R : rayon terrestre). Si l’altitude est suffisante, il évolue 

dans le vide et la seule force qui s’applique sur lui est son poids P. 

 

 

 

 

 

 

 

 

La RFD donne : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎 − 𝑃⃗ = 𝑚𝑎  ⇒ 𝑚𝑔 = 𝑚𝑎 ⇒ 𝑔 = 𝑎   

Dans le repère mobile de frenet (T ; N), on a : 

           𝑔𝑡 = 0                      𝑎𝑡 =
𝑑𝑉

𝑑𝑡
 

𝑔 =                        𝑎 =                         Comme 𝑎 = 𝑔 ⟷ 𝑔𝑡 = 𝑎𝑡(1)  𝑒𝑡 𝑔𝑁 = 𝑎𝑁(2) 

          𝑔𝑥 = 𝑔                      𝑎𝑁 =
𝑉2

𝑟
 

 

(1) 𝑎𝑡 = 𝑔𝑡 (𝑔𝑡 = 0) ⇒ 𝑎𝑡 =
𝑑𝑉

𝑑𝑡
= 0 ⇒ 𝑉 = 𝑉0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

Le mouvement du satellite en orbite est circulaire uniforme 

(2) 𝑔𝑁 = 𝑎𝑁   𝑎𝑣𝑒𝑐 𝑔𝑁 = 𝑔 = 𝑔0
𝑅2

(𝑅+𝑧)2
 

 

⇒ 𝑔0
𝑅2

(𝑅 + 𝑧)2
=
𝑉2

𝑟
 𝑎𝑣𝑒𝑐 𝑟 = 𝑅 + ℎ ⇒ 𝑔0

𝑅2

(𝑅 + 𝑧)2
=

𝑉2

(𝑅 + ℎ)
 

𝑔0
𝑅2

(𝑅 + 𝑧)2
= 𝑉2   

𝑉 = 𝑅√
𝑔0
𝑅 + 𝑧

 

 

 

1.2-     PERIODE DE ROTATION DU SATELLITE 
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La période de révolution ou période T d’un satellite est le temps qu’il met pour effectuer une 

révolution complète sur sa trajectoire. 

On sait que 𝑇 =
2𝜋

𝜔
   𝑎𝑣𝑒𝑐 𝜔 =

𝑉

𝑟
     𝑎𝑣𝑒𝑐 𝑟 = 𝑅 + 𝑧; 𝑉 = 𝑅√

𝑔0

𝑅+𝑧
 

𝑇 =
2𝜋𝑟

𝑉
=
2𝜋(𝑅 + 𝑧)

𝑅√
𝑔0

𝑅+𝑧

=
2𝜋(𝑅 + 𝑧)

𝑅√𝑔0

√(𝑅+𝑧)

=
2𝜋(𝑅 + 𝑧). (𝑅 + 𝑧)

1
2⁄

𝑅√𝑔0
 

 

⇒   𝑇 =
2𝜋

𝑅√𝑔0
(𝑅 + 𝑧)

3
2⁄  𝑜𝑢 𝑒𝑛𝑐𝑜𝑟𝑒 𝑇 =

2𝜋

𝑅√𝑔0
𝑟3/2 

 

Remarque : La période T est indépendante de la masse du satellite. Des satellites de masses 

différentes évoluant à la même altitude ont la même période. 

1.3-     LOI DE KEPLER 

Cette loi est une conséquence de la formule donnant la période T en fonction de r : 

 

𝑇 =
2𝜋

𝑅√𝑔0
𝑟
3
2⁄  

 

Élevons au carré  ⇒ 𝑇2 = 
4𝜋2

𝑅2𝑔0
𝑟3  ⇒  

𝑇2

𝑟3
= constante   

 

Énoncé de la loi : le carré de la période de révolution de satellite est proportionnel au cube de rayon 

de son orbite. 

 

1.4-     SATELLITE GEOSTATIONNAIRE 

a. La période géostationnaire 

Elle vaut un jour sidéral : 86164s ≈ 23h56mn 

On remarque un jour solaire : 24h = 86400s 

b. Définition.  

Un satellite géostationnaire est fixe par rapport à un point du globe. 

𝑇𝑆 = 𝑇𝑇   ⇒    𝜔𝑆 = 𝜔𝑇 = 729. 10
−5𝑟𝑎𝑑/𝑠 

Le satellite a la même vitesse angulaire que la terre. 

 

c. Son altitude z 

 

  𝑇 =
2𝜋

𝑅√𝑔0
(𝑅 + 𝑧)

3
2⁄            ⇒       𝑇2 = 

4𝜋2

𝑅2𝑔0
(𝑅 + 𝑧)3  ⇒ (𝑅 + 𝑧)3 =

𝑇2𝑅2𝑔0

4𝜋2
 

 

 

 

 

 

 

𝑧 = √
𝑇2𝑅2𝑔0
4𝜋2

 
3

–𝑅 
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Exercice d’application 

Exercice n°1 

L’accélération de la pesanteur g a pour valeur à l’altitude : 

 

𝑔 = 𝑔0
𝑅2

(𝑅 + 𝑧)2
 

Où g0 est l’accélération de la pesanteur au niveau du sol (z=0) et R le rayon terrestre. 

Un satellite artificiel de la terre tourne autour du centre de celle-ci d’un mouvement circulaire à 

l’altitude z=36000km. 

Calculer sa vitesse V et sa période de révolution T. on donne : g0 = 9,8m/s2 ; R = 6400 km 

Résolution 

Calcul de la vitesse : 

La RFD donne : 𝑃 = 𝑚𝑎  ⇒ 𝑚𝑔 = 𝑚𝑎  ⟷ 𝑔 = 𝑎 

Sur le repère de Frenet : 

 
𝑔 = 𝑎 ⟷ 𝑔𝑇 = 𝑎𝑇 (1) 𝑒𝑡  𝑔𝑁 = 𝑎𝑁 (2)  

(1) ⇒ 𝑔𝑇 = 𝑎𝑇⟷    0 =
𝑑𝑉

𝑑𝑡
 

(2) ⇒ 𝑔𝑁 = 𝑎𝑁⟷  𝑔0
𝑅2

(𝑅+𝑧)2
=
𝑉2

𝑟
     avec   𝑟 = (𝑅 + 𝑧)2 

 

𝑔0
𝑅2

(𝑅+𝑧)2
=

𝑉2

𝑅+𝑧
   ⇒ 𝑉 = 𝑅√

𝑔0

𝑅+𝑧
    ⇒ 𝐴𝑁:  𝑉 = 6,4. 106√

9.8

4.24.107
= 3.08. 103𝑚/𝑠 

 

La période de révolution T est le temps mis pour effectuer un tour : 

  𝑇 =
2𝜋

𝑅√𝑔0
(𝑅 + 𝑧)

3
2⁄ =

𝑑

𝑉
=
2𝜋(𝑅 + 𝑧)

𝑉
 

𝑇 =
2𝜋. 4,24. 107

3,08. 103
= 8,66. 104𝑠 

 

Remarque : le temps mis par la terre pour effectuer un tour complet est un jour sidéral (86140s) 

alors que le jour solaire (le jour habituel de 24h= 86400s) est le temps qui sépare deux passages 

consécutifs du soleil à la verticale d’un lieu. 

Les satellites géostationnaires jouent un rôle fondamental en télécommunication, en particulier 

comme relais de télévision. 

En effet leur « immobilité » apparente permet de les viser avec facilité pour leur envoyer des ondes 

à relayer ou recueillir les ondes transmises. Un satellite ne peut être géostationnaire que dans le plan 

équatorial. 
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Exercice N°2 

La terre est assimilée à une sphère de rayon R = 6370 km, animée d’un mouvement de rotation 

uniforme autour de la ligne des pôles (qui est perpendiculaire au plan de l’équateur). On supposera 

que le repère géocentrique, dont les axes ont une direction fixe par rapport aux étoiles, est galiléen. 

À la surface de la terre, l’intensité du champ de pesanteur est 𝑔0 = 0,8 𝑁/𝑘𝑔. À l’altitude h, elle est 

égale à  

𝑔ℎ = 𝑔0
𝑅2

(𝑅 + ℎ)2
 

1- Un satellite assimilé à un point matériel, décrit un mouvement uniforme sur une orbite 

circulaire à l’altitude h = 400km. 

L’orbite est dans le plan de l’équateur 

a. Déterminer la vitesse V du satellite dans le repère géocentrique 

b. Déterminer, dans le même repère, la période T et la vitesse angulaire ω0 du satellite 

c. Le satellite se déplace vers l’Est. Calculer l’intervalle du temps qui sépare deux passages 

successifs du satellite à la verticale d’un point donné de l’équateur (la vitesse angulaire 

de rotation de la terre dans le repère géocentrique est 𝜔𝑇 = 7,29. 10
−5𝑟𝑎𝑑/𝑠, et on 

rappelle que, dans ce repère, la vitesse d’un point de l’équateur est dirigée vers l’Est). 

 

2- Un satellite géocentrique reste en permanence à la verticale d’un même point du globe. Son 

orbite dans le plan de l’équateur. 

a. Quelle est la vitesse angulaire  de ce satellite dans le repère géocentrique ? 

b. Calculer le rayon de son orbite. 

 

Solution 

a) calcul de la vitesse 

La RFD donne :  𝑃 = 𝑚𝑎 ⇒   𝑚𝑔 = 𝑚𝑎    ⇔   𝑔 = 𝑎  

Sur le repère de Frenet 

 

 
𝑔 = 𝑎  ⇔   𝑔𝑇 = 𝑎𝑇  (1)        𝑔𝑁 = 𝑎𝑁  (2)  

 

(1) 𝑔𝑇 = 𝑎𝑇 ⇒ 𝑔𝑇 =
𝑑𝑉

𝑑𝑡
= 0 

(2) 𝑔𝑁 = 𝑎𝑁 ⇔   𝑔0
𝑅2

(𝑅+ℎ)2
=
𝑉2

𝑟
    𝑎𝑣𝑒𝑐 𝑟 = 𝑅 + ℎ   ⇒ 𝑉 = 𝑅√

𝑔0

𝑅+ℎ
 

 

AN :  𝑉 = 6370. 103𝑚.√
9,8

6370.103+400.103
               ⇒    𝑉 = 7664𝑚/𝑠 

 

b) Calcul de T 
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𝑇 =
2𝜋

𝜔
   𝑎𝑣𝑒𝑐 𝜔 =

𝑉

𝑟
    𝑒𝑡   𝑟 = 𝑅 + ℎ 

⇒ 𝑇 =
2𝜋

𝑉
(𝑅 + ℎ) 

AN/ 𝑇 =
2𝜋

7664
(6370 + 400)103   ⇒ 𝑇 = 5550,22𝑠 

 

c) Calcul de vitesse angulaire ω 

𝑇 =
2𝜋

𝜔
  ⇒   𝜔 =

2𝜋

𝑇
 

AN :  𝜔 =
2𝜋

5550,22
= 1,13210−25𝑟𝑎𝑑/𝑠 

𝜔𝑇 = 7,2910
−5𝑟𝑎𝑑/𝑠 

 

 

 

 

 

 

 

 

 

Entre deux rencontres : 

3) La terre a tourné d’un angle 𝛼 

4) Le satellite a tourné d’un angle de (2𝜋 + 𝛼) 

𝛼 = 𝜔𝑇𝑡 (3)  

(2𝜋 + 𝛼) = 𝜔0𝑡 (4)  

(4)-(3)  membre à membre 

2𝜋 + 𝛼 − 𝛼 = 𝜔0𝑡 − 𝜔𝑇𝑡 

2𝜋 = 𝑡(𝜔0 − 𝜔𝑇)   ⇒   𝑡 =
2𝜋

𝜔0 − 𝜔𝑇
 

AN :   𝑡 =
2𝜋

1,132.10−3−7,29.10−5
= 593257𝑠 

 

Satellite géostationnaire   ⇔  𝜔𝑆 = 𝜔𝑇;     𝑇𝑆 = 𝑇𝑇;         ⇔   𝜔𝑆 = 7,29. 10
−5𝑟𝑎𝑑/𝑠 

𝜔 =
2𝜋

𝑇
 ⇒ 𝑇 =

2𝜋

𝜔
 

⇒ 𝑇 =
2𝜋

7,29. 10−5
= 86189,1𝑠 

𝑇2 = 
4𝜋2

𝑅2𝑔0
(𝑅 + ℎ)3   

Posons 𝑅 + ℎ = 𝑟 = rayon de l’orbite 

𝑇2 = 
4𝜋2

𝑅2𝑔0
𝑟3 ⇒ 𝑟3 =

𝑇2𝑅2𝑔0

4𝜋2
     

AN :  ⇒ 𝑟 = (
(86139,1)2.(6370.103)2.9,8

4𝜋2
)
1
3⁄  

 

𝑟 = 4,213239. 107𝑚 = 4,21. 104𝑘𝑚 = 42,132𝑘𝑚 
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CHAPITRE 4 : MOUVEMENT D’UNE PARTICULE SOUMISE À UNE FORCE CONSTANTE 

I- MOUVEMENT D’UN PROJECTILE DANS UN CHAMP DE PESANTEUR 

UNIFORME 

1- POSITION DU PROBLEME 

Dans un repère (o ; 𝑖  ;𝑘⃗ ), étudier le mouvement d’un projectile de masse m, lancé d’un point O avec 

une vitesse initiale V0 faisant un angle α avec l’horizontal. Le référentiel d’étude est supposé 

galiléen, la résistance de l’air étant négligée. 

a-      ACCELERATION. 

 

 

 

 

 

 

 

Le projectile n’est soumis qu’à son poids 𝑃⃗  = 𝑚𝑔  , d’après le théorème du centre d’inertie, nous 

avons : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎   ⇔ 𝑚𝑔 = 𝑚𝑎 ⇒ 𝑎 = 𝑔  

b-      VECTEUR POSITION 

La vitesse du centre d’inertie en un point M à la date t est : 𝑉⃗ = 𝑔 𝑡 + 𝑉⃗ 0 

Le vecteur position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  , primitif de 𝑉⃗  est : 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =
1

2
𝑔 𝑡2 + 𝑉⃗ 0𝑡 + 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  0 

Les conditions initiales sont celles du lancement 

Alors 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  0 = 0⃗ ⇒   𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =
1

2
𝑔 𝑡2 + 𝑉⃗ 0𝑡    

À tout instant le centre d’inertie du projectile est le plan vertical formé par 𝑔  et 𝑉0⃗⃗  ⃗ 

c-      ÉQUATION CARTESIENNE ET TRAJECTOIRE 

Dans le repère (o ;𝑖 ;𝑘⃗ ), choisi dans le plan 𝑔  ; 𝑉⃗ 0 

Les projections du 𝑎  et 𝑉⃗ 0 sont : 

 

𝑎 = 𝑔   ⇒ 𝑎 = {
𝑎𝑥 = 0
𝑎𝑧 = −𝑔

                  𝑉⃗ 0 = {
𝑉0𝑥 = 𝑉0 cos 𝛼
𝑉0𝑧 = 𝑉0 sin 𝛼
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Soit V la primitive de a 

 

𝑉⃗ = {
𝑉𝑥 = 𝑉0 cos 𝛼

𝑉𝑧 = −𝑔𝑡 + 𝑉0 sin 𝛼
               

OM primitive de V est          𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = {
𝑥 = (𝑉0 cos 𝛼)𝑡      (1)

𝑧 = −
1

2
𝑔𝑡2 + (𝑉0 sin 𝛼)𝑡    (2)

 

 Le mouvement du projectile selon l’axe x’x est uniforme et selon l’axe z’z, le mouvement est 

uniformément varié. En éliminant les variables t entre les lois horaires, on a : 

 

(1) ⇒ 𝑡 =
𝑥

𝑉0 cos 𝛼
   (3)       𝑝𝑜𝑢𝑟    𝛼 ≠ ±

𝜋

2
 

(3) Dans (2) 

⇒ 𝑧 = −
1

2
𝑔(

𝑥

𝑉0 cos 𝛼
)2 + 𝑉0 sin 𝛼 .

𝑥

𝑉0 cos 𝛼
 

𝑧 = −𝑔
𝑥2

2𝑉0
2 cos2 𝛼

+ 𝑥
sin 𝛼

cos 𝛼
 

⇒   𝑧 = −
𝑔

2𝑉0
2 cos2 𝛼

𝑥2 + 𝑥 tan𝛼  : C’est l’équation cartésienne de la trajectoire, c’est une 

parabole. 

