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I. MECANIQUE

Chapitre I: LA CINEMATIQUE
Définition : la Cinématique étudie les mouvements indépendamment des causes qui les
engendrent ou les modifient.

1. Notion de référentiel
La description d’un mouvement d’un point est relative au référentiel d’espace choisi. Dans
I’é¢tude d’un mouvement, il importe de toujours préciser le référentiel choisi.

2. Repérage d’un point
2.1. La trajectoire

La trajectoire d’un point est I’ensemble des positions successives qu’il occupe au cours de son
déplacement par rapport a un repere d’espace donné.

2.1.1. Trajectoires rectilignes

Plus généralement, si un point décrit est une droite, sa trajectoire est dite rectiligne.
2.1.2. Trajectoires Curvilignes

Plus généralement, quand la trajectoire d un point n’est pas rectiligne, elle est dite curviligne.
2.2.Vecteur-Position

La position d’un point M au cours de son mouvement peut étre définie soit par :

e Ses coordonnées, cartésiennes x,y, z dans un repere orthonormé li¢ au référentiel.

e Son abscisse curviligne S = OM
e Son abscisse angulaire 8
2.3.Notion de repére d’espace et de repere temps

Pour décrire les caractéristiques d’un mouvement, il faut utiliser un repére d’espace et un
repere temps :

e un repere d’espace est déterminé par un point O 1ié au référentiel d’observation et une
base.

e un repere temps permet de mesurer.

2.3.1. Repérage sur une droite

M(x)

~l



Le vecteur-position OM = xT

2.3.2. Repérage sur une droite

y
Ry

~l

Le vecteur-position OM = xT + yj

2.3.3. Repérage dans I’espace

wn
—-
<

Y

Le vecteur —position est repérée par ses coordonnées x, y, z telles que OM = xT + yj + zk .
Les coordonnées cartésiennes x = f(t), y = g(t) et z = h(t) sont les équations horaires ou

paramétriques de la trajectoire.



Dans le plan, I’équation cartésienne y = f(x) s’obtient en éliminant la variable t dans les
expressions algébriques des deux lois horaires x(t) et y(t) .

Exemple : les coordonnées cartésiennes d’un point mobile sont :x = 4t — 4 ety = 2t% — 2
dans le repére(o,7,7).

Déterminons la trajectoire de ce point mobile.

_ x+4 _ o xtd o _ o (X*+8x+16)
t="2 5 y=2() -2 5 y=2 ()

16

_ x%*+8x+16 16 _ xX?+8x+16-16 _ x%48x
SY=T% "% TYT 8 Y=

2

X
y = ? +x
3. Vecteur-vitesse

R
Définition : dans un référentiel d’espace muni du repére orthonormé(o, 1,7, k), un mobile

ponctuel est considéré a deux instants différents de date t; et t, ou il occupe les positions
M, et M,

M, (ty
M, M,
I:';‘ 0—M1”7 - M;(t2)
L =j >

MM,

Le quotient est le vecteur-vitesse moyen du point mobile pendant la durée t, — t;.

2—t1

g _ M1M2 _ 0M2—0M1

mt—t ty—ty

. C’est une grandeur vectorielle.
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Par définition, le vecteur-vitesse V du point en M a la date t (dit vecteur-vitesse instantanée)
.. . = i MM

est la limite de ce quotient lorsque t, tend vers t, :V = tzll_r)',lrl ﬁ
274

. = e, .. —— = dOM
Le vecteur —vitesse V' est la dérivée par rapport au temps du vecteur-position OM ; V = -

<

Les caractéristiques du vecteur-vitesse a I’instant t sont :

e Origine : la position du mobile a I’instant ¢,

e Direction : la tangente en M a la trajectoire

e Sens : le sens du mouvement

e mobile ou intensité : la vitesse instantanée du mobile a la date t.

3.1.Expression de V dans I’espace

-

Dans la base (0,7,7, k),le vecteur —position OM a pour expression : OM = x7 + yj + zk.

dOM dy >  dz7

7 d - - > dx >

V——dt —E(xl+y]+zk)—al+zj+dtk
_dx _ _y_ . _ 4z,

Ennotanth—dt—x, Vy—dt_yetVZ_dtz,

I—/) -
11 Vient{ -

B = (T Ay 7 = (F R
La norme de vitesse s’exprime en métre par seconde de symbole m/s.

3.2. Expression de V dans la base curviligne

~|
<N

(+)




Le vecteur -vitesse du point M dans la base (T, N ) est donnée par 1’expression

Dans la base (?, N ), le vecteur vitesse V est déterminé par les composantes :

ds
VT=V5=—=SetVN=O
dt
Cas particulier d’une trajectoire circulaire ou

V =RW
W est la vitesse angulaire en rad/s .
4. Le vecteur —accélération a

Le vecteur-accélération d’un point mobile M est égal a la dérivée par rapport au temps de son
vecteur vitesse en M.

5 dv =  doM - d?oM
a=—.deplusV =—donc a=
dt p dt dt?
. _ d*oM
T de2

Le vecteur-accélération d’un point mobile M est égal a la dérivée seconde par rapport au

temps de son vecteur position OM.

4.1. Vecteur-accélération en coordonnées cartésiennes

Dans le repére (0,7,)), onaV = V, T+ V,J. Le vecteur-accélération d s’écrit donc :

- dV d - - - -
a=—=— Vet + 1, ).l et J sont des vecteurs constants.
- de—) dVy - dzx—) dzy
=27+~ +—=J =%+
dt dt dt? acz) LT
- — ! .. _— 1 _—
i (ax =V = %0, =V =)
A
...................................... M
a -
vy
N
a
>—< —>
U a,l 5




En coordonnées cart ¢ nes, les coordonnées du vecteur-accélération, sont égales :

e aux dérivées par rapport au temps des coordonnées du vecteur-vitesse ;

e aux dérivées secondes par rapport au temps des coordonnées du vitesse position du
mobile

a azx\? | [(d?y\?
lall = yaz + a5 = \/(?) +(532)

4.2. Vecteur-accélération dans la base de Frenet

~

v

Dans la base de Frenet (?, N ) et par rapport au repére d’espace (0,7,7),ona:
C_l) = aTT + aNﬁ

an=
3 T

IN=F

av 1 e . v? S |
On admet que ar = o (accélération tangentielle) et ay = = (accélération normale) ou R est

. . p? 1 . .
le rayon de courbure de la trajectoire > 0, ’accélération normale est toujours positive donc

le vecteur-accélération est toujours dirigé vers I’intérieur de la concavité de la trajectoire.

5. Etude cinématique de quelques mouvements
5.1.Mouvement rectiligne uniforme

(D)

~
<
Y <l



La position du mobile M est définie par son abscisse x. Le vecteur-position OM, le vecteur-

vitesse V et le vecteur-accélération s’écrivent : OM = xt, V =V, letd = a,l

¢ Un mobile est animé d’un mouvement rectiligne uniforme :
% Si la trajectoire est une droite

% et si la vitesse reste constante et 1’accélération est nulle

e Equation cinématique d’un mouvement rectiligne uniforme.

V = Constante ou V =V, T

av
a=E=0d’ouax=0

L’équation horaire est : x = Vt + x

Dans un mouvement rectiligne uniforme, 1’abscisse est une fonction affine du temps.
5.2. Mouvement rectiligne Uniformément varié

Un mobile est animé d’un mouvement uniformément varié :

e Si la trajectoire est une droite
e et si le vecteur-accélération d est constant (porté par la droite)
e L’expression de la vitesse est : V = at + v, (1)

. . 1
e [’expression de I’abscisse x est : x = Eatz + vot + xg 2)
Cas particulier, si Vo = 0 et xo = 0 les équations précédentes se simplifient :
1 .2
V=atet x = Sat
Relation indépendante du temps entre et x .

En éliminant t entre (1)et (2), on obtient :

V2 —V¢ = 2a(x — xp)

R

» Mouvements accélérés ou retardeés
e Un mouvement est accéléré si le produit d. v est positif, soit a,. v, > 0 selon (0,7) .
a, et v, ont donc méme signe.

C’est I’exemple de la bille en chute libre.

e Un mouvement est retardé si le produit d. ¥ est négatif, soit a,.. v, < 0 selon (o, 7).
a, et v, ont donc de signes contraires.

C’est le cas d’une bille lancée verticalement vers le ciel.



5.3.Mouvement circulaire uniforme

Repérage par les coordonnées cartésiennes de M

()

Qu

—»{x = Rcos6
y = Rsin6

e Vitesse angulaire

L’abscisse curviligne S = RO avec R = constant ,on a:

V=5_2R0)=R%Y = RW,avecw =L = ¢
ar  dt dr dr

La vitesse angulaire en rad/s est la dérivée par rapport au temps, de I’abscisse angulaire

(en rad). L’équation horaire s’écrit: 6 = Wt +6,. At=0,0, =0d'ouf =Wt

. L . . 7 dx a
En coordonnées cartésiennes, le vecteur-vitesse a pour expression : V (Vx = v, = d—Jt’)
dx

x = Rcoswt = V, = i —RWSinwt

x = RSinwt = I/S, = % = RWCoswt

V=VT+ V,J = RWsinwtT + RWcoswtj

V|| = J/ViZ + V2 = VRZWZSin?wt + RZWZ2Cos?wt = RW
V =RW
o Accélération du mobile
Les coordonnées du vecteur-accélération en coordonnées cartésiennes sont :

L _av _avy
a(ax T AT



av, av. )
a, = —==—RW?coswt et a, = —=— RW?sinwt
X dt y dt

d = a,l+a,]=—RW?coswtl — RW?sinwt]

d = —W?(Rcoswtl + Rsinwt])

d=-W20M

Les vecteurs d et OM ont méme direction et sont de sens contraires.

Dans un mouvement circulaire uniforme, le vecteur-accélération est porté par le rayon et
dirigé vers le centre. On dit qu’il est centripéte. Sa norme est a = RW?

La période T d’un mouvement circulaire uniforme est la durée pendant laquelle le mobile
effectue un tour.

Pouruntour, =2mett=T 0 =wt =>2TL'=WT=>T=2§

La fréquence N du mouvement circulaire uniforme est le nombre de tours effectués par
seconde.

N esten Hz et T en secondes
5.4. Mouvement rectiligne sinusoidale

Définition : un point est animé d’un mouvement rectiligne sinusoidal si sa trajectoire est
rectiligne et si la loi horaire est une fonction sinusoidale du temps.

X = xpcos(wt + @)
Xm ,W et ¢ sont des constantes

Le mobile se déplace entre deux positions externes M, et M, d'abscisse x,, et —x,, dans le
repére (0,17)

<N
Q
Qu

My (=) My (x)

A

A
Yy

Les caractéristiques du mouvement rectiligne sinusoidal sont :



OM = xTavec x = x,, cos(wt + @)

= ax - . .