Dans le cas où l’angle de tir est de 90°, les lois deviennent 𝑥 = 0   𝑒𝑡 𝑧 = −
1

2
𝑔𝑡2 + 𝑉0𝑡 

La trajectoire est la verticale de lancement. Le mouvement du centre d’inertie est rectiligne 

uniformément varié. Le mobile monte en ralentissant atteint un point culminant puis redescend en 

accélérant. 

d-      CARACTERISTIQUES DE LA TRAJECTOIRE. 

Portée : c’est la distance d(op) entre le point de chute de P sur l’horizontal passant par le point de 

lancement O ; sa valeur est   𝑥𝑃. 

À la portée 𝑧 = 0 ⇒   −
𝑔

2𝑉0
2 cos2 𝛼

𝑥𝑃
2 + 𝑥𝑃 tan𝛼 = 0  

−
𝑔

2𝑉0
2 cos2 𝛼

𝑥𝑃 = −
sin 𝛼

cos 𝛼
 

⇒ 𝑥𝑃 =
𝑉0
22 cos 𝛼 sin 𝛼

𝑔
      𝑜𝑟  2 cos 𝛼 sin 𝛼 = sin 2𝛼 

⇒   𝑥𝑃 =
𝑉0
2 sin 2𝛼

𝑔
 

La portée est maximale pour  sin 2𝛼 = 1, soit pour un angle  𝛼 =
𝜋

4
𝑟𝑎𝑑 (45°) 

𝑋𝑃𝑚𝑎𝑥 =
𝑉0
2

𝑔
 

Le tir est dit tendu pour 𝛼 <
𝜋

4
  et plongeant ou tir en cloche pour 𝛼 >

𝜋

4
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La flèche : La flèche, c’est l’altitude maximale z atteinte par le projectile en S sommet de la 

parabole. L’abscisse du point S se détermine par la condition : (
𝑑𝑧

𝑑𝑡
)
𝑆
= 0 

D’où l’instant tS de passage à S : 

−𝑔𝑡𝑆 + 𝑉0 sin 𝛼 = 0  ⇒   𝑡𝑆 =
𝑉0 sin 𝛼

𝑔
 

On note que  𝑡𝑆 =
1

2
𝑡𝑃 : le temps mis pour aller de O à S est le même que pour aller de O à P. 

𝑧 = −
1

2
𝑔 (
𝑉0 sin 𝛼

𝑔
)
2

+ 𝑉0 sin 𝛼
𝑉0 sin 𝛼

𝑔
= −

𝑉0
2 sin2 𝛼

2𝑔
+
𝑉0
2 sin2 𝛼

𝑔
 

⇒ 𝑧 =
𝑉0
2 sin2 𝛼

2𝑔
 

Pour une vitesse initiale V0 donnée, la plus grande valeur de la flèche z correspond à  sin2 𝛼 = 1 

soit 𝛼 =
𝜋

2
𝑟𝑎𝑑  ⇒  𝑧𝑚𝑎𝑥 =

𝑉0
2

2𝑔
 

 

 Vitesse du projectile lorsqu’il frappe le sol 

Les coordonnées du vecteur 𝑉⃗  en P : l’impact au sol a lieu à l’instant 

 

𝑡𝑃 =
2𝑉0 sin 𝛼

𝑔
         𝑑′𝑜ù  𝑉⃗ = {

𝑉𝑥 = 𝑉0 cos 𝛼

𝑉𝑧 = −𝑔
2𝑉0 sin 𝛼

𝑔
+ 𝑉0 sin 𝛼

 

𝑉 = {
𝑉𝑥 = 𝑉0 cos 𝛼
𝑉𝑧 = −𝑉0 sin 𝛼

    ⇒ 𝑉⃗ = 𝑉0 cos 𝛼 𝑖 + (−𝑉0 sin 𝛼)𝑗   

𝑉2 = 𝑉0
2 cos2 𝛼 + 𝑉0

2 sin2 𝛼  ⇒  𝑉2 = 𝑉0
2(cos2 𝛼 + sin2 𝛼) 

⇒   𝑉 = 𝑉0 

La vitesse à l’impact au sol est la même qu’au départ. 

 

e-      ÉNERGIE CINETIQUE, ENERGIE POTENTIELLE DE PESANTEUR, ENERGIE MECANIQUE 

1- ÉNERGIE CINETIQUE 

L’énergie cinétique du projectile en translation dans un état donné est : 

𝐸𝑐 =
1

2
𝑚𝑉2 

Soit dans l’état (1) ⇒ 𝐸𝑐(1) =
1

2
𝑚𝑉1

2 

Soit dans l’état (2) ⇒ 𝐸𝑐(2) =
1

2
𝑚𝑉2

2 

La variation de l’énergie cinétique du système entre ces états est d’après le théorème de l’énergie 

cinétique : 

𝐸𝑐(2) − 𝐸𝑐(1) = 𝑊𝑃⃗ (1→2)    ⇒  𝐸𝑐(2) − 𝐸𝑐(1) = 𝑚𝑔(𝑧1 − 𝑧2)  

 

2- ÉNERGIE POTENTIELLE DE PESANTEUR 

L’énergie potentielle de pesanteur du système est : 

𝐸𝑃 = 𝑚𝑔𝑧 

La variation de l’énergie potentielle entre les états (1) et (2) est : 
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𝐸𝑃(2) − 𝐸𝑃(1) = 𝑚𝑔𝑧2 −𝑚𝑔𝑧1 

𝐸𝑃(2) − 𝐸𝑃(1) = 𝑚𝑔(𝑧2 − 𝑧1) 

𝐸𝑃(2) − 𝐸𝑃(1) = −𝑊1→2(𝑝 ) 

𝐸𝑃(2) − 𝐸𝑃(1) = −(𝐸𝑃(2) − 𝐸𝑃(1)) (1)   𝑜𝑢 𝑒𝑛𝑐𝑜𝑟𝑒   ∆𝐸𝑃 = −∆𝐸𝑐  

3- ÉNERGIE MECANIQUE 

Par définition, l’énergie mécanique d’un système dans un état donné est la somme de son énergie 

cinétique et de son énergie potentielle. 

𝐸𝑚 = 𝐸𝑐 + 𝐸𝑃 

L’expression (1) conduit à 

𝐸𝑐(1) + 𝐸𝑃(1) = 𝐸𝑐(2) + 𝐸𝑃(2)      ⇔   𝐸𝑚(1) = 𝐸𝑚(2) 

Ceci traduit la conservation de l’énergie mécanique du projectile dans le champ de pesanteur. 

 

I- MOUVEMENT D’UNE PARTICULE CHARGEE DANS UN CHAMP 

ELECTROSTATIQUE 

1- CHAMP ELECTROSTATIQUE UNIFORME 

Le vecteur champ électrostatique 𝐸⃗ , obtenu entre les armatures A et B d’un condensateur plan 

soumis à une différence de potentiel 𝑈𝐴𝐵 est tel que : 

 

𝑈𝐴𝐵 = 𝐸⃗ . 𝐴𝐵⃗⃗⃗⃗  ⃗ 

Le vecteur champ électrostatique E est : 

1) Perpendiculaire aux plaques ; 

2) Dirigé de la plaque positive vers la plaque négative ou bien la plaque de plus haut potentiel 

vers la plaque de plus bas potentiel. 

 

 

 

 

 

En posant 𝑉𝐴 − 𝑉𝐵 = 𝑈𝐴𝐵 = 𝑈            

      𝐸 =
𝑈

𝑑
 

 

1.1-  FORCE ELECTROSTATIQUE 

Dans un champ électrostatique 𝐸⃗ , une particule de charge q est soumise à la force électrostatique  

𝐹 = 𝑞. 𝐸⃗  

Cette force est constante si le champ est uniforme. Le poids de la particule est négligeable devant 

cette force. 

𝑠𝑖     𝑞 > 0 ⇒ 𝐹  𝑒𝑡 𝐸⃗  𝑜𝑛𝑡 𝑚𝑒𝑚𝑒 𝑠𝑒𝑛𝑠  

𝑠𝑖    𝑞 < 0 ⇒   𝐹  𝑒𝑡 𝐸⃗  𝑠𝑜𝑛𝑡 𝑑𝑒 𝑠𝑒𝑛𝑠 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑟𝑒  

 



 

26 
 

1.2-  ACCELERATION DANS UN CHAMP 𝑬⃗⃗  UNIFORME 

Dans le référentiel du laboratoire supposé galiléen, la particule n’est soumise qu’à la seule force 

électrostatique et d’après le théorème du centre d’inertie : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎  ⇔ 𝑞. 𝐸⃗ = 𝑚𝑎  ⇒   𝑎 =
𝑞

𝑚
𝐸⃗  

 

Le vecteur accélération à la même direction que 𝐸⃗  mais son sens dépend du signe de la charge q. sa 

valeur dépend  de la particule. 

a) Vecteur position 

 

 

 

 

 

 

 

 

 

 

Une particule de charge q>0 pénètre en un point O avec la vitesse V0 dans une région où règne un 

champ électrostatique uniforme. 

À un instant t quelconque, elle est au point M. 

Soit V0 , la primitive de  𝑎 =  
𝑞𝐸

𝑚
 

⇒ 𝑉⃗ =
𝑞𝐸⃗ 

𝑚
𝑡 + 𝑉⃗ 0 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   primitive 𝑉⃗  est :  
1

2

𝑞𝐸⃗ 

𝑚
𝑡2 + 𝑉⃗ 0𝑡 + 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  0 

À t = 0, la particule est au point O   ⇒ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  0 = 0 

 

⇒ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  =
1

2

𝑞𝐸⃗ 

𝑚
𝑡2 + 𝑉⃗ 0𝑡 

La trajectoire de la particule est donc plane dans le plan formé par 𝐸⃗  et 𝑉⃗ 0  

 

1.3-  ÉQUATION CARTESIENNE ET TRAJECTOIRE 

Les coordonnées des vectrices accélérations et vitesse dans un système d’axe (𝑥𝑦) sont : 

 

𝑎 = {

𝑎𝑥 = 0

𝑎𝑦 =
𝑞𝐸

𝑚

       

𝑉⃗  primitive de a est :       𝑉⃗ = {
𝑉𝑥 = 𝑉0

𝑉𝑦 =
𝑞𝐸

𝑡
𝑡
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𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   primitive de 𝑉⃗  est :    𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = {
𝑥 = 𝑉0𝑡

𝑦 =
1

2

𝑞𝐸𝑡2

𝑚

 

 

En éliminant la variable t entre les lois horaires, l’équation cartésienne s’écrit : 

𝑦 =
1

2

𝑞𝐸

𝑚
𝑥2 

La trajectoire est un arc de parabole. 

1.4-  TRAJECTOIRE ET SES CARACTERISTIQUES 

 Vitesse de la particule en A 

A est le point où la particule sort du champ. Pour le point A : 𝑥 = 𝑙 

Et l’instant de passage en A vaut : 

𝑥 = 𝑉0𝑡   ⇔   𝑙 = 𝑉0𝑡𝐴    ⇒   𝑡𝐴 =
𝑙

𝑉0
 

On en déduit les coordonnées de la vitesse en A : 

𝑉 (𝑉0;  
𝑞𝐸

𝑚
.
𝑙

𝑉0
) 

D’où sa norme : 𝑉𝐴 = √𝑉0
2 + (

𝑞𝐸𝑙

𝑚𝑉0
)
2

 

Remarque : la particule sort du champ en A tel que :     𝐴 (𝑥𝐴 = 𝑙; 𝑦𝐴 =
𝑞𝐸𝑡2

𝑚𝑉0
) 

 Déviation électrostatique α 

À la sortie du champ en A, la particule n’est plus soumise à aucune force et sa trajectoire est une 

droite de même direction que le vecteur 𝑉⃗ 𝐴 

L’angle α peut se calculer de deux manières : 

Première méthode : 𝑉⃗ 𝐴 a pour coordonnées (𝑉0 ;  
𝑞𝐸𝑙

𝑉0𝑚
) 

tan𝛼 =
𝑉𝐴𝑦

𝑉𝐴𝑥
=
𝑞𝐸𝑙

𝑚𝑉0
2 

Deuxième méthode : le coefficient directeur de la trajectoire en A est égal au nombre de dérivé en A 

de la fonction y(x) 

𝑦(𝑥) =
𝑞𝐸

2𝑚𝑉0
2 𝑥

2   ;      
𝑑𝑦

𝑑𝑥
=

𝑞𝐸

2𝑚𝑉0
2 . 2𝑥 =

𝑞𝐸

𝑚𝑉0
2 𝑥 

 

tan𝛼 = (
𝑑𝑦

𝑑𝑥
)
𝐴
=
𝑞𝐸𝑙

𝑚𝑉0
2 

 

 DEFLEXION ELECTROSTATIQUE 

C’est la distance 𝑦 = 𝐼𝐴′ qui sépare le point I où vient la particule en l’absence de champ (E = 0) et 

le point A’ où elle frappe l’écran fluorescent. 

Pour calculer y, admettons le théorème suivant : le prolongement du 𝑉𝐴, c’est-à-dire la tangente en 

A à la parabole, passe par le milieu C du segment OH. 

Notons 𝐷 = 𝐶𝐼 
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tan𝛼 =
𝑦

𝐷
 ⇒   𝑦 = 𝐷 tan𝛼      𝑜𝑟    tan 𝛼 =

𝑞𝐸𝑙

𝑚𝑉0
2 

⇒ 𝑦 =
𝐷𝑞𝐸𝑙

𝑚𝑉0
2 

Soit U, la tension entre les plaques de déviation, le champ électrostatique vaut : 

𝐸 =
𝑈

𝑑
    et la déflexion devient  𝑦 =

𝐷𝑞𝐸𝑙

𝑚𝑑𝑉0
2𝑈 

 

1.5-    ÉNERGIE CINETIQUE ET ENERGIE POTENTIELLE ELECTROSTATIQUE OU ELECTRIQUE 

Lorsqu’une particule se déplace d’un point A vers un point B dans un champ électrostatique 

uniforme 𝐸⃗ , le travail (W) de la force d’origine électrostatique est égal à : 

 

𝑊𝐴𝐵
(𝐹 )
= 𝑞. 𝐸    𝑜𝑟    𝐸⃗ . 𝐴𝐵⃗⃗⃗⃗  ⃗ = 𝑉𝐴 − 𝑉𝐵 = 𝑈 

⇒ 𝑊𝐴𝐵
(𝐹 )
= 𝑞𝑈 = 𝑞(𝑉𝐴 − 𝑉𝐵)  

 

Si F est la seule force appliquée, le théorème de l’énergie cinétique donne : 

1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑞(𝑉𝐴 − 𝑉𝐵) = 𝑞𝑉𝐴 − 𝑞𝑉𝐵 

1

2
𝑚𝑉𝐴

2 + 𝑞𝑉𝐴 =
1

2
𝑚𝑉𝐵

2 +  𝑞𝑉𝐵 

⇔  𝐸𝑐(𝐴) + 𝐸𝑃(𝐴) = 𝐸𝑐(𝐵) + 𝐸𝑃(𝐵) 

Cette équation traduit la conservation de l’énergie totale. 

1.6-   THEOREME DE L’ENERGIE CINETIQUE 

Des particules de charge q>0 sortant de la chambre d’ionisation par l’orifice O1, sont accélérés entre 

deux plaques A et B. sachant que ces particules sortent par O2 avec une vitesse initiale nulle, 

calculer leur vitesse à la sortie de l’orifice O2. 

Le théorème de l’énergie cinétique permet d’écrire : 

∆𝐸𝑐 =∑𝑊𝑓𝑒𝑥𝑡 

1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑞𝐸. 𝐴𝐵⃗⃗⃗⃗  ⃗ 

1

2
𝑚𝑉𝐵

2 = 𝑞𝑈 

1

2
𝑚𝑉2

2 = 𝑞𝑈       =>            𝑉2 = √
2𝑞𝑈

𝑚
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CHAPITRE 5 : LES OSCILLATIONS MÉCANIQUES 

Introduction : un oscillateur mécanique est un objet qui se déplace en repassant périodiquement 

par une position d’équilibre. 

Exemple : amortisseurs des camions ; balançoires… 

I- FORCE DE RAPPEL ET INERTIE. 

Les vibrations des systèmes mécaniques résultent de la compétition entre 2 types de phénomène : 

3) L’existence d’une force de rappel ; équivalente à l’action d’un ressort qui tend à faire 

revenir l’objet mobile vers sa position d’équilibre ; 

4) L’inertie de l’objet dont la tendance naturelle est de poursuivre un mouvement rectiligne et 

uniforme en l’absence d’action et qui continue ainsi à se mouvoir lorsqu’il passe par sa 

position d’équilibre ou la force de rappel est nulle. 

1- ÉTUDE THEORIQUE D’UN OSCILLATEUR MECANIQUE 

a)    PENDULE ELASTIQUE HORIZONTAL 

Soit un ressort dont l’une des extrémités est fixée en un point O et l’autre extrémité est accroché à 

une masse m qui repose sur une table à coussin d’air. L’effet du poids P est annulé par la réaction 

du coussin d’air : 

𝑃⃗ + 𝑅⃗ = 0⃗  

La seule force active est l’action 𝐹  du ressort. F est proportionnelle à l’allongement du ressort à 

partir de sa position d’équilibre I. 

 

 

 

 

 

 

 

 

 

 

Soit 𝐹  = K𝐼𝑀⃗⃗⃗⃗  ⃗. Lorsqu’il fonctionne dans ces conditions, le ressort est dit à réponse linéaire. Que le 

ressort travaille en extension ou en compression, la force qui existe pointe toujours vers la position 

d’équilibre I. pour cette raison, elle est nommée force de rappel. Elle s’exprime vectoriellement par 

𝐹  = −𝑘𝐼𝑀⃗⃗⃗⃗  ⃗, la valeur algébrique IM prend souvent le nom d’élongation. 

MISE EN EQUATION 

1) Le référentiel d’étude est supposé galiléen 

2) Repère (o ; i) 

3) Système : masse-ressort 

4) Bilan des forces : P ; R ; T 

Le théorème du centre d’inertie donne : 
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∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎  

𝑃⃗ + 𝑅⃗ + 𝑇⃗ = 𝑚𝑎       𝑜𝑟 𝑃⃗ + 𝑅⃗ = 0⃗  

⇒  𝑇⃗ = 𝑚𝑎  ⇒ −𝑘𝐼𝑀⃗⃗⃗⃗  ⃗ = 𝑚𝑎  

Sur (o ;𝑖 ), il vient : 

𝐼𝑀⃗⃗⃗⃗  ⃗ = 𝑥𝑖   ⇔  −𝑘𝑥 = 𝑚𝑎𝑥     𝑜𝑟  𝑎𝑥 =
𝑑2𝑥

𝑑𝑡
= 𝑥̈ 

⇒ 𝑚𝑥̈ + 𝑘𝑥 = 0 ⇒   𝑥̈ +
𝑘

𝑚
𝑥 = 0  (1)   : Équation différentielle régissant le pendule élastique. 

L’écart 𝑥 d’un oscillateur de sa position d’équilibre évolue sinusoïdalement en fonction du temps. 

Alors la solution de l’équation : 

𝑥̈ +
𝑘

𝑚
𝑥 = 0  (1)   semble être du type :   𝑥 = 𝑥𝑚 cos(𝜔0𝑡 + 𝜑)    où 𝑥𝑚;  𝜔0 𝑒𝑡 𝜑 sont des 

constantes. 

𝑑𝑥

𝑑𝑡
= 𝑥̇ = −𝜔𝑥𝑚 sin(𝜔0𝑡 + 𝜑) 

𝑑2𝑥

𝑑𝑡
= 𝑥̈ = −𝜔2𝑥𝑚 cos(𝜔0𝑡 + 𝜑)     𝑜𝑟 𝑥 = 𝑥𝑚 cos(𝜔0𝑡 + 𝜑) 

⇒  𝑥̈ = −𝜔2𝑥   (2) 

(1)=(2)   ⇒   −𝜔2𝑥 = −
𝑘

𝑚
𝑥    ⇒   𝜔0 = √

𝑘

𝑚
     : pulsation propre de l’oscillateur 

On en déduit la période propre : 

𝑇0 =
2𝜋

𝜔0
= 2𝜋√

𝑚

𝑘
 

La fréquence est donc : 

𝑁0 =
1

𝑇0
=
1

2𝜋
√
𝑘

𝑚
 

b)    ÉNERGIE MECANIQUE DE L’OSCILLATEUR 

𝐸𝑚 = 𝐸𝑐 + 𝐸𝑃𝑒                              𝐸𝑐 =
1

2
𝑚𝑉2     𝑎𝑣𝑒𝑐 𝑥̇ = 𝑉 

⇒ 𝐸𝑐 =
1

2
𝑚𝑥̇2           𝑒𝑡      𝐸𝑃𝑒 =

1

2
𝑘𝑥2  

⇒ 𝐸𝑚 =
1

2
𝑚𝑥̇2 +

1

2
𝑘𝑥2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

 CONSERVATION DE L’ENERGIE MECANIQUE 

𝑑𝐸𝑚
𝑑𝑡

= 𝐸̇𝑚 =
2

2
𝑚𝑥̇𝑥̈ +

2

2
𝑘𝑥𝑥̇ = 0 

𝑚𝑥̇𝑥̈ + 𝑘𝑥𝑥̇ = 0 ⇒  𝑥̇𝑚 (𝑥̈ +
𝑘𝑥

𝑚
) = 0     𝑎𝑣𝑒𝑐 𝑥̈ +

𝑘𝑥

𝑚
= 0 

⇒ 𝐸̇𝑚 = 0 ⇔   𝐸𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒.   L’énergie mécanique de l’oscillateur se conserve. 

 

 PENDULE ELASTIQUE VERTICALE 

Position du problème : soit le système masse-ressort d’axe vertical(x’x) à partir de la position 

d’équilibre. 
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Un opérateur tire vers le bas le système de a (cm) puis l’abandonne sans vitesse initiale. Étudier le 

mouvement de l’oscillateur. 

 

 

 

 

 

 

 

 

 

 

Conditions d’équilibre 

𝑃⃗ + 𝑇⃗ = 0⃗        𝑎𝑣𝑒𝑐 𝑃⃗ = 𝑚𝑔     𝑒𝑡 𝑇 = 𝑘∆𝑙 

𝑚𝑔 − 𝑘∆𝑙 = 0                    ∆𝑙 = 𝑙 − 𝑙0 

⇒ 𝑚𝑔 − 𝑘(𝑙 − 𝑙0) = 0 (1) 

(1) permet d’écrire ∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎  

𝑃⃗ + 𝑇⃗ = 𝑚𝑎  

Sur la verticale descendante, on obtient : 

𝑃 − 𝑇 = 𝑚𝑎𝑥          𝑎𝑣𝑒𝑐   𝑇 = 𝑘(∆𝑙 + 𝑥)           𝑎𝑥 = 𝑥̈ 

⇒ 𝑚𝑔 − 𝑘(∆𝑙 + 𝑥) = 𝑚𝑥̈ 

⇒ 𝑚𝑔 − 𝑘∆𝑙 − 𝑘𝑥 = 𝑚𝑥̈       𝑜𝑟   𝑚𝑔 − 𝑘∆𝑙 = 0 

⇒ −𝑘𝑥 = 𝑚𝑥̈   ⇒  𝑚𝑥̈ + 𝑘𝑥 = 0 

⇒ 𝑥̈ +
𝑘𝑥

𝑚
= 0 

 ÉNERGIE MECANIQUE, SA CONSERVATION 

𝐸𝑚 = 𝐸𝑐 + 𝐸𝑃𝑒 + 𝐸𝑃𝑝 

Avec                  𝐸𝑐 =
1

2
𝑚𝑉2  ;        𝐸𝑃𝑒 =

1

2
𝑘(∆𝑙 + 𝑥)2   ;       𝐸𝑃𝑝 = 𝑚𝑔𝑧 = −𝑚𝑔𝑥    

Convention : la position d’équilibre est choisie comme origine des 𝐸𝑃𝑝. 

=> 𝐸𝑚 =  
1

2
𝑚𝑉2 +

1

2
𝑘(∆𝑙 + 𝑥)2 −𝑚𝑔𝑥 =

1

2
𝑚𝑥̇2 +

1

2
𝑘(∆𝑙 + 𝑥)2 −𝑚𝑔𝑥 

 

Sa conservation 

𝑑𝐸𝑚
𝑑𝑡

= 𝐸𝑚 = 𝑚𝑥̇𝑥̈ + 𝑘(𝑙 − 𝑙0 + 𝑥)𝑥̇ − 𝑚𝑔𝑥̇ 

= 𝑚𝑥̇𝑥̈ + 𝑘(𝑙 − 𝑙0)𝑥̇ + 𝑘𝑥𝑥̇ − 𝑚𝑔𝑥̇ 

= 𝑚𝑥̇ (𝑥̈ +
𝑘𝑥

𝑚
) − 𝑥̇(𝑚𝑔 − 𝑘(𝑙 − 𝑙0)) 

𝑜𝑟            𝑥̈ +
𝑘𝑥

𝑚
= 0      𝑒𝑡   𝑚𝑔 − 𝑘(𝑙 − 𝑙0) = 0 

  

                  ⇒ 

 

 

 𝐸𝑚 = 0 ⇔   𝐸𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 
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c)    OSCILLATEUR SINUSOÏDAL EN ROTATION 

-   PENDULE DE TORSION 

Un pendule de torsion peut être constitué par un solide A fixé à un fil d’acier passant par le centre 

d’inertie G du solide et tendu entre deux support. Le fil de tension constitue un axe (∆) autour 

duquel le solide A écarté de sa position d’équilibre d’un angle α peut effectuer un mouvement 

oscillatoire de rotation. Il effectue alors les oscillations libres non amorties. 

Tout oscillateur sinusoïdal de translation, l’𝐸𝑚 du pendule de torsion se conserve : 

𝐸𝑚 =
1

2
𝑐𝛼2 +

1

2
𝐽𝜔2 = 𝑐𝑠𝑡𝑒     (1) 

𝑐: Constante de torsion du fil 

𝐽: Moment d’inertie du solide par rapport à l’axe de rotation ∆ 

 

 

 

 

 

 

 

 

 

 

 

 

Dérivons l’expression (1) par rapport au temps : 

𝑑𝐸𝑚
𝑑𝑡

= 𝑐𝛼𝛼̇ + 𝐽𝜔𝜔̇ 

Pour un mouvement circulaire 𝜔 = 𝛼̇   𝑒𝑡   𝜔̇ = 𝛼̈ 

⇒ 
𝑑𝐸𝑚
𝑑𝑡

= 𝑐𝛼𝛼̇ + 𝐽𝛼̇𝛼̈ 

= 𝛼̇(𝛼̈𝐽 + 𝑐𝛼) 

𝛼̇ = 0 ⇒  Le solide est au repos ; 

En mouvement :  

 

Équation différentiel du pendule de torsion 

Cette équation est identique à celle de l’oscillation sinusoïdale en translation et admet donc une 

solution sinusoïdale de la forme : 

𝛼(𝑡) =  𝛼𝑚 cos(𝜔0𝑡 + 𝜑) 

𝛼̇ = −𝜔0𝛼𝑚 sin(𝜔0𝑡 + 𝜑) 

𝛼̈ = −𝜔0
2𝛼𝑚 cos(𝜔0𝑡 + 𝜑)    𝑎𝑣𝑒𝑐  𝛼𝑚 cos(𝜔0𝑡 + 𝜑) = 𝛼 

⇒  𝛼̈ = −𝜔0
2𝛼 ⇒ −𝜔0

2𝛼 = − 
𝑐

𝐽
𝛼 

    𝜔0 = √
𝑐

𝐽
   ∶   𝑝𝑢𝑙𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑟𝑒 𝑑𝑢 𝑝𝑒𝑛𝑑𝑢𝑙𝑒 𝑑𝑒 𝑡𝑜𝑟𝑠𝑖𝑜𝑛 

𝛼̈𝐽 + 𝑐𝛼 = 0     𝑜𝑢   𝛼̈ +
𝑐

𝐽
𝛼 = 0  
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La période propre : 𝑇0 =
2𝜋

𝜔0
= 2𝜋√

𝐽

𝑐
 

En prenant le solide oscillant A comme système, les moments de son poids et la réaction R du fil 

par rapport à (∆) sont nuls. La seule action mécanique du moment non nul a pour origine la torsion 

du fil de moment – 𝑐𝛼  donc : 

∑𝑀∆ = −𝑐𝛼 (1)  𝑒𝑡 𝑜𝑛 𝑎    ∑𝑀∆ = 𝐽𝛼̈ (2) 

⇒ (1) = (2)  ⇒    −𝑐𝛼 = 𝐽𝛼̈ 

 

 ⇒ 

-   PENDULE PESANT 

Un solide oscillant autour d’un axe horizontal fixe sous la seule action de son poids constitue un 

pendule pesant. 

Écartons un tel système de sa position d’équilibre d’un angle α, d’une longueur l et cachons-le. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑀∆(𝑃) = −‖𝑃‖𝑙 sin 𝛼 

= −𝑚𝑔𝑙 sin 𝛼 

D’autre part : ∑𝑀(∆) = 𝐽𝛼̈              − 𝑚𝑔 sin 𝛼 = 𝐽𝛼̈ 

=> 𝛼̈𝐽 + 𝑚𝑔 sin 𝛼 = 0  

Pour des petites oscillations  sin 𝛼 =  𝛼 

𝛼̈ +
𝑚𝑔𝑙

𝐽
𝛼  qui a pour solution  𝛼 = 𝛼𝑚 cos(𝜔0𝑡 + 𝜑)     𝑎𝑣𝑒𝑐  𝜔0 = √

𝑚𝑔𝑙

𝐽
   𝑒𝑡  𝑇0 = 2𝜋√

𝐽

𝑚𝑔𝑙
 

 

Si le pendule était simple : 

𝜔0 = √
𝑚𝑔𝑙

𝐽
= √

𝑚𝑔𝑙

𝑚𝑙2
  ⇒  𝜔0 = √

𝑔

𝑙
   𝑒𝑡  𝑇0 = 2𝜋√

𝑙

𝑔
 

 

 

𝛼̈ +
𝑐

𝐽
𝛼 = 0 
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a) ÉTUDE ENERGETIQUE 

L’énergie potentielle de pesanteur est prise égale à zéro à l’équilibre, l’énergie potentielle élastique 

n’intervient pas. 

L’énergie mécanique d’un pendule simple non amorti dans le cas des oscillations de faibles 

amplitudes est : 

𝐸𝑚 =
𝑚𝑔𝑙𝛼𝑚

2

2
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CHAPITRE 6 : ÉLECTROMAGNÉTISME 

Définition : l’électromagnétisme est la partie de la physique qui étudie les champs magnétiques 

produits par les courants électriques mais aussi toutes les interactions qui existent entre une 

particule chargée en mouvement et un champ magnétique. 

I- CHAMP MAGNETIQUE 

1-   PHENOMENES MAGNETIQUES 

 Propriétés des aimants : les aimants et les objets aimantés ont la propriété de s’orienter 

de façon privilégiée au voisinage de la terre. Ils sont dits magnétites. Certaines 

substances qui sont attirées par ces aimants sont dits magnétiques. 

 Champ magnétique : il règne un champ magnétique dans une région de l’espace 

lorsqu’une aiguille aimantée y subit des actions 

 Source de champ magnétique : la terre est la source de champ appelé champ géo-

magnétique. Les courants et les aimants sont aussi les sources de champs magnétiques. 

 Vecteur champ magnétique : l’orientation prise par l’aiguille aimantée montre qu’elle 

est sensible à une grandeur orientée appelé vecteur champ magnétique, désigné par B. 

par convention, le sens de 𝐵⃗  est choisi selon le sens 𝑆𝑁⃗⃗⃗⃗  ⃗ de l’aiguille aimantée qui le 

détecte. Sa valeur se mesure à l’aide d’un tesla mètre. 

a) INTERACTION D’ORIGINE MAGNETIQUE  

Ces interactions sont dues soit : 

1) À l’interaction aimant-aimant (deux extrémités de même nature NN ou SS se repoussent) ; 

deux extrémités de nature différente s’attirent ; 

2) À l’interaction aimant-courant ; 

3) À l’interaction courant-courant. 

2-   TOPOGRAPHIE D’UN CHAMP MAGNETIQUE 

C’est la description de la structure spatiale du champ. Le vecteur champ magnétique est tangent aux 

lignes de champ (on appelle ligne de champ magnétique, une ligne qui, en chacun de ses points est 

tangente au vecteur B en ce point). 

a- Spectre obtenu à partir d’aimants 

Les lignes de champ d’un aimant droit, sortent par l’extrémité nord et entrent par l’extrémité sud de 

l’aimant. 