V =—TtlavecV, = x — xpwsin(wt + ¢)

N N dVy - v 2
d=ayl=—_"lavec ay =X = —XpW cos(wt + @)
a, = ¥ — w?xy,cos(wt + @) = —w?x

¥=w?x ou ¥+w?x=0

Exemple : x—3cos(6) Xm =3; <p—Oetw—§

X(t)

X(6)

Xit)

x(t)——nsm( )
xt)——cos( )

Jx(t)—Scos( )t
I
\
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CHAPITRE 2 LES CHAMPS ET INTERACTIONS UNIVERSELLES
I Interaction gravitationnelle
1) Loi de gravitation

LG J—
- my 5 B
Ugp R Fa/p

Deux corps ponctuels A et B de masses m, et mp exercent I’un sur 1’autre des forces
d’attraction directement opposées, dirigées suivant la droite (AB), de valeurs proportionnelles
aux masses et inversement proportionnelles au carrée de leur distance :

> = myamp — AB ..
Fap = —Fgja=—G ‘:2 Bl,p avec T = AB et Uy = — vecteur unitaire

- Lavaleur de la force s’exprime en Newton (N), la distance r en métre et les masses en
kg.

- La constante G est appelée constante de gravitation universelle, une valeur approchée
est: G = 6,67.10711m3 kg=1.s72

2) Champ de gravitation
2.1 Champ de gravitation pour un objet ponctuel

Un objet ponctuel de masse M en O et un point P, un objet ponctuel de masse m. La force
gravitationnelle exercée par la masse M sur la masse m s’écrit :
s Mm — . = - - M GM
F=-G r—;”uop soit: F = mg(P) avec g(P) = -G — Uop et gP) ==

r

Le vecteur g(P) est appelé vecteur champ de gravitation créé par la masse M en tout point P
de I’espace. Il caractérise la propriété de I’espace due a la présence de 1’objet ponctuel de
masse M situé en O ; il ne dépend pas de la masse placée en P. La valeur du champ de
gravitation s’exprime en N.kg~! ou en m/s?

11



2.2 Force exercée sur un objet placé dans un champ de gravitation

Un objet ponctuel de masse m, placée en P dans le champ de gravitation g(P), est soumis a
une force : F = mg(P)

Exemple : Pour évaluer la constante de gravitation G, Cavendish, en 1798, mesure la force qui
s’exerce entre deux spheres : I’'une de platine, de masse 50g, I’autre de plomb, de masse 30kg.

La distance entre les centres des sphéres est r=15cm.

Calculons la valeur de la force d’interaction

mqm;
r2

F=aG

6,67.10"11x50.1073x30

AN : F = 0.15)?

F =4,45.107°N
3) Champ de gravitation et champ de pesanteur

La terre peut étre considérée comme un corps a répartition de masse symétrie sphérique, de
centre O, de rayon Ry et de masse My

Elle est donc en tout point P, située a une distance Op = r = Ry, un champ de gravitation :
- M
) (P)=-G r_zuop

En tout point de la surface de la terre (r = Ry), ce champ de gravitation a la méme valeur
notée g,

GMp .
go = =3 soit go = 9,8m/s
T

Champ de Pesanteur

Supposons que la Terre est une sphere de centre O, de rayon Ry et de masse M.

En un point M situé a une distance (r = R + h) ou h est I’altitude du point M, la Terre créé
Mr
e+

un champ de gravitation g, = —G

Nous pouvons déduire ’intensité du champ de gravitation en M.

—c Mr_ _ GMr
Gn (Rr+h)2 ~ 12

Au point M,, d’altitude nulle (h=0), I’intensité de champ de pesanteur a pour expression :
GM
Jo = R%T

12



La relation entre gy, et g,

, . Mr GMy
Nous pouvons établir =G —F—et =
p gh (Rt +h)2 gO R%
GMT
gn _ Rp+h)2 _ GMr R} _ R%
go T (Rr+h)2 T GMp  (Rr+h)?
Ry
gn _ _RE

go  (Rr+h)?

2

Nous en déduisons que g, = go X est I’intensité du champ de pesanteur terrestre a

(RT +h)2
I’altitude h = 0 (au niveau de la mer).

IL. Les forces électriques et le champ électrique
1) Laloi de Coulomb

qs >0

Les charges q4 et qp sont de méme signe : elles se repoussent.

Dans le vide, deux particules A et B, séparées d’une distance r = AB et portant
respectivement des charges électriques g4 et gp, sont soumises a deux forces opposées : la

force F, 1_p €xercée par la particule A sur la particule B est donnée par la relation :

, N AB
FA—>B = kquB UyB ouk = 4TE =9, 109m/F, Upp = T
0

Avec &, la permittivité du vide et Uy, le vecteur unitaire de la droite (AB) dirigé de A vers
B.

Exemple : Dans une molécule d’hydrogene, les protons constituant les noyaux de deux
atomes sont distancés de 74,1pm.

a) Calculer la valeur de la force d’interaction ¢électrique entre les deux protons sachant
queq =e=1,6.10"1

b) La comparer a la force de gravitation s’exercant entre les deux protons.
mp = 1,67.107%"kg et G = 6,67.10711S.1

Solution

13



a) Calculons la valeur de la force d’interaction électrique en appliquant la loi de
Coulomb.

2
Fo=——U2 5F =9.10°(%)

4y T2

AN:F, = 9.10° (L2020

(74,1.10712)2

F, =4,2.1078N

b) La force de gravitation

19)2

_ m_p2 ) _ 9 (1,6.107
F"Q =G PP AN : Fé =9.10 —(74’1_10_12)2

F, = 3,39. 107**N

£ = 1,24.10° > F, = 1,24.10°°F,
g

La force F, est environ 103 fois plus grande que la force F,

2) Champ électrique

is0 F F
Uy
P
q>0 B P
ﬁop q’>’0
F
q<0

On considére un point O du vide, un corps ponctuel portant la charge q et, en un point P, un
corps ponctuel portant la charge q’.

La force ¢€lectrique exercée par la charge q sur la charge q’ est donnée par la relation
F(P) = k35 id,,

L’expression de la force électrique peut aussi s’écrire sous la forme
F(P) = q'E(P) avec E(P) = k z—;ﬁop

Ou E (P) est un vecteur champ électrique créé par la charge q au point P de I’espace.

La valeur du champ électrique E s’exprime en volt par métre de symbole V/m ou V.m™!

* Champ uniforme

14



Si le champ est uniforme, les lignes du champ sont des droites parall¢les.
*  Dans le cas d’un condensateur plan a air, le champ électrique a pour valeur :

U . 2
E = - = gq—s avec d, la distance entre les armatures en m et S la surface d’une armature en m”.
0

Avec d : distance entre les armatures en m et S, la surface d’une armature m>.

Les lignes du champ E sont paralléles entre elles, perpendiculaires aux armatures et orientées
de la plaque positive vers la plaque négative ou du potentiel le plus élevé vers le potentiel le
moins élevé.

Exemple 1 : Les armatures d’un condensateur plan ont une surface S=1dm? et sont séparées
par une couche d’air d’épaisseur d=5mm. Une tension U=4kv est appliquée entre les
armatures.

a) Calculer la valeur du champ électrique entre les armatures
b) Calculer la valeur de la charge q du condensateur

Solution :

4.103
5.103

a) E=2AN:E =
E =8.10°V/m
_ 4 _
b) E—SOS:>q—E><SO><S

Sachant que k = — = 9.10° 5.1 = & = 8,84.1072 5.1

e
=q=8.10°%x8,84.1072x 1072 = 7,1.107 8¢

q =71nc

Exemple 2 : La boule d’un pendule électrique, de masse m=2,5g porte une charge g = 0,5uc
Elle est placée dans un champ électrique uniforme et horizontal.

1) Quel doit étre la valeur du champ ¢électrique E horizontal pour que le fil s’incline d’un
angle de 30° par rapport a la verticale ?

2) De quel angle le fil s’inclinera-t-il par rapport a la verticale, si le champ a pour valeur
10v/m ? Prendre g=10ms’

15



Solution :

5

T
a

v

oL
=Y
R

1) Lavaleurde E

- Systeme : la boule de masse m
- Référentiel

- Bilan des forces : P , 7, I:";

Condition d’équilibre : P+T+ ﬁ; =0
Surx'x,ona:Px+Tx+ F,x =0

= qE — Tsina =0

= Tsina = qE
Sury'y,ona:Py+Ty+FEy=0

= —P +Tcosa =0

= Tcosa = P

E E
tana = = = tana = a
P mg

mgtana
q
2,5.1073x10xtan30°
AN : F =

0,5.10~¢
E =29.10*V/m

2) Calcul de I’angle a’ pour E = 2,9.10*V /m

E' _ E'
tana' =L = q' = tan™? (q—)
mg mg

_1(0,5.107%x10%
AN:a' = tan™ ! (—)

2,5.1073x10

16



a' =11,3°

III. Le champ magnétique
3.1) Forces magnétiques

On appelle force magnétique, la force d’interaction entre deux aimants ou un aimant et un
objet ferromagnétique.

N | S S| N S| N S|N
<—— Repulsion —» —> Attraction <—
S| N N | S

<+—— Repulsion —»

Plus généralement, les interactions ¢électromagnétiques se manifestent entre les fils ou des
bobines parcourues par des courants et entre les diamants.

Des pdles des aimants de méme nom se repoussent et des poles de noms différents s’attirent.

Des bobines ou des fils parcourus par un courant de sens contraire se repoussent et ils
s’attirent s’ils sont de méme sens.

Une bobine parcourue par un courant se comporte comme un aimant droit.
3.2) Champ magnétique

On appelle champ magnétique, une région de I’espace dans laquelle une aiguille aimantée ou
un objet ferromagnétique est soumis a des forces magnétiques.

3.2.1) Vecteur champ magnétique

. =g 7 \ J
Le vecteur champ magnétique B est une grandeur associée a une région de I’espace. Les
caractéristiques du vecteur champ magnétique sont les suivantes :

- Direction et sens : on utilise une aiguille aimantée pour les déterminer. Ainsi, la

direction du champ magnétique B est celle de I’axe Sud-Nord de ’aiguille aimantée.
Le sens est du Sud vers le Nord.

- L’intensité du vecteur champ magnétique B est mesurable avec un tesla métre et
s’exprime en tesla de symbole T.
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Sens .

direction
S| N
N
Quiguille aimantée
~direction

3.2.2) Spectre magnétique

On appelle ligne de champ une courbe qui en chacun des points est tangente au vecteur champ
magnétique.

Lorsque les lignes de champ sont des droites parall¢les comme celles du champ magnétique
entre les branches d’un aimant en U, ce champ magnétique est dit uniforme.

3.2.3) Orientation du champ B

* Observateur d’ Ampere : ’observateur d’ Ampere regardant le point M est

couché sur le conducteur de telle sorte que le courant le traverse des pieds vers la téte. Son

bras gauche tendu de c6té, indique le sens du champ magnétique B

N 1

)
N\

D
>
\_

~

- D’autres régles telles que la régle du tire-bouchon de Maxwell et celle de la main
droite peuvent étre aussi utilisées pour déterminer le sens du champ.
*  Champ créé par un conducteur rectiligne parcouru par un courant en un point M tel

que OM =d, B = 2.10—7é
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U
-
=71

*  Champ créé par une bobine plate ou conducteur circulaire de N spires et de rayon
R B=2m.107 21
Exemple : N=50 Spires ; [=20A et R=0,1m
0

AN:B=27T.10‘7><%><20

B =6,28.1073T
*  Cas d’un solénoide g = 4m. 1077

B =y, %I = UoIn avec n, le nombre de spires par unité de longueur

Exemple : On veut produire au centre d’un solénoide de longueur 1=60cm, un champ
magnétique de 2. 1072T. L’intensité du courant est de 8A.

Calculons le nombre de spires nécessaires.

N Bl
B = ‘u071 => N :m
-2
AN: N = _21072x06

" 4x3,14.1077x8
N = 1200 spires
4. Action d’un champ magnétique sur un conducteur : Force de Laplace

Une portion rectiligne de conducteur de longueur 1, parcourue par un courant d’intensité I et
plongée dans un champ magnétique uniforme B subit une force ¢lectromagnétique appelée

force de Laplace qui a pour expression vectorielle : F =1IAB
Les caractéristiques de cette force F sont :
- Direction : perpendiculaire au plan défini par (7, §)

- Sens : donné par la regle d’observateur d’Ampere, celui-ci couché sur la portion de
conducteur, traversé par le courant des pieds vers la téte et regardant fuir devant lui,

les lignes de champ, tend son bras gauche dans le sens de la force F.
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- Module F = II1Bsin(l, B)
- Point d’application : le milieu de la portion rectiligne du conducteur plongé dans le
champ B

Remarque : on peut aussi trouver le sens de la force de Laplace en utilisant entre autres la
régle des trois doigts de la main droite.

Etant donné que F , [ et B forment un triédre direct, leurs sens permettent d’étre déterminés
par la régle des trois doigts de la main droite avec successivement :

- Le pouce tend, indique le sens du courant (ou / Z).

- L’index tendu perpendiculairement a [ [ indique le sens du champ B

- Le majeur tendu perpendiculairement a | [etB indique le sens de la force F
- L’intensité : F = IlBSin(T, §)

5. Action d’un conducteur sur une particule chargée : Force de Lorentz

. \ . g r : \ \
Une particule de charge q en mouvement a la vitesse I/ dans une région ou régne un

champ magnétique B est soumise & une force magnétique F par la relation vectorielle

-

F = qVAﬁ

Nous pouvons établir une expression de la force de Lorentz en partant de la force de
Laplace

=Vt etl=%

F =IIAB devient F = 2VtAB

~+ |

20



Chapitre 3 : LA RELATION FONDAMENTALE DE LA DYNAMIQUE

1. Notions sur la dynamique des points matériels
1.1.Le point matériel

Un point matériel est un point de I’espace auquel on lui affecte une masse m. Les dimensions
d’un point matériel sont négligeables par rapport aux autres dimensions dans le référentiel.

1.2.Systéme matériel :

Un systéme matériel ou systéme mécanique est un ensemble de points matériels. Le systéme
matériel est dit indéformable ou solide si les distances entre ses points sont invariables.

1.3.Forces extérieures et forces intérieures

e les forces extérieures sont celles qui agissent sur le point du systéme et proviennent
d’autres points donnés étrangers au systéme.

e Les forces intérieures sont celles qui agissent sur un point du systéme et proviennent
d’autre point appartenant a ce systeme.

La distinction entre ces deux types de forces dépend des limites arbitrairement choisi pour
définir le systeme.

2. Enoncé des lois de Newton sur le mouvement
2.1.Premiére loi de Newton

Lorsque la somme vectorielle des forces appliquées au systéme est nulle, son centre d’inertie
est :

e aurepos, si le systéme est initialement au repos,

e animé d’un mouvement rectiligne uniforme si le systéme est initialement en
mouvement a vitesse constant : )., F=0ou VG = Constante

2.2.Référentiel galiléen

La premiere loi de Newton caractérisé un ensemble de référentiels

Les référentiels galiléens sont des référentiels particuliers ou le principe de I’inertie et le
théoreme de I’énergie cinétique sont appliqués.

e Le référentiel héliocentrique est un référentiel qui a pour origine le centre du soleil et
des axes dirigés vers les trois étoiles lointaines. Il est une approximation du référentiel
galiléen. Ce référentiel convient a I’étude du mouvement des planétes et des sondes
spatiales.

o Le référentiel géocentrique a pour origine le centre de la Terre et des axes dirigés vers
les trois €toiles lointaines. Ils convient a I’étude du mouvement des satellites et a
I’interprétation des phénomenes marins.

e Le référentiel terrestre ou de laboratoire a pour origine un point de la surface de la
Terre peut €tre considéré comme référentiel galiléen pour des expériences courantes
de courte durée.
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2.3.La Quantité de mouvement
a) Définition : Pour le point matériel, de masse m et dont la vectrice vitesse est v, le

vecteur quantité de mouvement p obtient par la relation vectorielle : P=m7v

P a une méme direction et méme sens que ¥ ( car m > 0), sa norme P porte le nom de
m:enkg
quantité de mouvement du point matériel P = mv v:ienm/s

p:enkgm/s™!

Le vecteur quantité de mouvement d’un solide est celui de son centre d’inertie

G (vecteur vitesse VG) ou serait concentrée la masse totale M su solide.
ﬁ = MVG

Dans un repere galiléen, le vecteur quantité de mouvement d’un solide isolé ou pseudo-isolé
est constant.

P = MV, = Constante
b) Conservation de la quantité de mouvement lors d’un choc
La loi de conservation
On construit alors le vecteur-quantité de mouvement du systéme {S;, S, } avant le choc, et le
vecteur : P = ﬁl + ﬁz
Le vecteur-quantité de mouvement de ce méme systéme apres le choc est : P = F')l + F’)z

On constate expérimentalement que P=P

Lors d’un choc, le vecteur-quantité de mouvement d’un systeme de deux solides isolés ou
pseudo-isolés demeure constant.

Dans un repere galiléen, le vecteur-quantité de tout systeme mécanique isolé ou pseudo-isolé

demeure constant lors de son évolution : AP = ﬁ’(aprés le choc) — ﬁ(avant le choc) = 0
2.4.Deuxieme loi de Newton ou la relation fondamentale de la dynamique

Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées a un

solide est égale au produit de la masse par le vecteur-accélération de son centre d’inertie G.
o 2 dP
On écrit ). f ext = =
Sous cette forme, la deuxieme loi de Newton est appelée relation fondamentale de la
. 2 dpP
dynamique : ), f ext = e
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— n — n — n — n —_ G _ 2
P=Yr P=XYLmV,=V,Xi. m avec M = )., m; = constante et—==dg
Donc Y f ext = Mdj

2.5. Troisieme loi de Newton ou Principe de I’action réciproque

Si un corps A exerce sur un corps B une force ﬁA /g (appelle action), simultanément le corps,

> . N
B exerce sur le corps A une force Fg/4 (dénommée réaction) et ces deux forces ont la méme

ligne d’action, des sens inverses et de méme intensité.

Q QO Q QO

ﬁB/A = _ﬁA/B

3. Le théoréme de I’énergie cinétique
Dans un référentiel galiléen, la variation de 1’énergie cinétique d’un solide en translation,
entre deux instants t; et t, est égale a la somme algébrique des travaux de toutes les forces
qui lui sont appliquées dans I’intervalle [ty, t,].

AEc = ~mVZ —-mV = S w5

Remarque : le théoréme de I’énergie cinétique se démontre de la méme manicre pour un
solide en rotation autour d’un axe fixe.

1. 1. Fext
AE¢ =~ jpWE — = jpWi = T w5+

4. Les différentes applications
Pour résoudre un probléme de mécanique proposé, il faut adopter une méthode résumée
suivante :

e Préciser le systeme étudié

e Choisir le référentiel

e faire le bilan de forces appliquées au systéme et schématiser ces forces par des
vecteurs

e Appliquer dans le référentiel galiléen choisi le théoréme d’inertie pour déterminer
I’accélération et la nature du mouvement ou le théoréme de I’énergie cinétique pour
déterminer la vitesse, la distance ou bien la force.

e Choisir un repere orthonormal de projection ou sera projetée la relation.
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Bac 2013 et 2019

Exemplel : un Skieur de masse m = 80kg , équipement compris, prend le départ sur une
piste de descente rectiligne incliné d’un angle a = 30°

1) La piste étant verglacée, on néglige tout frottement sur la piste et dans 1’air

a) Calculer I’accélération a; du skieur dans la descente. On prendra g = 9,8m/s?

b) On suppose que le skieur part avec une vitesse initiale V, = m/s . Calculer sa vitesse
V; lorsqu’il a parcouru la distance d = 25m

2) La piste est maintenant recouverte de neige fraiche créant une force de frottement.
L’ensemble des forces de frottement agissant sur le skieur est équivalent a une force
unique et constante f = 90N de méme direction que sa vitesse et de sens oppos€.

a) Calculer la nouvelle accélération a, du skieur dans la descente.

b) On suppose que ce dernier part toujours avec la méme vitesse initiale V; . calculer la
nouvelle vitesse V, lorsqu’il a parcouru la distance d = 25m.

Solution :

1) La piste de descente est verglacée.

a) Calculons I’accélération a; du skieur

e Systeme : le skieur et son équipement de masse m

e Référentiel terrestre supposé galiléen

e Bilan des forces :

¢ Le poids P , appliqué en G, vertical et vers le bas

% Laréaction R perpendiculaire au déplacement car il n’y a pas de frottement
e Appliquons le théoreme du centre d’inertie

Y fext =md; = P+ R = md,




e sinx'x ona:P, + R, =ma,
Psina + 0 = ma,

mgsina = ma, > a, = gsina
AN:a; = 9,8 x5 = 4,9m/s?
a, = 49m/s?
b) Calculons la vitesse V; lorsqu’il a parcouru une distance d = 25m

Le mouvement est uniformément accéléré d’accélération a; = 4,9m/s? . On a la relation
2 2 _
Vi —=Vi = 2a, (xq — xq)

X, —xo=d etV —VZ = 2gsinad

V, = V¢ + 2gdsina
V, =15,8m/s
On peut aussi appliquer le théoréeme de 1’énergie cinétique.