 

 

 

 

b- Spectre obtenu à partir du courant 

Les lignes de champ d’un courant rectiligne sont circulaires, centrés sur le fil. Leur sens dépend du 

celui du courant. 
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Règle de l’observation d’ampère : le sens des lignes de champ est tel que quand un observateur, 

placé le long du fil de façon que le courant lui entre par les pieds et lui sorte par la tête, voit les 

lignes orientées vers sa gauche. 

Règle de la main droite : la main droite entourant le fil de façon que le pouce indique le sens du 

courant, le sens des lignes de champ est donné par l’orientation des autres doigts. 

c- Spectre d’un solénoïde 

Un solénoïde est constitué d’un fil conducteur enroulé en spirale, la longueur d’un solénoïde 

dépasse 5fois le diamètre d’une spire. À l’intérieur du solénoïde, le champ est parallèle à l’axe du 

solénoïde et est uniforme. La règle de la main droite permet de déterminer le sens de B à partir du 

sens du courant. Dans le cas du solénoïde, les doigts sont le sens du courant, le pouce écarté indique 

le sens de B. 

 

d- Spectre d’une bobine plate : même règle que celle du solénoïde. 

-   Spectre des bobines de Helmholtz 

Deux bobines plates, parallèle, distantes de rayon r, parcouru dans le même sens par le même 

courant, constitue un dispositif appelé bobines de Helmholtz. Les lignes de champ sont quasi 

parallèles entre les deux bobines. 

 

 

 

 

 

e- Valeur du champ magnétique à l’intérieur d’un solénoïde 

Cette valeur est donnée par la relation : 

𝐵 = ℳ0. 𝑛𝐼 

M0 : constante appelée perméabilité du vide = 4𝜋. 10−7 

I : intensité du courant en ampère (A) 

n : nombre de spire par mètre 

B : en tesla (T) 

Si le solénoïde a une longueur l et comporte N spires 

𝑛 =
𝑁

𝑙
     ⇒      𝐵 = ℳ0

𝑁

𝑙
𝐼 

f- Addition des vecteurs champs magnétiques 

Le champ 𝐵⃗  résultant de la superposition de deux champs magnétiques B1 et B2s’obtient en faisant 

la somme géométrique de ces deux vecteurs. 

Exemple : à l’intérieur d’un long solénoïde S1 comportant n1 = 1000 spires par mètre et parcouru 

par un courant d’intensité I1 = 2A. On a placé un solénoïde S2 dont l’axe est perpendiculaire à celui 

de S1.  

Le solénoïde S2 est formé de 200 spires régulièrement enroulées sur une distance de 5cm et 

l’intensité du courant qui y circule vaut I2 = 1A. Les sens des courants étant ceux indiqués au 

schéma, déterminer le vecteur champ magnétique B au point O. Que devient ce champ magnétique 

si on inverse le sens de chacun des deux courants ? 
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Solution 

Le champ B est donné par :  𝐵 = 𝐵1 + 𝐵2 

On calcule : 

𝐵1 = 𝑀0𝑛1𝐼1 = 4𝜋. 10
−7. 103. 2 ≅ 2,5. 10−3𝑇 

𝐵2 = 𝑀0
𝑁2
𝑙
𝐼2 = 4𝜋. 10

−7.
200

5. 10−2
. 1 ≅ 5,0. 10−3𝑇 

𝐵2 = 2𝐵1 

Le parallélogramme est ici un rectangle : le vecteur 𝐵⃗  forme avec l’axe 𝑜𝑥⃗⃗⃗⃗  (axe de S1) l’angle 𝛼 tel 

que : 

tan𝛼 =
𝐵2
𝐵1
= 2 =>  𝛼 = 63,4° 

Le théorème de Pythagore donne : 

𝐵 = √𝐵1
2 + 𝐵2

2  = √(2,5. 10−3)2 + (5. 10−3)2 = 5,6. 10−3𝑇 

Si on inverse le sens des deux courants, 𝐵⃗ 1 et 𝐵⃗ 2 changent de sens en conservant même direction et 

même norme. En conséquence, il en est de même pour le vecteur 𝐵⃗ . 

 

g- Action d’un champ magnétique uniforme sur une particule chargée 

1- FORCE MAGNETIQUE – FORCE DE LORENTZ 

a. Expression 

Les particules chargées lancées dans un champ magnétique peuvent prendre des trajectoires 

circulaires ou hélicoïdales. La force responsable de ces incurvations est appelée force magnétique 

ou force de Lorentz, elle dépend de la charge des particules, de leur vitesse et de la valeur du 

champ. Elle a pour expression : 

𝐹 = 𝑞𝑉⃗ ∧ 𝐵⃗  

b. Caractéristiques de B 

1- Sa direction est orthogonale au plan défini par 𝑉⃗  et 𝐹  ; 

2- Son sens est tel que :  

si la charge 𝑞 > 0, 𝑉⃗ , 𝐵⃗  𝑒𝑡 𝐹  forment un trièdre direct 

si la charge 𝑞 < 0, ils forment un trièdre indirect 

convention : 

(x) vecteur rentrant 

(●) vecteur sortant 
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3- Sa valeur est :  𝐹 = 𝑞𝑉𝐵 sin 𝛼         𝑜𝑢    𝛼 = (𝑉⃗ , 𝐵⃗ ) 

Règle de la main droite : la main droite placée de sorte que le courant entre par les poignets et sorte 

par les doigts, la paume dirigée dans le sens direct champ B alors le pouce tendu oriente la force de 

Lorentz. 

Pour retrouver le sens de la force 𝐹  du champ 𝐵⃗  ou de 𝑉⃗ , on utiliser la règle des trois doigts (𝑉⃗  = 

pouce, 𝐵⃗  = index, 𝐹  = majeur) ou la règle de la paume de main droite ouverte (main droite ouverte 

= 𝐵⃗  ; les doigts = 𝑉⃗  ; le pouce écarté = 𝐹 ). 

2- ÉTUDE DE LA TRAJECTOIRE CIRCULAIRE 

La vitesse de la particule de masse m est orthogonale au champ 𝐵⃗ , on suppose q>0. 

a. Analyse des actions 

Le poids de la particule est négligeable vis-à-vis des forces magnétiques. 

D’après le théorème du centre d’inertie, on a : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎  ⇔  𝐹 = 𝑚𝑎  ⇒ 𝑞𝑉⃗ ∧ 𝐵⃗ = 𝑚𝑎  

𝑎 =
𝑞𝑉⃗ ∧ 𝐵⃗ 

𝑚
; ⇒ 𝑎  ⊥  𝑉⃗  𝑒𝑡 à 𝐵⃗  

b. Choix du repère 

Le mouvement de la particule est étudié dans un repère terrestre supposé galiléen. L’origine O du 

repère est le point d’entrée de la particule du champ magnétique, l’axe 𝑜𝑥 est choisi colinéaire à V 

et de meme sens, 𝑜𝑦 est perpendiculaire à 𝐵⃗  et à 𝑜𝑥. Le repère est complété par un axe 𝑜𝑧 tel que 

𝑜𝑥; 𝑜𝑦 𝑒𝑡 𝑜𝑧 sont direct. 

c. Caractéristique du mouvement 

Puisque  𝑎 ⊥ 𝐵⃗    𝑑𝑜𝑛𝑐  𝑎 ⊥ 𝑜𝑧 ⇒  𝑎𝑧 =
𝑑2𝑧

𝑑𝑡
= 0 ⇒  𝑉𝑧 = 𝑐𝑠𝑡𝑒 = 0 ⇒ 𝑧 = 𝑐𝑠𝑡𝑒 = 0 

Ainsi la trajectoire est contenue dans le plan 𝑥𝑜𝑦 ⊥ 𝐵⃗ . Dans le repère mobile de Frenet (𝑁⃗⃗  ;𝑇⃗ ), 

l’accélération tangentielle en un point M est : 

𝑎 𝑇 =
𝑑𝑉⃗ 

𝑑𝑡
      𝑝𝑢𝑖𝑠   𝑎 ⊥ 𝑉⃗ ⇒  𝑎𝑇 = 0 

⇒ 𝑉 = 𝑉0  ⇒ la vitesse garde une valeur constante et le mouvement est uniforme 

L’accélération normale est : 

𝑎𝑁 =
𝑉2

𝑅
          𝑝𝑢𝑖𝑠𝑞𝑢𝑒    𝑉 ⊥ 𝐵 ⇒      𝑎 =

|𝑞|

𝑚
𝑉0𝐵 =

𝑉0
2

𝑅
 ⇒ 

Le rayon de courbure est constant donc la trajectoire est circulaire. 

d. Puissance d’une force magnétique 

La puissance d’une force magnétique F est donnée par le produit scalaire 

𝑃 = 𝐹 . 𝑉⃗     𝑐𝑜𝑚𝑚𝑒   𝐹 ⊥ 𝑉⃗ ⇒ 𝑃 = 0 

L’énergie cinétique d’une particule dans un champ magnétique ne varie pas. La force magnétique 

peut incurver les trajectoires mais ne peut modifier la valeur de la vitesse des particules. 

 

e. Quantité de mouvement 

La quantité de mouvement est donnée par : 

𝑅 =
𝑚𝑉0
|𝑞|𝐵
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𝑃 = 𝑚𝑉0     𝑜𝑟   𝑉0 =
|𝑞|𝐵𝑅

𝑚
       ⇒    𝑃 = |𝑞|𝐵𝑅 

 

f. Vitesse angulaire 

On sait que  𝜔 =
𝑉0

𝑅
      𝑜𝑟      𝑉0 =

|𝑞|𝐵𝑅

𝑚
   ⇒    𝜔 =

|𝑞|𝐵

𝑚
 

3- NOTION DE FLUX MAGNETIQUE 

a- Choisir une orientation (arbitraire) sur la spire ; 

b- Mettre en place la normale à la surface S de la spire (utiliser l’une des règles d’orientation 

de l’espace). 

On calcule le flux par la formule : 

 

 

 

 

 

 

 

𝛷 = 𝐵⃗ . 𝑛⃗ . 𝑆  ⇒     

n = vecteur unitaire normal  (𝐵⃗ , 𝑛⃗ ) =  𝜋 

 

NB : pour une bobine à N spire, 

𝛷 = 𝑁𝐵𝑆 cos(𝐵, 𝑛)  ; L’unité du flux est le weber (wb) 

 

4- LOI DE LAPLACE 

a. Expression de la force de Laplace 

Un conducteur de longueur l parcouru par une intensité I, est plongé dans un champ magnétique B 

est soumis à l’action d’une force F appelée force de Laplace tel que : 

𝐹 = 𝐼𝑙 ∧ 𝐵⃗  

Ses caractéristiques sont : 

-   Sa direction est orthogonale au plan défini par le fil et le champ 𝐵⃗  ; 

-   Son sens est tel que le trièdre défini par les vecteurs 𝐼𝑙 , 𝐵⃗  𝑒𝑡 𝐹  forment un trièdre direct 

(l’orientation dans le sens du courant) 

-   Sa valeur est : 

𝐹 = 𝐼𝑙𝐵 sin 𝛼 

 

b. Application 

-   Roue de Barlow 

Chaque rayon du disque traversé par un courant est soumis au champ magnétique, subit la force 

électromagnétique, la roue tournera progressivement dans le sens indiqué sur la figure. 

 

 

 

 

𝛷 = 𝐵𝑆 cos(𝐵, 𝑆) 

𝛷 = −𝐵𝑆 
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𝐹 = 𝐼𝑙 ∧ 𝐵⃗   ⇔ 𝐹 = 𝐼𝑙𝐵 sin(𝑙 , 𝐵⃗ ),   (𝑙 , 𝐵⃗ ) =
𝜋

2
     𝑒𝑡  𝑙 = 𝑅        ⇒  

La roue de Barlow est le moteur électrique le plus simple. 

Puissance du moteur 

𝑃(𝐹 ) = ℳ(𝐹 ). 𝜔 

𝑀0(𝐹 ) = 𝐹. 𝑂𝐴 = 𝐵𝐼𝑅.
𝑅

2
   ⇒  ℳ0(𝐹 ) =

𝐵𝐼𝑅2

2
    𝑎𝑣𝑒𝑐  𝜔 = 2𝜋𝑁 

  

 

 

 AN : 𝐵 = 0,5𝑇 ,     𝐼 = 4𝐴;         𝑅 = 5𝑐𝑚;   𝜔 = 100 𝑡𝑟𝑠 𝑚𝑖𝑛⁄ =
10𝜋

3
 

𝐴𝑁: 𝑃(𝐹 ) =
0,5𝑋4𝑋(5−2)2𝑋

𝜋

2

2
  

5- BALANCE DE COTTON 

 

 

 

 

 

 

 

 

Étude de la balance 

Bilan des forces : 

-   Sur A’A : force 𝐹 1 

-   Sur AC : force 𝐹  

-   Sur CC’ : force 𝐹 2 

-   Au point O : la réaction 𝑅⃗  du couteau 

-   Au point E : le poids P 

Conditions d’équilibre : 

∑ℳ0(𝑓𝑒𝑥𝑡) = 0 

⇒ ℳ0(𝐹1⃗⃗  ⃗) +ℳ0(𝐹 2) +ℳ0(𝐹 ) +ℳ0(𝑅⃗ ) +ℳ0(𝑃⃗ ) = 0 

𝑀0(𝐹 1) = 0 car la droite d’action de F1 passe par le point O, de même que 𝑀0(𝐹 2) = 0 

ℳ0(𝐹 ) = −𝑂𝐾. 𝐹 ;    ℳ0(𝑅⃗ ) = 0   ;   ℳ0(𝑃⃗ ) = 𝑂𝐸. 𝑃 

F = IRB 

𝑃(𝐹 ) =
𝐵𝐼𝑅2

2
. 𝜔 
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∑𝑀0(𝑓𝑒𝑥𝑡) = 0 ⇔ −𝑂𝐾. 𝐹 + 𝑂𝐸. 𝑃 = 0  𝑎𝑣𝑒𝑐  𝐹 = 𝐵𝐼𝐴𝐶 ; 𝑂𝐾 = 𝑑  𝑂𝐸 = 𝑑
′ 

−𝑑𝐵𝐼𝐴𝐶 + 𝑑′𝑚𝑔 = 0 

𝐵 =
𝑚𝑔𝑑′

𝐼𝐴𝐶𝑑
  

Intérêt de la balance : mesure des intensités du champ magnétique. 

 

Exercice n°1 

On considère le montage ci-après, la tige de cuivre KM, de masse m est homogène et de section 

constante, elle est placée dans un champ magnétique uniforme B sur une longueur l et elle est 

parcourue par un courant I. on admettra que la tige ne peut se glisser sans frottement sur ses rails. 

a. De quel angle α peut-on calculer les rails ACDE et dans quel sens pour que la tige soit en 

équilibre dans les deux cas suivants : 

b. 1
er

 cas : B reste ⊥ aux rails 

c. 2
ème

 cas : B reste vertical 

d. On incline le plan des rails suivant le sens défini à la question 1 (voir 1
er

 cas) en donnant à α 

la valeur de 30° (B ⊥ au plan des rails) 

e. Quelle est la nature du mouvement de la tige KM ? 

f. Calculer son accélération et sa vitesse 0,5s après la fermeture du circuit. 