2) La piste est couverte de neige fraiche : iy a frottement
a) Calculons ’accélération a,

e Systéme : Skieur et son équipement de masse m

e Référentiel terrestre supposé galiléen

e Bilan des forces :

% Le poids P

% Laréaction R

*

% La force de frottement f




e Appliquons le théoréme du centre d’inertie : 3. f ext = mdg; = P + Ry + f = madg
sinx'x ona: P, + Ry, + f,, = ma,
mgsina + 0 — f = ma,
a, = gsina —%
AN:a, =98 x% - Z—g = 3,8m/s?
a, =4,5— 1,125 ~ 3,8m/s?
a, = 3,8m/s?
b) Calculons la nouvelle vitesse V, du skieur
V2 —VE =2a,(x; — xy) = 2a,d
V2 =\/VZ + 2a,d = 14,1m/s
V, =14,1m/s
Exemple 2 :

a) On suppose qu’un skieur glisse sans frottement le long d’une piste AB. On donne les
altitudes des points A et B : hy = 1850m et hg = 1780m . Le skieur part de A avec
une vitesse V4, = 1,5m/s

Calculer sa vitesse Vg lors de son passage en B. g = 8,9m/s?
b) En réalité, le skieur passe en B avec une vitesse V' = 30m/s

Calculons la valeur de la force de frottement qui s’exerce sur le skieur si ’on suppose qu’elle
reste constante.

Pendant toute la durée de la descente. On donne : M = 75kg, la longueur de la piste [ =
315m




Solution

a) Calculons la vitesse Vg du skieur a son passage B
e Systéme : Skieur de masse m

e Référentiel terrestre supposé galiléen

Bilan des forces

% Le poids P

. —_
«» Laréaction R

e Appliquons le théoréeme de I’énergie cinétique
DE. =Y fext. ECy — EC, = WF,, + WE,,

WR =0 car R est perpendiculaire a la piste

%mVB2 — %mVA2 =mg(hy — hg)

Vs = VZ +2g(hy — hp)

Vg = \/(1,5)2 + 2 x9,8(1850 —1780) = 37,1m/s
Vg =37,1m/s

b) Calculons la vitesse de la force de frottement
e Systéme : Skieur de masse m

e Référentiel terrestre supposé galiléen

¢ Bilan des forces

¢ Le poids P

% La réaction normale R N

*

% La force de frottement ]?
e Appliquons le théoreme de 1’énergie cinétique

DE; =X Wfﬂa

%mV% — %mVA2 = WP + W/ + WRN alorsque WERN =0

%mV’f; - %mVA2 =mg(hy — hg) — fl

! 2f1
V'E —VE =2g(hy — hg) - L

m

2f1 '
L= vz v +29(hy — hy)

m

f =2 Vi = Vg +2g(hy — hg))

f =56,5N
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Exemple3

Un skieur assimilé a un point G, de masse m = 80kg, glisse sur une piste formée de deux
parties AB et BC situées dans un méme plan vertical. L’arc AB de rayon r = 50m et BC
est la partie rectiligne horizontale de longueur = 50m . Le skieur part sans vitesse initiale de

Vi

Atelque (0B 04)=a=1
1) En négligeant les frottements, calculer la vitesse du skieur au point E , tel que

(Fﬁ m?) =ay ==, puis calculer sa vitesse en B.
6

2) En fait, sur le trajet , existent des forces de frottements assimilables a une forte
tangente a la trajectoire et d’intensité constants F. Si le skieur arrive en C sans vitesse,
quelle est la valeur F de cette force de frottement ?

On prendra g = 10m/s?.
A “ L
Qg
E
B
Solution

1) Calculons la vitesse du skieur en E puis e B

Systéme : Skieur de masse m

Référentiel terrestre supposé galiléen
Bilan des forces :

% Le poids P

+ Laréaction normale R

e Appliquons le théoreme de 1’énergie cinétique
DE; =X V_V:fftB
%mVE2 - %mVA2 = mg(z;z — zg) = mgr(cosag — cosa)

1
EmVE2 = mgr(cosay — cosa)

Ve = \/2gr(cosag — cosa)
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AN:V, = Jz x10x50 (£-1) =19,13m/s

2

Vg =19,13m/s

Puis Vg = /297 (1 — cosa)

AN:Vg = \/2 x50 x 10 (1—2) = V500 = 22,36m/s

Vg = 22,36m/s

2) Calculons la valeur F de la force de frottement.
e Systéme : Skieur de masse m

e Référentiel terrestre supposé galiléen

Bilan des forces :

Le poids P

R
La réaction normale R

o, °, [ ]
DR

X/
°

La force de frottement f

Appliquons le théoréme de 1’énergie cinétique

DEc = X Wik

Vy=0etV,=0= 0=mgr(1—cosa) —Fra or r=1
0 =mgl(1 — cosa) — Fla — Fl

Fl(a +1) = mgl(1 — cosa)

__ mgl(l1—-cosa) _ mg(1-cosa)

F=—=
§+1 a+1
80x10(1-3) 400
AN:F = = 2 = 07— =195,43N
§+1 ~—+1
F = 195,43N
Exemple 4

Un solide S de petite dimension et de masse m assimilable a un point matériel, est placé au
sommet A, d’une sphere de rayon R et de centre 0. On déplace 1égérement le point matériel
S pour qu’il quitte la position A avec une vitesse quasiment nulle et glisse sans frottements le
long de la sphére en décrivant un arc de cercle dans le plan vertical passant par A. La position

de S est repérée par I’angle 6 = (ﬁ AS )
1) En appliquant le théoréme de 1’énergie cinétique, trouver une relation entre

v,g,Ret0.
2) Appliquer la deuxiéme loi de Newton au solide ponctuel
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3) Déterminer la position du solide au moment ou il quitte la sphere. Quelle est alors sa
vitesse?

H

Solution

1) En appliquant le théoréme de 1’énergie cinétique, trouvons la relation entre v, g, R et 0
e Systéme : Solide de masse m

e Référentiel terrestre supposé galiléen

Bilan des forces :

Le poids P

La réaction normale F de la sphére sur le solide

X/
X4

L)

X/
X4

L)

Appliquons le théoreme de 1’énergie cinétique
DE¢ = X WiZh

—mVE —-mVE = WP+ WF or WF =0

%mVS2 = mgh or h = R — Rcosf = R(1 — cos6)

%mVSZ = mgR(1 — cos8)

Vs = /2gR(1 — cosH)

2) En appliquant la deuxiéme loi de Newton, déterminons la relation F dela sphére sur

le solide.
Z ext = ma
P+F=ma

Dans la base de Freinet, projetons cette relation suivant la normale 7

VZ
Pcosf — F = mFS

(2gR(1—cosH)

- = mgcosf — 2mg + 2mgcos@ = F

mgcosd — F =m x
F =mg(3cosf — 2)
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3) Déterminons la position du solide au moment ou il quitte la sphere
Le solide quitte la sphére lorsque F > 0
Cas limite F = 0 = mg(3cosf —2) =0

mg;tOetc059=z
3

0 = arc cosg = 48,18°

La vitesse est alors de :
2 2
V= \/ZgR (1-9) = \/ggR
’2
V= EgR

Exemple 5 : On considére un pendule constitué d’une boule B (de masse m et de centre G)
et d’un fil inextensible de longueur [ et de masse négligeable. Ce pendule est mis en

mouvement de rotation uniforme au tour d’un axe vertical A d’un référentiel galiléen.

Montons qu’un tel mouvement n’est possible que si la vitesse angulaire w est supérieure a la
valeur w, que ’on calculera.

Déterminons alors la valeur de I’angle d’inclinaison 8 que prend le fil par rapport a ’axe A,
ainsi que la tension du fil.

Solution

e Systeme : boule de masse m

e Référentiel terrestre supposé galiléen
¢ Bilan des forces :

% Le poids P

% Laréaction T
e Appliquons le théoreme de I’énergie cinétique

LS

~l

'y
o

S




Y fext =md; = P + R = md, r = Isinf
Suivant la tangentielle on a : Tcos = mg (D)

Suivant la normale on a : Tcosf = mw?lsind (2)

1 w?lsin8

@ donne : Tana =

@)

sinf _ w?lsin6 N 1 1wl
cos® g cos6 cosd g

D’ou cosf = -2 or cos<1=>-2L <1
w2l w2l

Le pendule ne s’écarte de la vitesse que siw > wy = %

Siw > wy le pendule prend une inclinaison 8 déterminée par cosd = %

La tension T du fil a pour expression :

2]

m m mgxw

T = ge=—gg=—g = mw?l
cos T g

T = mw?l

Exemple 6 : Un pendule est constitué par une petite boule de petite dimension, de masse m,
suspendue a un point fixe par un fil inextensible de longueur [. Lae pendule est écarté¢ d’un
angle 0 de sa position d’équilibre et abandonné sans vitesse initiale.

a) Déterminer la vitesse IV du pendule lorsqu’il passe par sa position d’équilibre.
b) quelle est alors la tension du fil ?

Solution
//
AN T 7
6

B’ R
ma

B =g

P
3
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a) Déterminer la vitesse I/du pendule lorsqu’il passe par sa position d’équilibre.
e Systéme : boule de masse m
e Référentiel terrestre supposé galiléen

Bilan des forces :
Le poids P

. —_
Laréaction T

X/ X/
L X X4

Appliquons le théoréme de 1’énergie cinétique
DE; =X Wﬁ ext

%mV2 = mgh = mgl(1 — cos8)

V =2gl(1 - cosH)

b) Déterminons la tension du fil
Appliquons le théoréme du centre d’inertie
Y f ext = md,

P + R = md,

2

Suivant k verticaleona: T —mg = mVT

T =mg+ m(Zgl—(l_Close)

T =mg + 2mg — 2mgcosf = 3mg — 2mgcos6

T =mg(3 — 2cos0)

33



Chapitre 4 : APPLICATION DES LOIS DE NEWTON

I Mouvement dans le champ de gravitation
1.1) Premiére Loi de Kepler

Par rapport au référentiel héléocentrique (ou de Copernic), les trajectoires des planétes sont
des ellipses dont le soleil occupe le foyer. En réalité, ces ellipses sont trés proches des cercles.

Remarque : une planéte est soumise essentiellement a 1’attraction du soleil et I’action des
autres ne se manifeste que par de trés faibles perturbations qui sont négligeables par la suite.

1.2) Démonstration des 2e et 3e lois de Kepler dans I’approvisionnement des
trajectoires circulaires
* La2°loi se simplifie : la vitesse angulaire d’une planéte sur la trajectoire est une
constante donc le mouvement est circulaire uniforme.

Doud = % est centripéte.
av 4
a=—=0 =V = constante et w = =
dt R
* La3°loi

Le carré de la période de révolution est proportionnel au cube du rayon de la trajectoire.

_ 2R 5 _ 4m?R? _ _ Vv _ GM
T=Tr=>T="Fea=g=7=1%
GMR _ GM
ﬁvz — -
R? R
. ) 4m?R? _ 4m?R?
L’expression devient T? = —7— =
M GM
R
. T?  4r?
Dou— =—
R~ GM

Le deuxiéme membre de cette expression ne dépend pas de la planete considérée puisque M
est la masse du soleil.

oo T?
Pour toutes les planétes, == Constante

1.3) Mouvement d’un satellite

Lors d’un lancement d’un satellite autour de la Terre, il est soumis au champ de gravitation
terrestre. Considérons les satellites de trajectoires circulaires. On démontre que le plan de la
trajectoire contient le centre de la Terre. On établit les relations donnant la vitesse et la
période de révolution en fonction de ’altitude Z du satellite.

- Choisissons le référentiel géocentrique supposé galiléen
- Le systéme : satellite

- Bilan des forces : F = mg
- Le théoréme du centre d’inertie
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pd - - -
Y.fext=ma; > mg =mdg
ﬁang

Dans la base de Frenet (T, N ),ona:

=l

O

~l

av

2 (0 5 [ av _ _v? _
G(g)etaG(V?E)doncE—OetG—Tavecr—RT+Z

, . v?
Le mouvement étant uniforme, G = — = V =+rG

GM r?

>V = G(RT+Z)OrG=m=GOM

Avec Gy = go, la valeur du champ de pesanteur a I’altitude Z=0

DouV =R /—g"
(R+2)

v:_ R’00 _ Rdo

aAr = — = =
¢~ R~ R(R+Z) R+zZ
Rgo
ag = ——
G ™ R+z

La vitesse diminue quand I’altitude augmente et est indépendante de la masse du satellite.

Ainsi, pour une altitude donnée Z=300km, on trouve (V=7,72km/s). La période ou la durée

3
d’un tour du satellite est : T = w =27 (};2 pour Z=300km, T = 5429s = 1h30min
0
IL. Mouvement dans un champ uniforme indépendant du temps

Un projectile de masse m est lancé dans un champ de pesanteur g considéré localement

comme uniforme. La vitesse de lancement 170 fait un angle de tir a avec le plan horizontal. La
résistance de I’air et la poussée d’ Archimede sont négligeables. On étudie le mouvement du
centre d’inertie du projectile.
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1 X
1. Accélération du centre d’inertie

La deuxieme loi de Newton permet de déterminer 1’accélération du point G.

*  Choix du référentiel terrestre suppos¢ Galiléen
*  Systéme : projectile de masse m

*  Bilan des forces appliquées : P= mg

*  Appliquons le théoréme du centre d’inertie : B = mg = md = d; = §

Lors d’un mouvement de chute libre dans le champ de pesanteur g uniforme, le vecteur
accélération du centre d’inertie d; du projectile est égal a g. Le mouvement est indépendant
de la masse du projectile.

2. Equations universelles du mouvement du centre d’inertie
d; = g : Equation 1

Aty = 0, G occupe G avec une vitesse V. Les équations vectorielles du mouvement
s’obtiennent par intégration successives de 1’équation 1.

V = Gt + V, : Equation 2

-

0G = %ﬁtz + V,t + 0G, : Equation 3
3. Equations horaires

R
Choisissons le repére (0,1, ], k) le mieux adapté pour déterminer les coordonnées des vecteurs
accélération, vitesse et position du centre d’inertie.

G g
GII

~
>
>
o
dal
-

=
~ Y
v

G' x



*  Le point G décrit I’axe horizontal (o0, 7) avec un mouvement uniforme.
*  Le point G** décrit I’axe vertical (o, J) avec un mouvement uniformément varié.
* L’axe (0,]) vertical ascendant, alors g = —gJ avec ||g]|| = g

* L’axe (o, 1) horizontal, le plan (7,]) contenant le vecteur vitesse initiale V,,, caractérisé

par la mesure de ’angle (1, 70) telleque 0 < a < g

- (Vo = Vycosa
Alors, Vo {Voy = V,sina

Vo = Vocosai + Vysinaj avec ||Vy]| = Vo

Les €équations cartésiennes du mouvement s’obtiennent :

a, =20 V, = Vycosa x = Vycosat
a{ay ==9;VeiVy = —gt tVpsina ; 0G|y = —%gt2 + Vysinat
a,=0 V,=0 7 =0

Les équations horaires du mouvement nous montrent que :

- Le mouvement du projeté G selon 1’horizontale est uniforme ;
- Le mouvement du projeté G selon la verticale est uniformément varié.
¢ Cas particuliers

Pour V, = 0, nous obtenons 1’équation d’un mouvement de chute libre sans vitesse initiale :

1
y=—;gt’

Pour @ = 1/2, le vecteur vitesse initiale est paralléle & g ; le mouvement est rectiligne,

. , ., . 1
uniformément varié, selon la verticale : y = — > gt? + Vot

4. Etude de la trajectoire

Pour0 < a < g, I’équation cartésienne de la trajectoire dans le repére (o, 1,7, E),s’obtient en

¢liminant le temps t entre les expressions x(t) et y(t), il vient :

. 1
t=— douy=-—- g

———x* + xtana
2Vgycosca

Soit avec —— = 1 + tan®a, on obtient :
cos?a
y = —2% (1 + tan®a)x? + xtana
0
1 cos?a+sin®a  cos?a | sin*a
= = =1+ tan’«a
cos?a cos?a cos?a = cos?a

La trajectoire est une parabole située dans le plan de tir (0,7, ) et dont la concavité est tournée
vers le bas.
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Exprimons quelques caractéristiques de la trajectoire parabolique.
e La fleche est I’altitude maximale h = Z,,, atteinte par le projectile.

Au point M, le vecteur vitesse VMest parall¢le a (ox) donc V,, = 0 & —gt + Vysina = 0

Vosina

En reportant t,, dans 1’expression de y, on obtient :

1 Vosina\ 2 Vosina
Ym -9 g 0 P

Vésina 1
=>h=-=" (—=+1
g 2
vésinla
= = = —
yu=nh 29

La fléche est évidemment maximale pour a = g (tir vertical)

e La portée horizontale est I’abscisse du point C de la trajectoire d’ordonnée nulle, c’est-
a-dire situé dans le plan horizontal passant par O.

. 1 gxZ
Avec Z, = 0, on obtient : 0 = — =2 — + x tana
2Vgycosca
1 gxc
S x(—>H55-ttana) =0
2Vycosca

x. = 0 correspond au point de lancement O, ’autre solution au point C, d’ou :

1 gx sina 2V cosasina . ,
———— = — = x, = ———— Or cosasina = sin2a
2Vycosca cosa g
2vdsin2a
Dongc, x, = "T

Pour une vitesse initiale V, donnée, la portée est maximale pour sin2a = 1 soit a = 45°
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. vé
D’ou dmax = ;0

, d
Pour d < dmax, sin2a = %
0

Cette équation admet deux solutions a; et a, telles que :
2a, =m— 24 soit a, =§—a1

Exemple : un projectile est lancé dans le champ de pesanteur avec une vitesse Vy = 200m/s
Calculer, pour une portée horizontale de 25000m

1) Les angles de tir possibles

2) La fleche

3) La durée de tir, I’'impact se reproduisant sur le sol, plan horizontal contenant le point
de lancement

4) La vitesse lors de I’impact. (g=9,8m/s2)

Solution

1) Les angles de tir possible

. d
Nous avons : sin2a; = %
0

AN : sin2a, = % =0,6125

= 2a, = arcsin(0,6125) = 37,8° soit a; = 18,9° et
20, =TT — 200 > =§—a1
a, =90°—18,9°=71,1°

vésinla

2) Lafléche h =
29

*  Avec a; = 18,9°, h = 214m (tir tendu)
*  Avec a, = 74,1°, h = 1825m (tir en cloche)
3) Ladurée du tir

Zc = —%gt2 + Vysinat = 0
= t(—%gt + Vysina) =0
2Vysina

>t=0out=

* Avec a; = 18,9°, t; = 13,2s
* Aveca, =71,1°,t, = 38,65

39



4) La vitesse lors de I’impact

x. = Vycosa

Yo = —Vosina d’ou, V. = /*Z + yF + 2Z = Vo = 200m/s

z.=0
V.=V, =200m/s

III. Mouvement d’une particule chargée
Considérons un champ électrique uniforme E existant entre deux plaques paralléles 4 et C tel
queVA_VB = UAC >0

Une particule de masse m et de charge g est lancé dans ce champ a partir du point O avec une

. . ., . =
vitesse initiale V.

Pour déterminer les caractéristiques du mouvement de son centre d’inertie, appliquons a la
particule le théoréme du centre d’inertie.

e Accélération

La seule force appliquée a la particule est la force électrique F, son poids est négligeable.
Dans le référentiel terrestre considéré comme galiléen, on peut écrire : ), f ext = mdg
F =md; or F = qE

D’ou qE = mdg et dg =

3%

e Vitesse

La vitesse du centre d’inertie de la trajectoire dans la zone ou régne le champ est VG tel que

ave o = = = . o . . . .
d—tG =a; = V; =ast +V,ouV, est la vitesse initiale du centre d’inertie de la particule a la

date prise comme origine des dates.
e Position

La position du centre d’inertie de la particule est donnée par le vecteur 0G ou O est ’origine
du repere d’espace choisi.
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0G esttel que =% = Vg =agt + Vo = 0G =agt? + Vot + 0G,

e Trajectoire

Les équations paramétriques de la trajectoire du centre d’inertie de la particule s’obtiennent en
faisant les projections sur les axes du repére d’espace du vecteur position. On a donc :

x =~ agyt? + Voxt + g

—

OG = y = %aGytz + V()yt + yO
Z =

\

Les conditions initiales du mouvement peuvent apporter des simplifications qui permettent de
déterminer la nature géométrique de la trajectoire de la particule.

1
Sacyt? + Voyt +yo

* Cas o0 E est parallele a VO

+ —_
E
+ —_
+ -
Vo
+ E -
+ —_
b —— -

Considérons une particule de charge g et de masse m qui pénetre a une date prise comme
« . N . , . . = .
origine des dates dans un espace ou régne un champ électrique uniforme E, avec une vitesse

170 de méme direction que E.
Appliquons la 2° loi de Newton

Y fext = md sachant que P < F,
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Faisons la projection de d sur les axes du repére d’étude et nous obtenons :

_9E
Clx—?

d =0
c)a,=
a, =0

De cette projection, on peut obtenir les composantes du vecteur vitesse du centre d’inertie de
la particule :

qE

Ve

v, =0
V,=0

Puis celles du vecteur position

x=-Lt2 4y
W;» 2m
y=0
z=0

Les équations paramétriques du mouvement montrent que la particule se déplace suivant I’axe
x’ox (y=0 et z=0).

* Cas o0 E est orthogonal a 170

Considérons une particule de charge ¢ et de masse m qui pénétre a une date prise comme
origine des dates dans un espace ou régne un champ électrique E, avec une vitesse V,
orthogonal a E. Prenons comme origine des espaces le point d’entrée de la particule dans la

. , . . =3 =
région et comme axes des coordonnées de la direction du champ E, celle de V, et une
direction qui leur est normale.