 

 

 

 

 

 

 

 

NB : On admettra dans cette partie que la résistance du circuit est suffisamment élevée pour qu’on 

puisse négliger les phénomènes d’induction 

 

Résolution 

a. 1
er

 cas : Pour que la tige soit en équilibre, il faut soulever les extrémités A et C  

B ⊥ au plan des rails. 
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Conditions d’équilibre 

∑𝑓 𝑒𝑥𝑡 = 0  

𝑃⃗ + 𝑅⃗ + 𝐹 = 0⃗   En projetant sur (𝑥′𝑥𝑖) il vient 

𝑃𝑥 + 0 − 𝐹 = 0 ⇒ 𝑃 sin 𝛼 − 𝐵𝐼𝑙 = 0 

sin 𝛼 =
𝐵𝐼𝑙

𝑃
=
𝐵𝐼𝑙

𝑚𝑔
 

𝐴𝑁: sin 𝛼 =
0,5𝑋4𝑋6𝑋10−2

20𝑋10−3𝑋10
= 0,6  ⇒  𝛼 ≈ 37° 

 

2
ème

 cas : B vertical au plan des rails 

Principe d’inertie 

 

 

 

 

 

 

 

 

𝑃⃗ + 𝑅⃗ + 𝐹 = 0⃗    ⇒      𝑃𝑥 + 𝐹𝑥 = 0 

𝑚𝑔 sin 𝛼 − 𝐹 cos 𝛼 = 0 ⇒  tan𝛼 =
𝐹

𝑚𝑔
=
𝐵𝐼𝑙

𝑚𝑔
 

b. B ⊥ au plan des rails (𝛼𝐸 = 37°) 

Or 𝛼 = 30°    ⇔   𝛼 < 𝛼𝐸 ⇒ la tige se déplacera dans le sens de D→A 

La condition d’équilibre n’est plus vérifiée, on a : 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎  ⇔   𝑃⃗ + 𝑅⃗ + 𝐹 = 𝑚𝑎  

Soit en projection sur (𝑥′𝑥, 𝑖 ), il vient 

𝑝 sin 𝛼 − 𝐵𝐼𝑙 = 𝑚𝑎𝑥  ⇒ 𝑎𝑥 = 𝑔 sin 𝛼 −
𝐵𝐼𝑙

𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

Le mouvement est uniformément varié. 

g. 𝐴𝑁:  𝑎𝑥 = 10𝑋0,5 −
0,5𝑋4𝑋6.10−2

2010−2
   ⇒  𝑎𝑥 = 1𝑚 𝑠2⁄  

h. 𝑐𝑎𝑙𝑐𝑢𝑙 𝑑𝑒 𝑣𝑖𝑡𝑒𝑠𝑠𝑒: 

𝑉 = 𝑎𝑡 + 𝑉0     𝑎𝑣𝑒𝑐 𝑉0 = 0 

⇒ 𝑉 = 𝑎𝑡 = −1𝑋0,5 = −0,5𝑚 𝑠⁄  

 

6- AUTO-INDUCTION 

a. Obtention d’un courant induit 

Un courant induit apparait dans un circuit si on déplace un aimant dans son voisinage ou si on 

déplace le circuit devant un aimant. 

Le courant induit s’annule lorsque le déplacement relatif cesse. 

b. Sens du courant induit 

Le sens du courant induit dans la bobine est celui qui tente de s’opposer au mouvement de l’aimant. 

c. Loi de Lenz 
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Le sens du courant induit est tel que le flux magnétique qu’il crée à travers l’induit s’oppose à la 

variation du flux qui lui donne naissance. 

 

7- FORCE ELECTROMOTRICE D’INDUCTION (F.E.M) 

La f.e.m d’induction est égale à celle d’un générateur sans résistance interne, qui créerait dans le 

circuit un courant de même intensité que le circuit induit. 

a. Loi de Faraday 

La f.e.m d’induction e est l’opposée de la dérivée par rapport au temps du flux inducteur dans le 

circuit. 

𝑒 =
−𝑑𝛷

𝑑𝑡
 

 Un sens positif est choisi sur le contour limitant le circuit : 

Si ∆𝛷 < 0 ⇒ 𝑒 > 0, le courant circule dans le sens positif choisi 

Si ∆𝛷 > 0 ⇒ 𝑒 < 0, le courant circule dans le sens opposé au sens choisi. 

 Si R est la résistance du circuit induit, en l’absence de tout autre f.e.m dans le circuit, 

l’intensité du courant induit est donnée par la relation : 

𝑖 =
𝑒

𝑅
 

Remarque : le plus souvent, on peut se borner à calculer  |𝑒| = |
−𝑑𝛷

𝑑𝑡
|     𝑒𝑡 𝑖 =

|𝑒|

𝑅
 

Le sens du courant induit est directement donné par la loi de Lenz. 

8- PHENOMENES D’AUTO-INDUCTION 

a. Auto inductance 

Soit un circuit parcouru par un courant d’intensité variable et comportant une bobine, on montre 

que : 

-   Le champ magnétique créé par le courant qui parcourt la bobine est proportionnel à celui-ci ; 

-   Le flux du champ magnétique au travers de la bobine est proportionnel à B et il est donc 

proportionnel à i, alors : 

𝛷 = 𝐿𝑖 

L est le coefficient de proportionnalité qui ne dépend que de la géométrie de la bobine. L est appelé 

auto inductance. Son unité est le Henry (H). 

Pour un solénoïde, l’inductance est : 

𝐿 =
ℳ0𝑁

2𝑆

𝑙
 

b. Force f.e.m d’auto-induction 

La f.e.m d’auto-induction qui apparait dans une portion de circuit d’auto inductance L est: 

𝑒 =
−𝐿𝑑𝑖

𝑑𝑡
 

c. Différence de potentiel aux bornes d’une bobine 

La DDP aux bornes d’une bobine d’un inducteur AB dont l’auto inductance L a une résistance r, 

parcouru par un courant d’intensité variable 𝑖 est : 

𝑈𝐴𝐵 = 𝑟𝑖 +
𝐿𝑑𝑖

𝑑𝑡
 

 

d. Étude énergétique 
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Puissance échangée 

La puissance électrique échangée par le dipôle que constitue la bobine avec le reste du circuit est : 

𝑃 = 𝑈𝐴𝐵𝑖 = 𝑟𝑖
2 + 𝐿𝑖

𝑑𝑖

𝑑𝑡
 

⇒ 𝑃 = 𝑟𝑖2 +
𝑑

𝑑𝑡
(
1

2
𝐿𝑖2) 

P est la somme des deux bornes  

𝑃 = 𝑃𝐽 + 𝑃𝐿 

𝑃𝐽 = 𝑟𝑖
2 est toujours positive. Ce terme correspond à l’effet joule. 

Si  𝑃𝐿 =
𝑑

𝑑𝑡
(
1

2
𝐿𝑖2) > 0, la bobine se comporte comme un récepteur, elle reçoit du travail électrique 

du reste du circuit. 

Si 𝑃𝐿 < 0, la bobine se comporte comme un générateur ; elle cède du travail électrique au reste du 

circuit. 

Énergie d’une bobine 

L’énergie emmagasinée par un conducteur dont l’auto inductance est L et qui est parcourue par un 

courant d’intensité 𝑖 est : 

 

𝑊 =
1

2
𝐿𝑖2 

 

Application n°1 

Un solénoïde assez long, comprenant 100 spires par mètre, chacune de rayon r = 5cm est parcouru 

par un courant d’intensité 𝑖 = 0,1 cos(1000𝑡). Une bobine circulaire plate comportant 100 spires 

de rayon moyen R = 8cm, entoure la région centrale du solénoïde. 

1. Déterminer l’expression en f(t) du flux inducteur à travers la bobine plate. 

2. La bobine plate constituant un circuit fermé de résistance r = 0,252. Quelle est l’expression 

de l’intensité qui l’a parcourue ? 

R = 0,2Ω 

Solution : 

n = 100 spires/m ; r = 5cm = 5.10
-2

m ; 𝑖 = 0,1 cos(100𝑡) 

1) Détermination du flux inducteur à travers la bobine plate 

𝛷 = 𝑁𝐵𝑆 

𝑁 = 1000 spires 

𝐵 = Champ à l’intérieur du solénoïde 

𝐵 = 𝑀0𝑛𝑖 = 𝑀0𝑛. 0,1 cos  (1000𝑡)  

𝑆 = Surface de la bobine = surface du solénoïde  = 𝜋𝑟2  

Orientons la spire de la bobine dans le sens de B 

⇒ (𝐵, 𝑆) = 0 ⇒  𝛷 = 𝑁𝐵𝑆 

⇒  𝛷 = 𝑁.𝑀0𝑋0,1𝜋𝑟
2 cos(1000𝑡) 

= 100𝑋4𝜋𝑋10−7𝑋(5. 10−2)2. 𝜋 cos(1000𝑡) 

= 100𝑋4𝜋2. 10−7𝑋2,5. 10−4 cos(1000𝑡) 

𝛷 = 9,87. 10−8 cos(1000𝑡) 

2) Intensité que parcourt la bobine 
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𝑖 =
𝑒

𝑅
         𝑜𝑟     𝑒 = −

𝑑𝛷

𝑑𝑡
 

 

⇒  𝑒 = −
𝑑

𝑑𝑡
(9,87. 10−8 cos(1000𝑡)  

= 9,87. 10−8∫cos(1000𝑡) 𝑑𝑡 

= 9,87. 10−8𝑋1000 sin(1000𝑡) 

𝑒 = 9,87. 10−5 sin(1000𝑡) 

𝑖 =
9,87. 10−5

8. 10−2
sin(1000𝑡) 

𝑖 = 1,23. 10−3 sin(1000𝑡) 

 

Application n°2 

Calculer l’inductance d’un solénoïde dont la longueur L=0,5m, est très grande devant son rayon 

r=2,5cm. Le nombre de spires par unité de longueur est n= 2.10
4
 spires/m. 

Solution 

𝛷 = 𝐿𝑖   (1)        ,           𝛷 = 𝑁𝐵𝑆 = 𝑁𝐵𝑆𝑐𝑜𝑠(𝐵, 𝑆) 

Orientons la spire : 𝐿⃗ , 𝑆  et B ont même sens. 

(B, S) =0 

𝑆 = 𝜋𝑟2  

𝐵 = 𝑀0. 𝑛. 𝑖  

𝑁 = 𝑛𝑙  

𝛷 = 𝑁𝐵𝑆  ⇒    𝛷 = 𝑛. 𝑙.𝑀0. 𝑛. 𝑖. 𝜋. 𝑟
2 = 𝑀0. 𝑛

2𝑙𝜋. 𝑟2𝑖  (2) 

(1) = (2)   ⇔   𝐿𝑖 = 𝑀0. 𝑛
2𝑙𝜋. 𝑟2𝑖 

𝐿 = 𝑀0𝑛
2𝑙𝜋𝑟2 

𝐴𝑁:  𝐿 = 4𝜋. 10−7𝑋(4.104)2𝑋0,5𝑋𝜋𝑋(2,510−2)2 

𝐿 = 0,5𝐻 

    𝐿 =
𝑁0𝑁

2𝑆

𝑙
  𝑎𝑣𝑒𝑐 𝑁 = 𝑛𝑙, 𝑆 = 𝜋𝑟2 

𝐿 =
𝑁0𝑛

2𝑙2𝜋𝑟2

𝑙
= 𝑁0𝑛

2𝑙𝜋𝑟2 
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CHAPITRE 7 : LES CIRCUITS OSCILLANTS 

 

I- FREQUENCE DES OSCILLATIONS D’UN CIRCUIT (L, C) 

A- ÉQUATION DIFFERENTIELLE D’UN CIRCUIT (L, C) 

Considérons le circuit schématisé ci-après : il comprend : 

-   Un condensateur de capacité C chargé sous la tension continue 𝑈 = 𝑈0, l’armature de haut porte 

la charge 𝑞0 ; 

-   Une bobine d’inductance L et de résistance négligeable. 

À l’instant t = 0, on ferme l’interrupteur k : le condensateur se décharge à travers la bobine ; on note 

𝑖 l’intensité algébrique du courant à l’instant t et q la charge du condensateur (fig. b). 

 

 

 

 

 

 

 

 

 

 

𝑖 est positive lorsque le courant circule dans le sens de la flèche rouge, négative dans le cas 

contraire. 

 Calculons la tension 𝑈𝐴𝐵 

-   Aux bornes du condensateur : 𝑈 =
𝑞

𝐶
 

-   Aux bornes de la bobine :  𝑈 = 𝐿
𝑑𝑖

𝑑𝑡
 

D’où 𝑈 =
𝑞

𝐶
= 𝐿

𝑑𝑖

𝑑𝑡
     (1) 

La charge du condensateur passe par la valeur q à l’instant t à la valeur 𝑞 + 𝑑𝑞 à l’instant 𝑡 + 𝑑𝑡 ; la 

quantité d’électricité qui quitte l’armature supérieure vaut : 

𝑖𝑑𝑡 = 𝑞 − (𝑞 + 𝑑𝑞) = −𝑑𝑞 ⇒ 𝑖 = −
𝑑𝑞

𝑑𝑡
= −𝐶

𝑑𝑈

𝑑𝑡
    (2) 

Dérivons les deux membres de (2) par rapport à t et reportons dans (1) : 

𝑑𝑖

𝑑𝑡
= −𝐶

𝑑𝑈2

𝑑𝑡2
     ;   

𝑑𝑖

𝑑𝑡
=
𝑈

𝐿
  ⇒     

𝑈

𝐿
= −𝐶

𝑑𝑈2

𝑑𝑡2
 

 

   𝑜𝑢    
𝑑𝑈2

𝑑𝑡2
+ 𝜔0

2𝑈 = 0    𝑎𝑣𝑒𝑐 𝜔0
2 =

1

𝐿𝐶
    

 

B- CALCUL DE LA TENSION U(t) 

 La solution de l’équation différentielle précédente est de la forme : 

𝑈 = 𝑈𝑚𝑎𝑥 cos(𝜔0𝑡 − 𝜑) 

Cela signifie que, la tension U entre les armatures, subit des oscillations sinusoïdales caractérisées : 

𝑑𝑈2

𝑑𝑡2
+
𝑈

𝐿𝐶
= 0      
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-   Par la pulsation   𝜔0 = √
1

𝐿𝐶
 

-   Ou par la fréquence 𝑁0 =
𝜔0

2𝜋
=

1

2𝜋√𝐿𝐶
 

 La détermination des valeurs de 𝑈𝑚𝑎𝑥 𝑒𝑡 𝑑𝑒 𝜑, s’obtient en exprimant les conditions 

initiales, c’est-à-dire les valeurs : 

𝑈(𝑡 = 0) = 𝑈0  𝑒𝑡 𝑖(𝑡 = 0) = −
𝑑𝑞

𝑑𝑡
(𝑡 = 0) = 0 

𝑈(𝑡 = 0) = 𝑈𝑚𝑎𝑥 cos𝜑 = 𝑈0   (3) 

À 𝑡 = 0,   𝑈 = 𝑈0 = 𝑈𝑚𝑎𝑥 cos𝜑 (∗) ;     
𝑑𝑞

𝑑𝑡
= 𝐶

𝑑𝑈

𝑑𝑡
   𝑜𝑟   

𝑑𝑈

𝑑𝑡
= −𝜔0𝑈𝑚𝑎𝑥 sin(−𝜑) = 0 ⇒ 𝜑 = {

𝜋
0

 

La condition (∗) satisfait à 𝜑 = 0 

D’où 

𝑈 = 𝑈0 cos(𝜔0𝑡) 

Remarque : un circuit (L, C) est nommé, pour cette raison, circuit oscillant. 

 

C- CALCUL DE L’INTENSITE 𝒊(𝐭) 

𝑖 = −𝐶
𝑑𝑈

𝑑𝑡
= 𝐶𝑈0𝜔0 sin(𝜔0𝑡) = 𝐼𝑚𝑎𝑥 sin(𝜔0𝑡)    𝑒𝑛 𝑝𝑜𝑠𝑎𝑛𝑡  𝐼𝑚𝑎𝑥 = 𝐶𝑈0𝜔0 

-   Représentation graphique 

U = U0 cosw0t  i = Imaxsinw0t 

De période T0 =
2𝜋

𝑤0
 

 

 

 

 

 

 

 

 

 

 

 

 

Notons que l’intensité 𝑖 passe par un extremum aux instants :  𝑡 =
𝑇0

4
;  
3𝜋

4
; … lorsque la tension U 

s’annule et vice versa. Ces fonctions sinusoïdales 𝑈 𝑒𝑡 𝑖 sont dites en quadrature. 

 

II- ASPECT ENERGETIQUE 

Dans le cas où la résistance R est négligeable, cela signifie qu’il n’y a pas dissipation d’énergie par 

effet joule. L’énergie présente dans le circuit demeure donc constante ; à l’instant t, elle existe : 

-   Sous forme d’énergie électrostatique 𝐸𝐸 emmagasinée dans le   

-    condensateur : 𝐸𝐸 =
1

2
𝐶𝑈2 =

1

2
𝐶𝑈0

2 cos2(𝜔0𝑡). 
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-   Et sous forme d’énergie magnétique 𝐸𝑀 dans la bobine : 𝐸𝑀 =
1

2
𝐿𝑖2 =

1

2
𝐼𝑚𝑎𝑥
2 sin2(𝜔0𝑡) or  

𝐼𝑚𝑎𝑥 = 𝐶𝑈0𝜔0  ⇒ 𝐸𝑀 =
1

2
𝐿𝐶2𝜔0

2𝑈0
2 sin2(𝜔0𝑡) =

1

2
𝐶𝑈0

2 sin2(𝜔0𝑡)   𝑐𝑎𝑟  𝐿𝐶𝜔0
2 = 1 

D’où 

𝐸𝐸 + 𝐸𝑀 =
1

2
𝐶𝑈0

2[cos2(𝜔0𝑡) + sin
2(𝜔0𝑡)] =

1

2
𝐶𝑈0

2 

Puisque       𝑈0 =
𝐼𝑚𝑎𝑥

𝐶𝜔0
⇒  𝐸𝐸 + 𝐸𝑀 =

1

2
𝐶
𝐼𝑚𝑎𝑥
2

𝐶2𝜔0
2 =

1

2

𝐼𝑚𝑎𝑥
2

𝐶𝜔0
2 =

1

2
𝐿𝐼𝑚𝑎𝑥
2  

𝐸 = 𝐸𝐸 + 𝐸𝑀 =
1

2
𝐶𝑈0

2 =
1

2
𝐿𝐼𝑚𝑎𝑥
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

Si l’énergie électrostatique diminue, l’énergie magnétique augmente, à somme constante, et 

inversement. 

 Au cours des oscillations d’un circuit (L, C) non résistant, l’énergie totale se conserve. 

 Il y a transfert d’énergie du condensateur vers la bobine et inversement. 

 Le cas où le circuit possède une résistance, l’énergie emmagasinée dans un circuit diminue 

progressivement à cause de l’effet joule. 

 

Exercice d’application : 

On réalise un circuit oscillant en associant comme l’indique la figure, un condensateur de capacité 

C et une bobine d’inductance L = 40mH et de résistance négligeable. Le circuit est le siège 

d’oscillation électrique de fréquence 𝑁0 = 800𝐻𝑧 

 

 

 

 

 

 

 

 

 

 

a. Calculer la pulsation propre 𝜔0 du circuit et la valeur de la capacité C. 

b. À l’instant t = 0, l’intensité 𝑖 est maximale et a pour valeur 𝑖 = 𝐼𝑚𝑎𝑥 = 2𝐴. Donner 

l’expression de 𝑖  𝑒𝑛   𝑓𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒 𝑡. 

c. Exprimer la tension U aux bornes du condensateur en 𝑓𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒 𝑡. 

À quelles dates la charge q est-elle, pour la première fois 

-   Positive et maximale ? 

-   Négative et minimale ? 

Calculer l’énergie présente dans le circuit à ces dates. Sous quelle forme(s) existe-t-elle ? 

d. Calculer l’énergie électrostatique et l’énergie magnétique aux instants t’=6,25.10
-4

s et 

t’’=2.10
-4

s. 

Solution : 

a. Pulsation propre : 

𝜔0 = 2𝜋𝑁0   ⇒ 𝐴𝑁:    𝜔0 = 2𝑋3,14𝑋800 = 5,027. 10
3𝑟𝑎𝑑/𝑠 

La relation :  𝐿𝐶𝜔0
2 = 1 permet de calculer C. 
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𝐶 =
1

4. 10−2. (5,027. 103)2
= 9,9. 10−7𝐹 ≅ 1𝑁𝐹 

b. Dans un circuit (L, C), l’intensité 𝑖 est une fonction sinusoïdale du temps de pulsation 𝜔0, 

donc : 

𝑖 = 𝐼𝑚𝑎𝑥 cos(𝜔0𝑡 + 𝜑) 

On détermine la valeur de 𝜑 en écrivant la condition initiale : 

𝑖 = 𝐼𝑚𝑎𝑥   pour t = 0,  soit 𝐼𝑚𝑎𝑥 = 𝐼𝑚𝑎𝑥 cos𝜑 ;    cos𝜑 = 1 ⇒  𝜑 = 0 𝑒𝑡 𝑖 = 𝐼𝑚𝑎𝑥 cos(𝜔0𝑡) 

 

⇒ 𝑖 = 2 cos(5027𝑡)          (𝑖 𝑒𝑛 𝐴  𝑒𝑡 𝑡 𝑒𝑛 𝑠) 

c. La tension U aux bornes du condensateur est aussi la tension aux bornes de la bobine : 

𝑈 = 𝐿
𝑑𝑖

𝑑𝑡
 ;  
𝑑𝑖

𝑑𝑡
= −𝜔0𝐼𝑚𝑎𝑥 sin(𝜔0𝑡) d’où 𝑈 = −𝐿𝜔0𝐼𝑚𝑎𝑥 sin(𝜔0𝑡) 

𝐴𝑁:   𝑈 = −4. 10−2 × 5027 × 2 sin(5027) = −402 sin(5027𝑡) 

 𝑞 = 𝐶𝑈 = −𝐿𝜔0𝐼𝑚𝑎𝑥 sin(𝜔0𝑡) = −𝑞𝑚𝑎𝑥 sin(𝜔0𝑡) 

𝑞 = 𝑞𝑚𝑎𝑥 lorsque   sin(𝜔0𝑡) = 1,   ⇒ 𝜔0𝑡 =
3𝜋

2
= 2𝜋  

𝑞  atteint pour la première fois la valeur  −𝑞𝑚𝑎𝑥 à l’instant : 

𝑡1 =
3𝜋

2𝜔0
  ;     𝜔0 =

2𝜋

𝑇0
   ⇒   𝑡1 =

3𝑇0
4
   

𝐴𝑁:  𝑡1 =
3

4 × 800
= 9,375. 10−4𝑠 

𝑞 = −𝑞𝑚𝑎𝑥   lorsque sin(𝜔0𝑡) = 1; ⇒  𝜔0𝑡 =
𝜋

2
 

𝑞  atteint pour la première fois la valeur  −𝑞𝑚𝑎𝑥 à l’instant : 

𝑡2 =
𝜋

2𝜔0
=
𝑇0
4
;  ⇒   𝐴𝑁:    𝑡2 =

1

4 × 800
= 3,125. 10−4𝑠  

 Avec les conventions choisies : 𝑖 = −
𝑑𝑞

𝑑𝑡
 ; lorsque la charge 𝑞 est maximale ou minimale, le 

nombre dérivé 
𝑑𝑞

𝑑𝑡
 est nul et l’intensité 𝑖 est nulle également. 

L’énergie magnétique : 𝐸𝑀 =
1

2
𝐿𝑖2  est nulle, toute l’énergie du circuit est sous forme 

d’énergie électrostatique 𝐸𝐸 emmagasinée dans le condensateur. 

𝐸𝐸 =
1

2

𝑞𝑚𝑎𝑥
2

𝐶
=
1

2
𝐶𝑈𝑚𝑎𝑥

2 ⇒ 𝐴𝑁:    𝐸𝐸 =
1

2
× 10−6 × (402)2 ≅ 8. 10−2𝐽 

À t = 0 ; 𝑖 = 𝐼𝑚𝑎𝑥.  Or vous savez que dans un circuit (L, C), l’intensité est extremale 

lorsque la tension U s’annule et réciproquement : 

𝑖 = 𝐼𝑚𝑎𝑥  ;   𝐸𝑀 =
1

2
𝐿𝐼𝑚𝑎𝑥
2  ; 𝑈 = 0 ;   

1

2
𝐶𝑈2 = 0 

 Posons 𝑡 = 𝑡1  𝑜𝑢 𝑡2 : 𝑞 est extremale, donc 𝑖 = 0;   𝐸′𝑀 = 0. Toute l’énergie est sous 

forme d’énergie électrostatique : 

𝐸𝑀 + 𝐸𝐸 = 𝐸′𝑀 + 𝐸′𝐸   ⇔  
1

2
𝐿𝐼𝑚𝑎𝑥
2 + 0 = 0 + 𝐸′𝐸 ⇒ 𝐸′𝐸 =

1

2
𝐿𝐼𝑚𝑎𝑥
2  

𝐴𝑁:   𝐸′𝐸 =
1

2
× 4. 10−2 × 4 = 8. 10−2𝐽t 

d. Calculons les tensions U’ et U’’ : 

𝑈′ = −402 sin(5027 × 6,25. 10−4) = 0;  𝐸′𝐸 = 
1

2
𝐶𝑈′2 = 0   

𝑈′′ = −402 sin(5027 × 2. 10−4) ≅ −339𝑉 
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𝐸′′𝐸 =
1

2
𝐶𝑈′′2 =

10−6

2
𝑋(339)2 ≅ 5,8. 10−2𝐽 

𝐸′𝑀 + 𝐸′𝐸 = 𝐸′′𝑀 + 𝐸′′𝐸 = 8. 10
−2𝐽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

𝐸′𝑀 = 8. 10
−2 − 𝐸′𝐸 = 8. 10

−2𝐽 

𝐸′′𝑀 = 8. 10
−2 − 𝐸′

′
𝐸 = 8. 10

−2 − 5,8. 10−2 = 2,2. 10−2𝐽  

 

Exercice : Bac D 97 

Un condensateur de capacité C = 12,5NF est chargé grâce à une batterie de f.é.m. E = 12V et 

résistance négligeable (l’interrupteur K2 étant ouvert et l’interrupteur K1 fermé). 

1. Calculer la charge maximale prise par le condensateur et préciser l’armature qui s’est 

chargée positivement. 

2. Le condensateur peut ensuite se décharger dans une bobine d’inductance L=0,8H, supposée 

d’abord de résistance nulle, pour cela, on ouvre K1 et à la date t = 0, on ferme K2. 

a. Quelle est à la date t = 0, la valeur 𝑈0 de la tension 𝑈𝐴𝐵 et l’intensité 𝑖0 du courant dans 

le circuit LC ? 

b. À l’instant t, la tension aux bornes du condensateur vaut 𝑈𝐶 = 𝑈𝐴𝐵. Comment varie 𝑈𝐶 

en 𝑓(𝑡) ? Calculer la pulsation propre 𝜔0 et la fréquence propre du circuit LC, et donner 

l’expression de 𝑈𝐶 en 𝑓(𝑡, 𝜔0𝑈0, ). 

3. On visualise 𝑈𝐶 sur l’écran d’un oscillographe dont le balayage horizontal du spot 

correspond à  5.10-3s/cm et dont la sensibilité est 6v/cm. Représenter la courbe 𝑈𝐶 = 𝑓(𝑡) 

que l’on observera sur l’écran de largeur 8cm. 

4. La bobine a, en réalité, une résistance R. dessiner une des allures de courbes possibles que 

l’on pourra observer sur l’écran. Quel est le rôle de R ? 

 

 

 

 

 

 

 

 

 

Corrigé  

C = 12,5 NF ;   L = 0,8H ;  U = E = 12V 

 Charge maximale 

𝑞𝑚𝑎𝑥 = 𝐶𝑈     AN :     𝑞𝑚𝑎𝑥 = 12,5. 10
−6𝑋12       ⇒    𝑞𝑚𝑎𝑥 = 1,5. 10

−4 

L’armature A se charge positivement. 

 

 

 

 

 

 K2 fermé 

a. La valeur 𝑈0 = 𝑈𝐴𝐵       ⇒   𝑈𝐴𝐵 =
𝑞

𝐶
= 𝑈0 
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𝐴𝑁:        𝑈0 =
1,5.10−4

12,5.10−6
= 12𝑉   à 𝑡 = 0;  𝑖0 = 0 

 

 

 

 

 

 

 

 

 

Le condensateur à l’instant t se décharge dans la bobine. Si la charge varie, c’est que la tension 𝑈 

aussi varie au cours du temps. 

𝑈𝐶 + 𝑈𝐿 = 0 ;        𝑈𝐶 =
𝑞

𝐶
  𝑒𝑡 𝑈𝐿 = 𝐿

𝑑𝑖

𝑑𝑡
  𝑜𝑟  𝑖 =

𝑑𝑞

𝑑𝑡
= 𝑞̇ ⇒  𝑈𝐿 = 𝐿

𝑑𝑞̇

𝑑𝑡
= 𝐿𝑞̈ 

⇒
𝑞

𝐶
+ 𝐿𝑞̈ = 0 ⇒  𝑞̈ +

1

𝐿𝐶
𝑞 = 0  (1) 

𝑞 = {
𝑞̇ = 𝐶𝑈̇

𝑞̈ = 𝐶𝑈̈
    ⇒    𝑈̈ +

1

𝐿𝐶
𝑈 = 0   (2) 

(1) Est de la forme : 𝑞̈ + 𝜔0
2𝑞 = 0   (3) 

(3) = (2)  ⇔   𝜔0 =
1

√𝐿𝐶
 ⇒  𝐴𝑁:  𝜔0 =

1

√0,8𝑋12,5. 10−6
= 316,29 𝑟𝑎𝑑/𝑠  

𝑁0 =
1

𝑇
  𝑜𝑟 𝑇 =

2𝜋

𝜔0
=

2𝜋

316,29
= 2. 10−2𝑠 

⇒ 𝑁0 =
1

2. 10−2
= 50𝐻𝑧 

𝑈𝐶  𝑒𝑛 𝑓(𝑡, 𝜔0 𝑒𝑡 𝑈0) : 

𝑞(𝑡) = 𝑞𝑚𝑎𝑥 cos(𝜔0𝑡 + 𝜑) 

𝑞̇(𝑡) = −𝜔0𝑞𝑚𝑎𝑥 sin(𝜔0𝑡 + 𝜑) 

à 𝑡 = 0;    𝑞0 = 𝑞𝑚𝑎𝑥 cos 𝜑 > 0 ;  𝑞0 > 0   ;   𝑞𝑚𝑎𝑥 > 0 ⇒  cos𝜑 > 0 

à 𝑡 = 0; 𝑞0̇ = −𝜔0𝑞𝑚𝑎𝑥 sin𝜑 = 0 ⇒   𝜑 = {
0
𝜋
  

𝜑 = 0 est compatible avec la condition 

𝑜𝑟  𝑞0 = 𝑞𝑚 = 1,5. 10
−4𝑐 

𝑞(𝑡) = 1,5. 10−4 cos(316,29𝑡) 

𝑈(𝑡) =
𝑞

𝐶
=
1,5. 10−4

12,5. 10−6
cos(316,29𝑡) 

𝑈(𝑡) = 12 cos(316,29𝑡) 

Autre méthode 

𝑈̈ + 𝜔0
2 = 0  

{
𝑈 = 𝑈𝑚𝑎𝑥 cos(𝜔0𝑡 + 𝜑)

𝑈̇ = −𝜔0𝑈𝑚𝑎𝑥 sin(𝜔0𝑡 + 𝜑)
  

à 𝑡 = 0 ;   𝑈 = 𝑈0 = 𝑈𝑚𝑎𝑥 cos𝜑 > 0 ; 𝑈𝑚 > 0  ⇒  cos 𝜑 > 0 

𝑈̇ = −𝜔0𝑈𝑚𝑎𝑥 sin 𝜑 = 0 
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𝜔0 ≠ 0  ;    𝑈𝑚𝑎𝑥 ≠ 0  ⇒  sin𝜑 = 0 ⇒  𝜑 = {
𝜋
0
        𝑈0 = 𝑈𝑚𝑎𝑥 = 12𝑉 

D’où 

𝑈(𝑡) = 12 cos(316,29𝑡) 

 Sensibilité verticale 

S = 6V/cm 

1cm   →   6V 

Xcm   →  12V 

⇒ 𝑥 =
12

6
= 2𝑐𝑚 

 Balayage 5.10
-3

 s/cm 

1cm  →   5.10
-3

 s 

Y      →     2. 10−2𝑠 

𝑦 =
2. 10−2

5. 10−3
= 4𝑐𝑚 

1 période s’étale 4cm d’écran, avec 8cm d’écran, on aura 2périodes. 

5. Si R n’est pas nulle, il y a amortissement des amplitudes 
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CHAPITRE 8 : CIRCUITS (R, L, C) EN RÉGIME SINUSOÏDAL FORCÉ 

I- ÉTUDE THEORIQUE DU CIRCUIT (R, L, C) SERIE 

1- EQUATION DIFFERENTIELLE DU CIRCUIT 

Soit le circuit (R, L, C) ci-après, on a choisi un sens positif et la tension aux bornes du circuit est : 

𝑈𝐴𝐵 = 𝑈𝐴𝐷 + 𝑈𝐵𝐷 + 𝑈𝐵𝐸 

 

 

 

 

 

 

 

𝑈𝐴𝐵 = 𝑅𝑖 ;(loi d’ohm aux bornes de R) 

𝑈𝐵𝐷 = 𝐿
𝑑𝑖

𝑑𝑡
    𝑜𝑟  𝑖 =

𝑑𝑞

𝑑𝑡
⇒ 𝑈𝐵𝐷 = 𝐿𝑞̈ ; 

𝑈𝐵𝐸 =
𝑞

𝐶
 ;  

D’où l’équation différentielle 

𝑈 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+
𝑞

𝐶
= 𝑅𝑖 + 𝐿𝑞̈ +

𝑞

𝐶
 ⇔ 𝑈 = 𝑅𝑖 + 𝐿𝑞̈ + 𝑞̇𝑅  

 

 

 

 

 

 

-   𝑞𝐷 = 𝐶𝑈𝐷𝐸   𝑜𝑢 𝑞 = 𝐶𝑈𝐷𝐸 

-   𝑖 =
𝑑𝑞

𝑑𝑡
  lorsque le sens positif est dirigé vers l’armature qui porte la charge q. 