Appliquons le théoréme du centre d’inertie :

Y fext = mdg suivant P « E,
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3%

N
$a6=

La projection de d; sur les axes donne :

a, =0 Ve=0 x =Vt (1)
5 qE N _ qE - 1qE
dgyay =——— doaVgiVh=———tet0G y:—z%tz (2)
aZ:() ‘/Z:() z=0

Les équations paramétriques montrent que le mouvement de la particule est :

- Uniforme sur I’axe x ’ox
- Uniformément varié suivant 1’axe y 'oy

Comme z=0 a chaque instant, la particule se déplace donc dans le plan contenant 170 et E.

En calculant ¢ dans (/) on a :t = Vi (3) et en le remplagant par sa valeur dans (2), on obtient :
0

2
_19Ex 4)

2 mVOZ

La trajectoire de la particule est une parabole de sommet O.

e Déviation et déflexion

A

v

A

Considérons une particule de charge g < 0 et de masse m animée d’un vecteur vitesse
horizontale qui pénétre entre les armatures d’un condensateur plan chargé sous une tension U.
La distance entre les armatures est d et leur longueur /.

A la sortie du condensateur la particule frappe un écran en P. L’écran est situé a une distance
D de O.

* Equation du mouvement

La particule est soumise a la force électrostatique F= ql_f de méme direction que E et de sens
oppos¢€, d’intensité F = gE. Le mouvement se fait dans le plan xoy.
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3%

La 2° loi de Newton donne d; =

L (=0 (Vex=Vo __ (x=Vt
ag _aedouVg thetOG _ 14E 2

V.. =2 =
Gy m Gy m 2m

L’équation de la trajectoire

x=Vot >t =~
Vo

1 gEx?

Doncy = —=— Pourx=/,ona:
2 mVy
1 qE1? . .
y=—33 la trajectoire est un arc de parabole.
0

*  Vitesse a la sortie du condensateur

1 ere

méthode : Théoreme de Pythagore

V= VR4V = Ve = VGV

dy qEl U \
=V, etV =—=—0rE ==-doul,, =
0 Y T oat T my, d sy

_dx
T

== v+ (2L

2° méthode : théoréme de 1’énergie cinétique

qUl
mV()d

Vex

AEc = Y Wfext
1 2 1 2 _
EmVS - EmVO = Fy
1 2 1 2 qEI?
pmVs” —omlg = qE X2 0
0
VZ 2= q2U?1?
S 0 m2V02d2
VZ _yz_ q2U?1?
S 0 m2V02d2
q2U212
>V = |V ————
N 0 mZVOZdZ

*  Déviation et déflexion

Entre I’entrée et la sortie S du champ £, la trajectoire de la particule est déviée d’un angle «
appelé déviation. La distance HP est la déflexion.

qUl
Vs Vod qul
Vsy Vo mvgd
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HP _ y(P) _ ¥s
tana ﬁ = E = T (2)
2 2

Ul P) Ul
(@) & iae =277 2 y(P) = 02 (D = /)
2

La charge massique est déterminée par la relation : —

La condition pour que les particules sortent du champ E.

. : d
Le faisceau sort des plaques six = lety < >

qUI? d qUI?

<1
2mdvg 2 md2vg

Soity =

Pour la tension U donnée, les particules sortent du champ si V¢ >

déviées et heurtent une des armatures.

(page 9 et 10 manquantes)

De § et arrivent en / et J avec une vitesse.

Pour la premiere particule de masse m, et de rayon R;
D’apres AEc

2qUy

1
5m1V12 =qU, =2V, = o

On sait que R, = miVi _ma (29U _ [mE2qUo
1 qB qB mq m1q232

R — 2m1U0 — l 2m1U0
! aB2 B4 q

La seconde particule de masse m, et de rayon R,

ZqUO
ms

myV; m 2qU 1 [2myU

OrR, = 2v2 _ M2 [29Y% _ 1 2Y0

qB qB my B q
1 |2my,U,
R2:_ 2Y0
B\] q

R m m R,
Le rapport = = |[—= = L =-L
Ry my m; Rp

Ona:%sz2 =qU, = V, =

45
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qUI?
md?

. Sinon, elles sont trop



Ce dispositif permet de séparer les isotopes. Les particules de plus grandes masses tombent
plus loin que les particules de petites masses.
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Chapitre 5: AUTO-INDUCTION
1. Mise en induction expérimentale de 1’auto-induction

+| |- k
| —ee—

—/§I00000—&

Le circuit est constitué par un générateur de tension continue, une bobine emportant un noyau
de fer doux, une lampe et un interrupteur.

e Lorsque I’on ferme le circuit en baissant I’interrupteur, la lampe ne brille de tout, son
éclat qu’apres 1 a 2 secondes. J1 y’a donc un retard a 1’établissement du courant
¢lectrique dans le circuit.

e Lorsque I’on ouvre le circuit en soulevant I’interrupteur, la lampe brille encore
pendant 1 a 2 secondes avant de s’éteindre. Il y’ a donc un retard a la coupure du
courant dans le circuit.

2. Un courant induit
Quand approche rapidement le pole nord de 1’aimant de 1’'une des forces de la bobine, le
galvanometre détecte le passage d’un bref courant dans un sens déterminé.

Le courant est apparu dans un circuit qui ne compte pas un générateur. ce courant porte le
nom de courant induit : le phénoméne physique qui I’engendre s’appelle I’induction
¢lectromagnétique. Le circuit dans lequel il apparait (la bobine) constitue 1’induit et I’aimant
qui permet de le créer est ’inducteur.

e Un courant induit apparait dans un circuit si on déplace un aimant dans son voisinage
ou si on déplace le circuit devant un aimant
e le courant induit s’annule lorsque le déplacement relatif cesse

3. Le flux magnétique

Lorsqu’un circuit parcouru ou non par un courant est plongé dans un champ magnétique que
I’on note @

e On choisit de maniere arbitraire un sens positif sur le circuit.

e On définit le vecteur surface S du circuit dont les caractéristique sont :
¢ Direction : la normale au circuit
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¢ Sens : vers la gauche du bonhomme d’ampére couché sur le circuit de fagon que le
sens positif choisi entre par ses pieds et sort par la téte et qui regarde I’intérieur du
circuit.

% Norme : égale a la surface S du circuit.

Le flux magnétique a travers le circuit vaut :
® =B.S=B.S.cos6

6 = (B.5) et 0 < 6 < 180°

BenT; Sen m? et ® en wb

Dans le systeme international d’unité, le flux se mesure en webers de symbole wb

Exemple : Une bobine plate d’aire S = 30 cm? comporte N = 50 spires. Elle est placée
dans un champ magnétique uniforme d’intensité B = 0,02 T, comme ’indique la figure
ci-dessous.

Tragons un vecteur normal 7 tel que (ﬁ, 1) = 60°

Co|

e
\ } 5 60°

Le flux est @ = NBScos60°

AN:® =50 x 0,02 X 30.107* X cos60° = 1,5.10 3wb

@ =1,5.10"3wb

Si I’orientation imposée avait €té de sens contraire nous aurions trouve :
® =-1,5.10"3wb

Remarque : toute variation du flux magnétique a travers un circuit fermé y fait
apparaitre un courant induit.

4. Laloi de Lenz

Le sens du courant induit est tel que le flux magnétique qu’il crée a travers 1I’induit s’oppose a
la variation du flux qui lui donne naissance.

Quand le champ magnétique inducteur B augmente le courant induit crée un champ B' de

. —
sens opposé a celui de B.

Drorar =P + @' = NS(B — B')
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Quand le champ magnétique inducteur B diminue, le courant induit crée un champ B'de

méme sens que B.
Dot =P + @' = NS(B—B")

5. Force électromagnétique auto-induite

. . . si
Pour une bobine sans noyau en fer, on a I’expression suivant : e = —L 5 avec L>0 (1)

e s’exprime en V; Si en ampére(A), St en secondes et L en Heurys de symbole H
La force électromotrice auto-induite instantané est donnée par la relation :

Si
e = _LE (2)

6. Auto-inductance d’une bobine
Le calcul de I’inductance L d’une bobine comportant N spires, de surface S, sur une longueur

[ créant un champ uniforme B. Cette bobine est assimilée a un solénoide théorique :

Son flux magnétique vaut :
®,=B.S=B.S (1)car =0
Son flux magnétique a pour expression
®, = Li
A travers N spires
N,
@, = NBS or B = ugn; = W T

N N2
‘Dq; = Nllojsi = Ho— Si

Gy =t S, (1)

Egalisons : (1) et (2) &, = @,

. N? Kon2
Li=po— S = L=—°’2’S

Définition : Le coefficient positif L, s’appelle auto-inductance de la bobine. On le désigne
simplement par inductance de la bobine. L’inductance est caractéristique de la bobine, elle
est indépendante de 1’intensité du courant €lectrique qui parcourt la bobine.

Exemple : calculer I’inductance d’un solénoide dont la longueur [ est trés grande devant
le rayon 7. Le nombre de spires par unité de longueur est n.

Application numérique

l=0,5m,r =25cm, n=2.10* spires.m™?!
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Solution
Calculons I’'inductance L de la bobine
B = pgoni
e Le flux magnétique pour une spire est : @, = BS = ugnmr?i
e Le flux propre traversant N spires avec
N =nlest: @ =nl®, = pyn?lar?i (1)
e C(Cette expression est aussi de la forme: @ = Li (2)
1 =(2)
Li = pon?lmr?i
L = ugn?lmr?
AN:L =4m.1077 x4.10* x 0,5 x mw X (2,5.1072)2=0,5H
L=05H

7. Loi de Faraday-Lenz
La force électromagnétique d’auto-induction e est proportionnelle a I’imposée de la dérivée

de I’intensité du courant par rapport au temps.

do .
e=— or®=1i
dt

di
e=—L—
dt

8. Tension aux bornes de la bobine

UAB =Ti—e
di

Upyg=1i+L—

AB dt

Aux bornes (4, B) d’une bobine d’inductance L et de résistance , orientée de A vers B et

p . . . , N di
traversee par un courant d’intensité l,la tension est egale a: UAB =A+L E

e Intensité du courant induit

Si R est la résistance d’un circuit induit en 1’absence de toute autre force électromotrice dans
1 do

. . . ., , . . . , . . e
le circuit, I’intensité algébrique du courant induit est donnée par larelation ;i = - = — = —
i R R dt
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Si i > 0, le courant induit circule dans le sens positif d’orientation ; si i < 0, il circule dans
le sens inverse.

\ do . e
Remarque : Le plus souvent, on se borne a calculer |e| = |E| et|i| = |E| , le sens du

courant induit étant directement donné par la loi Lenz.

Exemple : Un conducteur rectiligne CD de longueur [ est posé sur deux rails parall¢les et
horizontaux, perpendiculairement a ceux-ci. L’ensemble est placé dans I' entre fer d’un
aimant en U. Les lignes du champ uniforme B sont perpendiculaires au plan des rails. Un
milliampéremetre, branché aux extrémités E et F, ferme le circuit FCDEF. On provoque le
déplacement de la bande CD le long des rails : le microamperemetre détecte un courant
induit. La résistance du circuit, supposée constante est égale a R

Etablir I’expression de I’intensité i du courant induit en fonction de B, [ et v vitesse de la
barre par rapport au laboratoire.