2- LES GRANDEURS EFFICACES 

a. L’intensité efficace d’un courant alternatif sinusoïdal 

Un condensateur ohmique de résistance R est parcouru par le courant alternatif sinusoïdal : 

𝑖 = 𝐼𝑚𝑎𝑥 cos(𝜔𝑡) 

L’intensité efficace se calcule par : 

𝐼2 =
1

𝑇
∫ 𝐼𝑚

2 cos2(𝜔𝑡)𝑑𝑡
𝑇

0

=
𝐼𝑚
2

𝑇
∫ cos2(𝜔𝑡)𝑑𝑡
𝑇

0

 

∫cos2(𝜔𝑡)𝑑𝑡 = ∫
1 + cos(2𝜔𝑡)

2
𝑑𝑡 

=
1

2
∫𝑑𝑡 +

1

2
∫cos(2𝜔𝑡) 𝑑𝑡 

∫cos(2𝜔𝑡) 𝑑𝑡 =
1

2𝜔
sin(2𝜔𝑡) + 𝑐𝑠𝑡𝑒 

∫cos2(𝜔𝑡)𝑑𝑡 =
1

2
𝑡 +

1

4𝜔
sin(2𝜔𝑡) + 𝑐𝑠𝑡𝑒 

∫ cos2(𝜔𝑡)𝑑𝑡
𝑇

0

=
1

2
[𝑡]0
𝑇 +

1

4𝜔
[sin(2𝜔𝑡)]0

𝑇 
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=
1

2
(𝑇 − 0) +

1

4𝜔
[sin(2𝜔𝑇) − sin 0] =

1

2
𝑇 + 0 

Car   sin(2𝜔𝑇) = sin 4𝜋 = 0 

D’où finalement : 

∫ cos2(𝜔𝑡)𝑑𝑡
𝑇

0

=
1

2
𝑇 

𝐼2 =
𝐼𝑚
2

𝑇
∫ cos2(𝜔𝑡)𝑑𝑡
𝑇

0

=
𝐼𝑚
2

𝑇
𝑋
𝑇

2
=
𝐼𝑚
2

2
 

𝐼 =
𝐼𝑚

√2
 

 

b. Tension efficace 

La loi d’ohm aux bornes du circuit (RLC) est de forme : 

𝑈 = 𝑅𝐼 

U étant la tension variable aux bornes du condensateur ohmique. 

Pour le courant alternatif sinusoïdal : 

𝑖 = 𝐼𝑚 cos(𝜔𝑡) 

Donc   

𝑈 = 𝑅𝐼𝑚 cos(𝜔𝑡) = 𝑅𝐼√2 cos(𝜔𝑡) 

On note que U et i sont en phase. 

Si l’on exprime U sous la forme habituelle 

𝑈 = 𝑈𝑚 cos(𝜔𝑡) 

 

𝑈𝑚 étant la valeur maximale de la tension alternative sinusoïdale U(t), on peut écrire : 

𝑈𝑚 = 𝑅𝐼𝑚 = 𝑅𝐼√2 

Lorsque le conducteur ohmique est parcouru par le courant continu d’intensité I, la tension à ses 

bornes vaut U tel que : 

𝑈 = 𝑅𝐼 

Et les grandeurs 𝑈𝑚  𝑒𝑡  𝑈 sont liés par : 

{𝑈𝑚 = 𝑅𝐼√2
𝑈 = 𝑅𝐼

=>  𝑈𝑚 = 𝑈√2   𝑜𝑢 𝑈 =
𝑈𝑚

√2
 

3- NOTION DE PHASE 

Considérons les deux grandeurs alternatives sinusoïdales :  

𝑖 = 𝐼𝑚 cos(𝜔𝑡)   et   𝑈 = 𝑈𝑚 cos(𝜔𝑡 + 𝜑). 

Définition : 𝜑 est la phase de la fonction U(t) par rapport à la fonction i(t). 𝜑 est en radian. 

On dit également que : 

 𝜑 mesure l’avance de phase de U(t) par rapport à i(t) ou le retard de phase de i(t) par rapport 

à U(t). l’angle 𝜑 est algébrique. 

 Si 𝜑 > 0 ; la fonction U(t) est en avance de 𝜑 radians sur la fonction i(t) ; bien entendu i(t) 

est en retard de 𝜑 radians par rapport à U(t). 

 Lorsque 𝜑 = 0 ; les deux grandeurs sont en phase. 

Exemple : 𝑖 = 𝐼𝑚 cos(𝜔𝑡)    𝑒𝑡 𝑈 = 𝑈𝑚 cos(𝜔𝑡) 

 Pour 𝜑 = ±𝜋𝑟𝑎𝑑 ; elles sont dites en opposition de phase 
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Exemple :  𝑖 = 𝐼𝑚 cos(𝜔𝑡)    𝑒𝑡 𝑈 = 𝑈𝑚 cos(𝜔𝑡 + 𝜋) = −𝑈𝑚 cos(𝜔𝑡) 

 Quand 𝜑 = ±
𝜋

2
 𝑟𝑎𝑑 ; elles sont en quadrature. 

Exemple1 : 𝑖 = 𝐼𝑚 cos(𝜔𝑡)    𝑒𝑡 𝑈 = 𝑈𝑚 cos (𝜔𝑡 +
𝜋

2
) = −𝑈𝑚 sin(𝜔𝑡) 

U est en quadrature avance par rapport à i 

Exemple 2 : 𝑖 = 𝐼𝑚 cos(𝜔𝑡)    𝑒𝑡 𝑈 = 𝑈𝑚 cos(𝜔𝑡 −
𝜋

2
) = 𝑈𝑚 sin(𝜔𝑡) 

U est en quadrature retard sur i. 

 

4- RESOLUTION DE L’EQUATION DIFFERENTIELLE PAR LA METHODE DE FRESNEL 

Rappel :  

𝑈 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+
1

𝐶
∫ 𝑖𝑑𝑡  (1) 

𝑖 = 𝐼𝑚 cos(𝜔𝑡)  

𝑈 = 𝑈𝑚 cos(𝜔𝑡 + 𝜑)  
𝑑𝑖

𝑑𝑡
= −𝐼𝑚𝜔 sin(𝜔𝑡) = 𝜔𝐼𝑚 cos (𝜔𝑡 +

𝜋

2
)  

∫ 𝑖𝑑𝑡 =?     𝑖 =
𝑑𝑞

𝑑𝑡
  𝑎𝑣𝑒𝑐 𝑞 = 𝐶𝑈 ⇒ 𝑈 =

𝑞

𝐶
 𝑜𝑟 𝑈 = 𝑈𝑚 cos(𝜔𝑡)  

1

𝐶
∫𝑈𝑚 cos(𝜔𝑡) 𝑑𝑡 =

1

𝐶𝜔
sin(𝜔𝑡) =

1

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
)  

(1) Devient 

𝑈𝑚 cos(𝜔𝑡 + 𝜑) = 𝑅𝐼𝑚 cos(𝜔𝑡) + 𝐿𝜔𝐼𝑚 cos (𝜔𝑡 +
𝜋

2
) +

𝐼𝑚

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
)  

Or 𝐼𝑚 = I√2     𝑒𝑡   𝑈𝑚 = 𝑈√2 

𝑈√2cos(𝜔𝑡 + 𝜑) = 𝑅𝐼√2 cos(𝜔𝑡) + 𝐿𝜔𝐼√2 cos (𝜔𝑡 +
𝜋

2
) +

𝐼√2

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
) 

Par simplification par √2 , on a : 

𝑈 cos(𝜔𝑡 + 𝜑) = 𝑅𝐼 cos(𝜔𝑡) + 𝐿𝜔𝐼 cos (𝜔𝑡 +
𝜋

2
) +

𝐼

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
) 

Chacun des membres de cette égalité représente une grandeur sinusoïdale ; les vecteurs de Fresnel 

correspondants sont donc égaux. Cherchons le vecteur de Fresnel associé au second membre. 

 𝑅𝐼 cos𝜔𝑡   ⇒ 𝑉1= {
𝑛𝑜𝑟𝑚𝑒: 𝑅𝐼
(𝑂𝑋, 𝑉1) = 0

 

 𝐿𝜔𝐼 cos (𝜔𝑡 +
𝜋

2
) ⇒ 𝑉2 = {

𝑛𝑜𝑟𝑚𝑒: 𝐿𝜔𝐼

(𝑂𝑋, 𝑉2 =
𝜋

2

 

 
𝐼

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
)  ⇒  𝑉3 = {

𝑛𝑜𝑟𝑚𝑒:
𝐼

𝐶𝜔

(𝑂𝑋, 𝑉3) = −
𝜋

2

 

 

 

 

 

 

 

Il apparait donc dans la figure un triangle rectangle d’hypoténuse U 

et de coté 𝑅𝐼 𝑒𝑡 (𝐿𝜔 −
1

𝐶𝜔
) 𝐼 ; d’après le théorème de Pythagore, 
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on a : 

𝑈2 = 𝑅2𝐼2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

𝐼2 

⇒ 𝑈2 = 𝐼2 (𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

) 

⇒ 
𝑈2

𝐼2
= 𝑅2 + (𝐿𝜔 −

1

𝐶𝜔
)
2

 

Posons  𝑧 =
𝑈

𝐼
= impédance, 

⇒   𝑧 = √𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

 

Z s’exprime en ohm (Ω) et l’avance de phase 𝜑 de U par rapport à i est tel que, dans le même 

triangle : 

tan𝜑 =
𝐿𝜔 −

1

𝐶𝜔

𝑅
 

 Si 𝜑 > 0 ; U est effectivement en avance sur i, c’est le cas quand 𝐿𝜔 >
1

𝐶𝜔
  𝑐𝑎𝑟 tan𝜑 > 0 

 Si 𝜑 < 0 ; U se trouve en retard de |𝜑| sur i ; cela se produit lorsque  

𝐿𝜔 <
1

𝐶𝜔
  𝑐𝑎𝑟 tan𝜑 < 0. 

5- METHODE A UTILISER DANS UN PROBLEME PORTANT SUR UN CIRCUIT (RLC) SERIE 

Assimiler les éléments suivants : 

a) On applique la formule 𝑈 = 𝑧𝐼 

Soit pour le circuit entier soit pour un dipôle appartenant à ce circuit. Aux bornes du condensateur, 

par exemple, la valeur efficace de la tension est 𝑈𝐶 tel que : 

𝑈𝐶 = 𝑧𝐶𝐼 

Avec 𝑧𝐶  : impédance du condensateur 

𝑧 = √𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

      𝑒𝑡     tan𝜑 =
𝐿𝜔 −

1

𝐶𝜔

𝑅
 

 

Si le dipôle considéré ne comporte pas de résistance, on fait disparaitre le terme en R (R=0) ; s’il est 

non inductif, on élimine le terme L (L=0) et s’il ne contient pas de condensateur, c’est le terme C 

que l’on enlève (ce qui correspond à 
1

𝐶𝜔
= 0). 

Exemple : 

 Circuit (RL) : 

𝑧 = √𝑅2 + 𝐿2𝜔2       ;     tan𝜑 =
𝐿𝜔

𝑅
   

 Circuit (RC) 

𝑧 = √𝑅2 +
1

𝐶2𝜔2
        ;  tan𝜑 =

1

𝑅𝐶𝜔
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 Inductance pur L 

𝑧 = 𝐿𝜔    ;   tan 𝜑 = +∞  (𝑐𝑎𝑟 𝑅 = 0 𝑒𝑡 𝜑 =
𝜋

2
)  

 Capacité pur C : 

𝑧 =
1

𝐶𝜔
;     tan 𝜑 = −∞ (𝑐𝑎𝑟 𝑅 = 0);  𝜑 = −

𝜋

2
 

b) Étude de quelques circuits 

-   Résistance pure : R 

 

 

 

 

 

Z = R ; U et i sont en phase. 

La tension aux bornes d’une résistance est en phase avec l’intensité. 

-   Inductance pur : L 

 

 

 

 

 

 

 

 

𝑧 = 𝐿𝜔 ; U est en avance de 
𝜋

2
 𝑠𝑢𝑟 𝑖 

La tension aux bornes d’une inductance pure est en quadrature sur l’intensité. 

-   Capacité pure : C 

 

 

 

 

 

 

 

 

 

 

𝑧 =
1

𝐶𝜔
 ; U est en retard de −

𝜋

2
 sur i 

 

 

 



 

58 
 

-   Circuit (RL) 

 

 

 

 

 

 

 

 

 

 

𝑧 = √𝑅2 + 𝐿2𝜔2 ;  U en avance sur i ;   tan𝜑 =
𝐿𝜔

𝑅
 

a- Circuit (RC) 

 

 

 

 

 

 

𝑧 = √𝑅2 +
1

𝐶2𝜔2
 ; U est en retard sur i ;   tan𝜑 =

1

𝑅𝐶𝜔
 

 

-   Circuit (LC) 

 

 

 

 

 

 

 

𝐿𝜔 >
1

𝐶𝜔
       ;       𝑧 = 𝐿𝜔 −

1

𝐶𝜔
   ;   U est en avance de 

𝜋

2
 sur i. 

 

Exercice d’application 

Un circuit est constitué d’une résistance de R = 200 Ω, d’une bobine inductive (inductance 

L=0,1H ; résistance négligeable et d’un condensateur de capacité C= 1 NF placés en série. Il est 

alimenté par un générateur B.F. qui délivre à ses bornes une tension alternative sinusoïdale U de 

fréquence 250Hz et de valeur efficace U=5V. 

a) Calculer l’intensité dans le circuit. 

b) Si l’on se donne la tension instantanée U sous la forme : 𝑈 = 𝑈𝑚 cos(𝜔𝑡)  ; quelle est la loi 

de la variation de l’intensité instantanée i en fonction de t ? 

c) Calculer les tensions : 

-   𝑈𝑅 : aux bornes de la résistance ; 

-   𝑈𝐵 : aux bornes de la bobine ; 
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-   𝑈𝐶  : aux bornes du condensateur 

Comparer la somme 𝑈𝑅 + 𝑈𝐵 + 𝑈𝐶 à la tension efficace appliquée U et conclure. 

d) Quelles sont les valeurs des impédances : 

-   Z : du circuit (RLC) série ; 

-   𝑧𝑅 : de la résistance ; 

-   𝑧𝐵 : de la bobine ; 

-   𝑧𝐶  : du condensateur 

Comparer la somme 𝑧𝑅 + 𝑧𝐵 + 𝑧𝐶 à z et conclure. 

 

Solution 

 

 

 

 

 

 

 

a) Pour calculer l’intensité efficace I, on applique la formule 𝑈 = 𝑧. 𝐼 à l’ensemble du circuit. 

𝑧 = √𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

 

-   𝑅 = 200𝛺 ; 𝑁 = 250𝐻𝑧 ;  𝜔 = 2𝜋𝑁 = 500𝜋𝑟𝑎𝑑/𝑠 

-   𝐿𝜔 = 0,1𝑋500𝜋 = 157,1𝛺 

-   
1

𝐶𝜔
=

1

10−6𝑋500𝜋
= 636,6𝛺 

-   𝐿𝜔 −
1

𝐶𝜔
≅ 157,1 − 636,6 ≅ −479,5𝛺 

D’où  

𝑧 = √2002 + (−479,5)2 ≅ 5,196. 102𝛺 

On a alors immédiatement l’intensité 

𝐼 =
𝑈

𝑧
       => 𝐴𝑁:    𝐼 =

5

5,196. 102
9,623. 10−3𝐴 => 𝐼 = 9,6𝑚𝐴 

b) La règle à retenir est : U est en avance par rapport à i de φ. Calculons φ. 

tan𝜑 =
𝐿𝜔 −

1

𝐶𝜔

𝑅
=
−479,2

200
= −2,40 

𝜑 = −67,36° 𝑜𝑢 − 1,176𝑟𝑎𝑑 

𝑈 = 𝑈𝑚 cos(𝜔𝑡) et U est en avance de 𝜑 par rapport à i ; il faut donc poser : 

𝑖 = 𝐼𝑚 cos(𝜔𝑡 − 𝜑) 

Et ici 𝜑 est négatif. 