AN:B=0,1T; V=1m/s; l=5cm ; R =200

Solution
o \ il
\. BN | w % D
N NI
[ : | |
e X {"—"T X
1 "
| | -
[ a b
B "
| 2
L] y  L>

/

Le vecteur normal 7 au plan est orienté dans le sens de B. Le sens positif de i est dans le
sens de FCDB

Soit @ le flux a travers le circuit comprenant la barre et les rails. DS = x [

Etablissons I’expression de i

®=d,+B.71lx

do ldx dx
=——=—-B— or —=v
dt dt dt
. . e Blv
Soit e =—Blv d'ou i= iy

. 0,1 X5.1072 x 1
AN:i = ————
200

=2,5.1075 =25 uA
i =25uA
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9. Etablissement et annulation du courant dans un circuit induit ; constante de
temps.

A

di

i Ol @

Durant 1’établissement du courant, le générateur de résistance négligeable, délivre une tension
constante e, il convient  Uyy = ey = Uyg + Uy

. di . .
Soit ey = M v+
dt
L. L di .
En posant R = r + r' résistance totale du circuit : L d—; + Ri = ¢

Compte tenu de la condition initiale i = 0 pour t = 0 la solution de cette équation
différentielle est :

Ldi .
E-FRL—O

- _Zat
L

lni=—5t
L

-R

Enposantl():% et T=%, ona i(t)=10(1—eT)

L , . . .
T=2 est appelée constance temps du circuit et s’exprime en seconde
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Iy = —==feemmememseemensaseaasnaaa ;

La durée d’établissement du courant augmente avec la constance de temps du circuit :
(12 > 711)

Annulation du courant

Durant I’annulation du courant, le générateur de résistance négligeable, délivre une tension

nulle ; il convient : Uyy = 0 = %i +Ri=0

Compte tenu de la condition initiale I = I, pour t= 0 la solution de I’équation
différentielle est :

-t

i (t) = 10 e_
Conclusion

L’établissement et 1’annulation du courant dans le circuit inductif de résistance totale R et
d’inductance L, ne se font pas instantanément dans un tel circuit, I’intensité ne varie jamais
de fagon discontinue.

Les durées d’établissements et d’annulations du courant sont caractérisées par la constante de

temps du circuit : T = % .7en(s); Len(H) etRen ()

Energie emmagasinée

L’énergie magnétique emmagasinée dans la bobine d’induction L est proportionnelle au
carré de ’intensité du courant qui la traverse.

1
En = = Li?
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IL. ELECTRICITE

Chapitre VI : LES OSCILLATIONS ELECTRIQUE

1. Les condensations
Définition : Un condensateur est un ensemble de deux conducteurs qui se font face et qui sont
séparés par une faible épaisseur de substance isolante. Les conducteurs s’appellent armatures
du condensateur et 1’isolant est un diélectrique.

Le condensateur est symbolisé par | |

1.1.Charge et décharge du condensateur

¢ Quand I’interrupteur est dans la position 1, le courant électrique circule dans le sens de
fleche c’est-a-dire du générateur vers I’armature A . On dit que le condensateur se
charge. La circulation des charges se traduit par : la plaque A se charge positivement
et la plaque B négativement.

e Quand I’interrupteur est en position 2, les porteurs de charge circulent dans I’autre
sens : On dit que le condensateur se décharge. La charge de I’armature A diminue et
s’annule a la fin de la décharge.

1.2.Relation entre la charge q et ’intensité i

L’intensité i du courant qui arrive sur I’armature d’un condensateur portant la charge q est
égale a la dérivée de la charge par rapport au temps.

a itenA
L=— q:enC
t:en$S

i > 0;lacharge
i <0;ladécharge
1.3.Capacité du condensateur

La capacité du condensateur plan est proportionnelle a la surface S commune aux armatures
en regard et inversement proportionnelle a la distance d qui les sépare.
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€ est le coefficient de proportionnalité appelé permittivité du diélectrique.

1

W = 8,84 10_12F.m_1

Pour le vide € est noté &, qui est la permittivité du vide. g, =
La permittivité des milieux matériaux est supérieure a celle du vide € > ¢,

) e S
On pose € = €,.&; et ’expression de la capacité dévient C = g,¢&, "

.q=Cu

L’expression de la charge d’un condensateur de capacité C est:.

=  Unité de la capacité

Dans le systéme international, I’unité de la capacité est farad de symbole F. Le farad est
I’unité trés grande pour les condensateurs usuels. On utilise couramment :

e Le microfarad (uF): 1uF = 107°F
e Le nanofarad (nF): 1nF = 107°F
e Le picofarad (PF): 1PF = 107 12F

Exemple : Un condensateur plan a deux armatures circulaires de rayon r = 5cm, distantes de
d =1mm

a. Calculer sa capacité si le diélectrique est du mica (g, = 8)

b. On maintient une ddp de 500v entre ses bornes. Quelle est sa charge ?

c. Laddp précédente étant toujours maintenue, on retire le mica. La charge du
condensateur varie-t-elle ? Si oui, quelle est la nouvelle valeur.

Solution
Données : S = nr? = 3,14 x 25.10"*m? = 25m. 10~ *m?
d=10"%m ;& =8;¢ = 8,84.10712

a. Calculons la capacité C = ereog

-4
C=—— x B _556.1071F
36m.10 10

C =5,56.1071°F = 5,56 nF

b. Calculons la charge
q=CU = q=556.10"1%x 500 =2,78..1077C
q=278.10""C

c. Sion retire le mica

C'=g> ouC=8C"=C ==

55



C'=6,93.10"1F

La nouvelle charge

q =C'U

q' =693.107' x 500 = 3,47.1078C
q' =3,47.1078C

1.4.Association des condensateurs
1.4.1. Association en paralléle

e | .

q1 = CiUpp et qy, = CUpp.q = CoUyp
q=q1+ qz
CeUAB = GUAB + CZUAB = Ce = Cl + Cz

La capacité C, du condensateur équivalent a I’association de deux condensateurs en parallele
est égale a la somme des capacités de ces deux condensateurs.

Ce=Cl+CZ

e pour n condensateurs de capacités différentes, ona : C, Yj=; Ci
e Pour n condensateurs de capacités identiques : on a : C, = nCi
1.4.2. Association en série

U=U1+U2 etq=CI1+ q>

9 _q ,4q 11,1
—=—=+4+ = —=—4—
Ce € C  Co € G
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L’inverse de la capacité du condensateur équivalent a 1’association des condensateurs en série

s : . 11 1
est égal a la somme des inverses des capacités de ces deux condensateurs. —=oto
e 1 2

n 1

sy - oer 1
e pour n condensateurs de capacités différentes, on a : C—Z =17
e i

. : s o\ c
e Dans le cas ou I’on associe n condensateurs identiques de capacité Cy,ona: C, = :0
1.4.3. Energie emmagasinée dans le condensateur

Energie emmagasinée dans un condensateur de capacité C portant une charge g a pour
expression :

1 q?
E=-——
2C

Si Uyp est la tension aux bornes du condensateur de capacité. g = CUyp , ’expression de

I’énergie devient : E = %CU}B ouE = %qUAB

2. Oscillations électriques : circuit LC

Uas
| |
- -
[ |
. C
1 L H
— 0000000 ™

Considérons un oscillateur électrique constitué¢ par une bobine d’inductance L, de résistance
négligeable et un condensateur de capacité C. En 1’absence du courant et de tension, le
systéme n’évolue pas : il est en équilibre. Pour que des oscillateurs prennent naissance, il faut
avoir écarté le systeme en chargeant le condensateur.

2.1.Etude théorique

Soit un circuit constitué d’une bobine et d’un condensateur initialement chargé. Choisissons
le sens positif arbitrairement. g, est la charge de 14armature rncontr2e en tournant dans le
sens positif.

A linstant t Uyp = % aux bornes des condensateurs.

di
da _ _; 4

) ) di
La tension aux bornes de la bobine est : Uyg = L i —U,p ;donc v "

., d di d?

i = qaA et & = a4

dt dt dt?

d?qa
dt?

41yl q4
Nous déduisons que e =
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Nous retrouvons I’équation différentielle analogue a celle obtenue par le pendule élastique.
L’oscillateur LC est un oscillateur harmonique.

1 1
Posons:W(f:EzWO:\/T_C

Une solution de cette équation différentielle est donc de la forme.q(t) = Q,,cos(Wyt + ¢) de

L . . 1
charge g du condensateur est une fonction sinusoidale du temps de pulsation W, = —et de

VLC
période Ty = 2nVLC
Q. est ’amplitude maximale de la charge qui est constante et dépend des conditions initiales.

¢ est la phase a I’origine des dates.

e La tension aux bornes du condensateur est :Uyp = q?K = QTmcos(Wot + ¢). En posant
L’expression devient : U(t) = U,,cos(Wyt + @)
e [’intensité du courant est : i = % = —WyQ sin(Wyt + @)

i =1, cos (Wot + g)
Le circuit est parcouru par un courant alternatif sinusoidal de pulsation W, .

2.2.Etude énergétique

L’énergie cinétique totale du circuit a la date t est la somme de I’énergie du condensateur &,
et I’énergie de la bobine €, : & = ¢, + ¢

a4 _ Q3
g = f = —2’; cos?(Wyt + @)
1.. 1 . 1 1 .
€& = ELLZ = ELQ,ano2 sin?(Wot + @) = ELQmEsmz(Wot + )

g = 2—’;51'712 (Wt + @)
2
g =& +g = 2—’6" [cos?(Wot + @) + sin?(Wot + ¢)]

Q2
& = == = constante
t ™ o¢

L’énergie totale du circuit oscillant LC est constante. L’énergie de la bobine correspond a
I’énergie cinétique et I’énergie du condensateur correspond a 1’énergie potentielle.

3. Oscillations électriques en régime forcé
Quand le circuit oscillant est excité par un générateur qui impose une tension sinusoidale, on
dit qu’il est le siége d’oscillations forcées ou alors qu’il fonctionne en régime force.
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L’excitation est un dispositif qui impose a I’oscillateur sa fréquence propre N, subit ainsi la
fréquence N.

3.1.Circuit RLC en régime sinusoidal forcé
3.1.1. Généralités sur les régimes variables
a. Les grandeurs variables

Les lettres minuscules i(t)et u(t) représentent les grandeurs variables
b. Les grandeurs alternatives sinusoidales

La fonction i(t) telle que i(t) = I,,cos (wt) est I’expression d’une intensité alternative
sinusoidale. Un courant alternatif sinusoidal change de sens deux fois pendant une période.