𝐼𝑚 = 𝐼√2 = 9,623. 10
−3𝑋√2 ≅ 1,36. 10−2𝐴  ;    𝜑 = −1,176𝑟𝑎𝑑 ≅ −1,18𝑟𝑎𝑑 

D’où 

𝑖 = 1,36. 10−2 cos(500𝜋𝑡 + 1,18) 

c)  On applique la formule  𝑈 = 𝑧. 𝐼 successivement aux bornes des trois dipoles du circuit : 

-   Aux bornes de R : 𝑈𝑅 = 𝑧𝑅 . 𝐼  𝑎𝑣𝑒𝑐 𝑧 = 200𝛺 => 𝐴𝑁 : 𝑈𝑅 = 200𝑋9,623. 10
−3 
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𝑈𝑅 = 1,92𝑉 

-   Aux bornes de la bobine : 𝑈𝐵 = 𝑧𝐵. 𝐼   𝑎𝑣𝑒𝑐 𝑧𝐵 = 𝐿𝜔 = 157,1𝛺  

=> 𝐴𝑁:   𝑈𝑅 = 157,1𝑋9,623. 10
−3 ≅ 1,51𝑉 

-   Aux bornes du condensateur : 𝑧𝐶 =
1

𝐶𝜔
= 636,6𝛺 

=>   𝐴𝑁:  𝑈𝐶 = 636,6𝑋9,623. 10
−3 = 6,13𝑉 

-   𝑈𝑅 + 𝑈𝐵 + 𝑈𝐶 = 9,6𝑉 alors que U=5V 

On en déduit le résultat à connaitre : les tensions efficaces ne s’additionnent pas. 

d) Les impédances en série ne s’additionnent pas. 

Finalement les seules grandeurs qui s’additionnent en alternatif, sont les tensions 

instantanées U. 

 

II- CIRCUIT (RLC) SERIE A LA RESONANCE, PUISSANCE EN ALTERNATIF 

Étude théorique de la résonance : 

1- FREQUENCE DE RESONANCE 

Reprenons la valeur de l’impédance d’un circuit (RLC) série : 

𝑧 = √𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

 

On obtient z à partir d’une somme de deux termes, le premier est constant et le second dépend de 𝜔. 

Z est donc minimal et, puisque 𝐼 =
𝑈

𝑧
, l’intensité efficace I est maximale lorsque 𝜔 = 𝜔0 tel que : 

𝐿𝜔0 −
1

𝐶𝜔0
= 0     𝑜𝑢 𝐿𝜔0 =

1

𝐶𝜔0
=> 𝐿𝐶𝜔0

2 = 1 

 𝜔0 =
1

√𝐿𝐶
  est la pulsation propre du circuit 

 𝑁0 =
1

2𝜋√𝐿𝐶
  est la fréquence propre du circuit 

 𝑇0 = 2𝜋√𝐿𝐶  est la période propre du circuit 

 

2- IMPEDANCE DU CIRCUIT A LA RESONANCE 

À la résonance, 𝐿𝜔 −
1

𝐶𝜔
= 0    𝑑𝑜𝑛𝑐    𝑧 = 𝑅 

À la résonance, l’impédance du circuit est minimale et égale à sa résistance. On en déduit la valeur 

maximale 𝐼0 de l’intensité efficace I : 

𝐼 =
𝑈

𝑧
     𝑎𝑣𝑒𝑐 𝑧 = 𝑅 ⇒    𝐼0 =

𝑈

𝑅
 

Remarque : à la résonance, U et i sont en phase. ⇒ tan𝜑 = 0 ⇒ 𝜑 = 0. 

 

3- CONDITION DE FRESNEL 

Considérons ici que la bobine est assimilable à une inductance pure L (r=0), la résistance totale 

étant encore notée R. 

Les vecteurs de Fresnel associés à l’inductance et à la capacité, ont la même longueur, puisque : 

𝐿𝜔0 =
1

𝐶𝜔0
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Elle montre que : 

-   Z = R (résultat connu) 

-   U et i sont en phase (résultat connu) 

-   La tension instantanée 𝑈𝐿 aux bornes de l’inductance est en avance de 
𝜋

2
 sur i ; 

-   La tension instantanée 𝑈𝐶 aux bornes du condensateur en retard de 
𝜋

2
 sur i. 

On en déduit donc que 𝑈𝐿 et 𝑈𝐶 sont en opposition de phase et puisque : 

{

𝑈𝐿 = 𝑧𝐿𝐼 = 𝐿𝜔0𝐼

𝑈𝐶 = 𝑧𝐶𝐼 =
1

𝐶𝜔0
𝐼 = 𝐿𝜔0𝐼

⇒ 𝑈𝐿 = 𝑈𝐶 

Et les deux tensions instantanées 𝑈𝐿 et 𝑈𝐶 se compensent à chaque instant : 𝑈𝐿 + 𝑈𝐶 = 0 

Tout se passe comme si le circuit s’identifiait à la résistance R. 

4- DEFINITION DE LA BANDE PASSANTE D’UN CIRCUIT (RLC) 

La bande passante d’un circuit (RLC) désigne l’ensemble des fréquences pour lesquelles la réponse 

en intensité est à 71% de la réponse à la résonance. 

 

Courbe à la résonance : 

La courbe de la résonance traduit les variations de l’intensité efficace I dans le circuit en fonction de 

la fréquence N lorsque la valeur efficace U de la tension d’alimentation reste constante. 

 

 

 

 

 

 

 

 

 

Cherchons les valeurs de N pour lesquelles : 

𝐼 =
𝑈

𝑧
=
𝐼0

√2
=
𝑈

𝑅
.
1

√2
   soit   𝑧 = 𝑅√2    𝑜𝑢   𝑧2 = 2𝑅2 

𝑧2 = 𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

= 2𝑅2 

(𝐿𝜔 −
1

𝐶𝜔
)
2

= 𝑅2 

Et en prenant la racine : ⇒  𝐿𝜔 −
1

𝐶𝜔
= ±𝑅 
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Les valeurs 𝜔1 𝑒𝑡 𝜔2 sont les solutions positives des équations qui sont du second degré : 

𝐿𝜔1 −
1

𝐶𝜔2
= −𝑅 ;   𝐿𝜔2 −

1

𝐶𝜔2
= +𝑅 

⇒ {
𝐿𝐶𝜔1

2 + 𝑅𝐶𝜔1 − 1 = 0    (1)

𝐿𝐶𝜔2
2 + 𝑅𝐶𝜔2 − 1 = 0   (2)

 

Retranchons la première de la 2
ème 

: 

𝐿𝐶(𝜔2
2 − 𝜔1

2) = 𝑅𝐶(𝜔2 +𝜔1) 

⇒ 𝐿(𝜔2 − 𝜔1)(𝜔2 + 𝜔1) = 𝑅(𝜔2 + 𝜔1) 

∆𝜔 = 𝜔2 − 𝜔1 =
𝑅

𝐿
 

𝑒𝑡 𝑝𝑢𝑖𝑠𝑞𝑢𝑒 ∆𝜔 = 2𝜋∆𝑁   ⇒  ∆𝑁 =
𝑅

2𝜋𝐿
 

5- FACTEUR DE QUALITE D’UN CIRCUIT 

Le facteur de qualité est donné par 

𝑄 =
𝑁0
∆𝑁
=
𝜔0
∆𝜔

 

∆𝜔 =
𝑅

𝐿
  ;     𝑄 =

𝜔0
∆𝜔
=
𝐿𝜔0
𝑅

 

D’où la valeur à mémoriser est : 

𝑄 =
𝐿𝜔0
𝑅

 

Q dépend que des caractéristiques du circuit, on peut aussi lui donner les autres formes : 

𝐿𝜔0 =
1

𝐶𝜔0
 ⇒ 𝑄 =

1

𝑅𝐶𝜔0
  ou encore puisque 𝜔0 =

1

√𝐿𝐶
 

⇒ 𝑄 =
𝐿

𝑅
𝑋
1

√𝐿𝐶
=
1

𝑅
√
𝐿2

𝐿𝐶
=
1

𝑅
√
𝐿

𝐶
 

 

6- PUISSANCE EN REGIME ALTERNATIF SINUSOÏDAL 

a. Puissance instantanée 

Soit pour un circuit (RLC) série, la puissance P est donnée par : 

𝑃 = 𝑈𝑖 

b. Puissance moyenne 

𝑃 = 𝑈𝐼 cos𝜑 

P : en watt (W) 

U : en volt (V) 

I : en ampère (A) 

c. Valeur du facteur de puissance et application 
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La construction de Fresnel permet de calculer cos𝜑 pour le circuit (RLC) série 

cos𝜑 =
𝑅

𝑧
 

On en déduit une autre formule donnant la puissance moyenne : 

𝑃 = 𝑈𝑖 cos𝜑  ;   𝑈 = 𝑧𝐼 ;  cos 𝜑 =
𝑅

𝑧
 

⇒ 𝑧. 𝐼. 𝐼.
𝑅

𝑧
= 𝑅𝐼2    ⇒    𝑃 = 𝑅𝐼2 

Exercice. 

Un circuit (RLC) série a les caractéristiques suivantes : R = 10Ω ; L = 0,1H ; C = 0,4NF 

On branche à ses bornes un générateur basse fréquence qui établit une tension alternative 

sinusoïdale : 𝑈 = 10√2 cos(𝜔𝑡). 

a) Quelle doit être la valeur 𝜔0 de la pulsation 𝜔 pour que le circuit soit à la résonance ? 

b) Quelle est la puissance moyenne P qu’il consomme à la résonance ? 

c) Quelle est la puissance moyenne P’ qu’il consomme lorsque 𝜔 prend l’une des valeurs 

𝜔1 𝑜𝑢 𝜔2 qui limitent la bande passante. Conclure. 

 

Solution : 

a) À la résonance : 

𝐿𝐶𝜔0
2 = 1 ⇒ 𝜔0 =

1

√𝐿𝐶
=

1

√0,1𝑋0,4. 10−6
⇒ 𝜔0 = 5. 10

3𝑟𝑎𝑑/𝑠 

𝑁0 =
𝜔0
2𝜋
=
5. 103

2𝜋
= 796 ⇒   𝑁0 = 796𝐻𝑧 

b) À la résonance, l’impédance du circuit est égale à sa résistance d’où l’intensité 𝐼0 (qui est la 

valeur maximale) : 

𝐼0 =
𝑈

𝑅
  𝑎𝑣𝑒𝑐  𝑈 = 10𝑉 ⇒  𝐴𝑁 ∶ 𝐼0 =

10

10
= 1𝐴 

D’où la puissance moyenne est : 

𝑃 = 𝑅𝐼2 = 10𝑋12 = 10𝑊 

c) Pour les pulsations 𝜔1 et 𝜔2 qui limitent la bande passante : 

𝐼 =
𝐼0

√2
  où on en déduit la valeur de la puissance moyenne P’ 

𝑃′ = 𝑅𝐼2 = 𝑅
𝐼0
2

2
=
𝑃

2
= 5𝑊 

La puissance est la moitié de celle dissipée 
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CHAPITRE : OSCILLATIONS ELECTRIQUES FORCEES 

I- Étude théorique 

Position du problème 

Connaissant les caractéristiques du circuit (RLC) et celle de la tension U(t) imposée (pulsation 𝜔 et 

amplitude 𝑈𝑚), nous allons calculer les paramètres qui caractérisent l’intensité i(t) du courant 

sinusoïdal. 

La tension et l’intensité sont des fonctions sinusoïdales (étude expérimentale) qui ont la même 

pulsation 𝜔 et présentent généralement une différence de phase. 

Soit 𝜑 la phase de la tension par rapport à l’intensité. 

Ainsi 𝑖 = 𝐼𝑚 cos(𝜔𝑡)     𝑒𝑡     𝑈 = 𝑈𝑚 cos(𝜔𝑡 + 𝜑) 

La tension instantanée 𝑈(𝑡) = 𝑈𝐴𝐸(voir fig.) se répartit à chaque instant aux bornes des différents 

dipôles du circuit (RLC) 

 

 

 

 

 

 

 

 

 

𝑈𝐴𝐸 = 𝑈𝐴𝐵 + 𝑈𝐵𝐷 + 𝑈𝐷𝐸 

Explicitons les termes de cette somme : 

-   Aux bornes du conducteur ohmique (DE) 

𝑈𝐷𝐸 = 𝑈𝑅 = 𝑟
′𝑖 = 𝑟′𝐼𝑚 cos(𝜔𝑡)  ; 

-   Aux bornes de la bobine (BD) 

𝑈𝐵𝐷 = 𝑈𝐿 = 𝑟𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
= 𝑟𝐼𝑚 cos(𝜔𝑡) + 𝐿𝜔𝐼𝑚 cos (𝜔𝑡 +

𝜋

2
) 

-   Aux bornes du condensateur (AB) : 

𝑈𝐴𝐵 = 𝑈𝐶 =
𝑞𝐴
𝐶
=
𝑞

𝐶
 

Or 𝑖 =
𝑑𝑞

𝑑𝑡
 , q est la primitive de i qui s’annule pour t = 0 (en supposant le condensateur 

déchargé à l’origine des dates), soit : 

𝑞 = ∫ 𝑖𝑑𝑡
𝑡

0

= ∫𝐼𝑚 cos (𝜔𝑡 +
𝜋

2
) 𝑑𝑡 

𝑞 = ∫ 𝑖𝑑𝑡
𝑡

0
=
𝐼𝑚

𝜔
cos (𝜔𝑡 −

𝜋

2
)   et    𝑈𝐴𝐵 =

𝐼𝑚

𝜔
cos (𝜔𝑡 −

𝜋

2
) 

La tension aux bornes de l’association ou série vaut donc : 

𝑈 = (𝑟 + 𝑟′)𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+
1

𝐶
∫ 𝑖𝑑𝑡
𝑡

0

  ;   𝑎𝑣𝑒𝑐 𝑅 = 𝑟 + 𝑟′ 

𝑈 = 𝑅𝐼𝑚 cos(𝜔𝑡) + 𝐿𝜔𝐼𝑚 cos (𝜔𝑡 +
𝜋

2
) +

𝐼𝑚
𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
) 
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Nous devons ainsi faire la somme des trois fonctions sinusoïdales de même pulsation. 

 

Construction de Fresnel 

Plaçons-nous à la date t = 0 et faisons correspondre un vecteur à chaque terme de la somme, on 

obtient la figure ci-contre : 

 

 

 

 

 

 

 

 

 MN représente la tension 𝑈𝑅 :   𝑈𝑅 = 𝑅𝐼𝑚 cos(𝜔𝑡) 

 NP représente la tension 𝑈𝐿 :   𝑈𝐿 = 𝐿𝜔𝐼𝑚 cos (𝜔𝑡 +
𝜋

2
) 

 PQ représente la tension 𝑈𝐶  :   𝑈𝐶 =
𝐼𝑚

𝐶𝜔
cos (𝜔𝑡 −

𝜋

2
) 

 MQ représente la tension U :   𝑈 = 𝑈𝑚 cos(𝜔𝑡 + 𝜑) 

Ces quatre vecteurs sont tels que : 𝑀𝑄 = 𝑀𝑁 +𝑁𝑃 + 𝑃𝑄 

𝑀𝑄 = √𝑀𝑁2 + (𝑁𝑃 − 𝑃𝑄)2 

Soit 𝑈𝑚 = 𝐼𝑚√𝑅2 + (𝐿𝜔 −
1

𝐶𝜔
)
2

       on obtient tan𝜑 =
𝑁𝑄

𝑀𝑁
   et  cos 𝜑 =

𝑀𝑁

𝑀𝑄
 

 

Soit    

{
 

 tan𝜑 =
𝐿𝜔−

1

𝐶𝜔

𝑅

cos𝜑 =
𝑅

√𝑅2+(𝐿𝜔−
1

𝐶𝜔
)
2

 

 

Remarque : l’angle 𝜑 représente la phase de U par rapport à i. on dit que U est en avance de 𝜑 sur i. 

il revient au même de dire que i est en retard de 𝜑 sur U, et l’on pourra écrire, en déplaçant l’origine 

des dates : 𝑖 = 𝐼𝑚 cos(𝜔𝑡 − 𝜑)  et  𝑈 = 𝑈𝑚 cos𝜔𝑡. 
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