De la méme fagon, une tension alternative sinusoidale se présenté par des fonctions telles
que :

u(t) = Uycos wt ou U(t) = Upcos (Wt + @)
I, et U, sontrespectivement I’intensité maximale et la tension maximale.
c¢. Notion de Phase
Considérons deux grandeurs alternatives sinusoidales i = I,,, coswt et u = U,,cos(Wt + ¢)

Définition : La phase ¢ de la fonction U(t) est par définition la phase de u(t) par rapport a
la fonction i(t). ¢ est exprimée en radians

On dit que :

e @ mesure I’avance de phase de u(t) par rapport a i(t) ou le retard de phase de i(t)
par rapport u(t). L’angle ¢ est algébrique.
e Lorsque I’angle ¢ est nul, les deux grandeurs sinusoidales sont en phase.

Exemple : i = I,,, coswt et u = UpcosWt donc i et u sont en phase.

0,

¢ Pour = + nirad , elle sont en opposition de phase
i = I, coswt et U = Uy cos(Wt+m) = —U,cosWt
% Quand ¢ = i%rad, elles sont en quadrature

Exemple : i = I,,, coswt et u = Uy, cos (Wt + g) = —U,,sinWt

W est en quadrature avance par rapport a i
3.1.2. Les Grandeurs efficaces

Le voltmetre et ’ampéeremetre en alternatif mesurent respectivement la tension efficace et
I’intensité efficace : Ueff et leff
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Umn

Im
Ueff = 7 etleff = 5
3.2.Notion d’impédance

L’impédance d’un dipdle est le quotient de la tension maximale U,,,, & ses bornes par
I’intensité maximale I,,,,, du courant qui le traverse.

7 = Umax __ Ueff\/E __Ueff

Imax  leffv2  leff

7 = Umax — Ueff
Imax leff

L’impédance est toujours positive et dépend de la fréquence.

3.3.Etude de quelques dipoles

A

Ugp

Soit un dipdle AB orienté de A vers B. Soit i I’intensité instantanée du courant dans le
dipole. Choisissons I’origine des dotes de sorte que i = I,,, coswt . Soit 4 = g la tension
aux bornes du dipdle p = U,,cos(Wt + ¢).

Déterminons I’expression de I’impédance Z et celle du déphasage ¢ de la tension par rapport
a ’intensité.

3.3.1. Conducteur ohmique
Soit un conducteur ohmique de résistance R. D’apres la loi d’ohms, ona: u = Ri
u = RIl,,coswt = RI,,cos(Wt + ¢).
Posons : U, = Rl

L’expression de I’'impédance Z est donc :

z7=Ym _Em _ p

Im Im
Z=R etp=0

L’impédance d’un conducteur ohmique est égale a sa résistance. La tension a ses bornes est
en phase de I’intensité du courant qui le traverse.
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3.3.2. Le Condensateur

‘ ‘
c
—
Uygp
. qu

i . Donc q4 est la primitive de i

dt
. Im .
i=1, coswtetq= %smwt x A

Si le condensateur est initialement déchargé , A = 0

I . I T
qu = 2sinwt = = cos (Wt - —)
w w 2

Nous savons que g4 = CUyp = Uyp = q?A

Donc u = é—’;‘/cos (wt — g) — Upaxcos(Wt + @)

Im

En identifiant les deux expressions, ona : U,, = w

L’impédance d’un condensateur de capacité C est :

Le déphasage de la tension par rapport a I’intensité est donc ¢ = g

3
v
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La tension aux bornes du condensateur est en retard de phase par rapport a I’intensité : ¢ = g

3.3.3. La Bobine

(R, L)
4 5000 -

Usa

Posons i = I, coswt et u = Uy = Ri + Lg—i
U = RI,, coswt — Lwl,, sin(wt) ou
Vs
U = RI,, coswt — Lwcos (Wt + ;)

Faisons la somme de deux fonctions sinusoidales de méme pulsation en utilisant la
construction de Fresnel.

Soit un axe de phase ox et un sens trigonométrique positif choisis.

% A latension U; = RI,, coswt, on associe le vecteur IZ tel que
||I71|| = Rl et 0% ,V, = 0 radian
s Alatension U, = Lwcos (Wt + g), on associe en vecteur 172 tel que ||I72 || = Lwl,
et EC) B 172 = z
2
% Alatension pu =y + p, = Upcos(wt + @), on associe un vecteur V tel que
7)) = U et (3%, 7) = ¢

A ]72
7 Lwl,
+
\ p ~_
0 ] >
RI,, [71 x

D’aprés le théoréme de Pythagore, ona: V2 = V2 + V2 donc UZ = R? 12, + L>W?2I3
UZ = IZ(R? + [2W?) = Uy, = L,VRZ + 2W?
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L’impédance d’une bobine de résistance R et d’inductance L est :

Z=U—m=M=1/R2+L2W2

Im Im

Z =NRE T W2

, . « e 1 .., V. LWI Lw
Le déphasage ¢ de la tension par rapport a i I’intensité est alors : tang = V—z =0 = = -
1 m

Lw
tang = —

1% Rl

Cosp="=—r =2
0S¢ =7 = LVRZ+L2ZW2  Z
R
Cosp = p
Remarque : Pour une inductance pure, (R = 0),ona: Z = LW, tanp = +oet ¢ = +§

3.3.4. Dipéle RLC série

U: Us

/THg00G

I
I
L C

D’apres laloi des tensions U = Uy + U, + U3 = Uyp

Soit g4 = q la charge de la premiére armature rencontre en tournant dans le sens positif et

. d
=4
dt
. dq di d?q q
U =Ri=R—; U,=L—=L— etlU; ==
1 at ' 2 dt dt? 37 ¢

On obtient I’équation différentielle d’un circuit RLC série qui est la suivante :

U=1Ld R

q
_+_
dt? dt c

% Impédance et déphasage

Posons i = I, coswt et la loi des tensions donne :

U=RI t + LWy cos (wt +2) + 22 cos (wt — %)
= RI,,cosw m €OS (Wt +—) + —-cos (w .

Faisons la somme des trois fonctions sinusoidales en utilisant la construction de Fresnel

% On associe a la tension U; un vecteur 171 de norme
Vil = Rl et @1 = (0%, V) = 07ad
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. \ . cd
% On associe a la tension U, un vecteur V, de norme
— I s
V2| = Lwi, et 9, = 0% ,V, = ~rad
. N . >
% On associe a la tension Uz un vecteur V3 de nome
] I — T
Vsl == et =o0x,V, =—-rad
V]| ow €t P3 ' V2 2

% On associe a la tension U un vecteur V de norme
1P|l = U et o = (0%, V) etV =V, +7V,+ 7V,

D’aprés le théoréme de Pythagore, ona: V? = V2 + (V, — V3)?
2
2 _ |p2 — 1)z
Uz = [R +(tw-—=) ]Im

L’impédance Z dépend de la pulsation w. Le déphasage de la tension sur I’intensité i du
courant est tel que :

Vo =V-
1

i
cw

tangp = —

Vi RI R
Vo ZIp z

cosg ==
Y=z
Remarque :

e Si@>0c'est—a—dire Lw > o la tension est en avance sur I’intensité. Le

circuit est dit inductif
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. N . 1 . . .
e Si p<O0c'est—a—dire Lw > o I’intensité est en avance sur la tension. Le

circuit est capacitif

L&H'm

L

Cw

e Si le circuit comporte une bobine de résistance interne r, ’expression de I’impédance

. 1\?
devient: Z = [(R+71)%2+ (LW - a)

e Siparcontre Lw = 1 alors ¢ = 0. Cela veut dire que I’intensité et la tension sont en
phase. On dit alors que le circuit est a la résonance. Donc Z = R
e Pour un circuit R, C I’expression de I’impédance est :

— / 241 . — -1
Z = |R +c2w2 ;tang W

u est en retard de phase sur i

4. Circuit RLC série ala résonance

Puissance en alternatif

4.1.Phénoméne de résonance électrique

L’impédance Z du dip6le RLC série dépend de la pulsation w imposée. La tension efficace
imposée est constante. L’intensité imposée efficace dépend de la pulsation w.
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I=2=1(w)= -

R2+(Lw—ciw)2
Etudions cette fonction I(w)

% Domaine de définition : D; = ]0, +oo[

-3
2 /2
& Dérivée: L = _y [RZ + (Lw _ i) ]
dw cw

(1+3)

Le signe de la dérivée est celui de - (Lw — ciw)

di 1 1
—=0>=>Lw——=0 soitw =—
dw cw VLC

Tableau de variation

@ O Wy
I'(w) + O -
7]
I(®) R
0 0]
Ig(wo) = %

al = iy i = duy il iy

w<wy, ;w=w, ;w>0

1 sz 19 5 5:
w<wy = —> Lw. L’effet de capacité I’emporte sur I’effet d’inductance.

w>0=Lw> $ .L’effet d’inductance 1I’emporte sur I’effet de capacité
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La résonance correspond au maximum de la courbe. A la résonance, la fréquence imposée par
le générateur est égale a la fréquence propre de I’oscillateur : N = N,

% Fréquence a la résonance

2
L’impédance d’un circuit RLC série Z = \/RZ + (Lw — ciw)
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Chapitre 8 : EFFET PHOTO ELECTRIQUES

1. Spectres atomiques
1.1.Spectres d’émission :

Les spectres atomiques d’émission sont constitués de raies fines correspondant a des
radiations monochromatiques bien déterminées. Les spectres d’émission sont caractéristiques
des atomes qui les produisent.

1.2.Spectres d’absorption

Les spectres atomiques d’absorption sont formés de raies noires et fines dans le spectre
continu de la lumiére blanche. Les longueurs d’ondes correspondantes ont des valeurs bien
déterminées.

1.3.Caractérisation d’un élément chimique

Chaque ¢élément chimique donne un spectre d’émission de raies caractéristique et qui permet
de I’identifier

2. Interprétation des Spectres
2.1.Quantification de I’énergie d’un atome

L’énergie d’un atome d’un atome ne peut prendre que certaines valeurs bien déterminée des
électrons d’un atome. On dit que I’atome est dans un niveau d’énergie.

Mécanique classique : E; = %mV2
Energie potentielle électro statique :Ep = qV = CV pour un électron
2.2.Les transitions électroniques

Le passage d’un atome d’un niveau d’énergie a un autre est une transition électronique.

E A ) En

Ep — Ep
Transition au cours de Transition au cours de

laauelle I’'atome nerd laauelle I’'atame recoit

Cette ¢énergie de transition est considérée de 1’ordre quelques électro volts (ev)
lev = 1,6.10719)

A chaque transition €lectronique correspond une énergie E = En — Ep. L’énergie associée
aux transitions ¢électroniques d’un atome est quantifiée
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2.3.L’énergie d’un Photon

Un faisceau lumineux dans le vide, peut étre considéré comme un onde qui se propage ou bien
un ensemble de photons en mouvement a la vitesse C. La longueur d’onde vaut alors :

A _ €

m U(K2).

L’énergie d’un photon est proportionnelle a sa fréquenceU. E = hU;hen J.setven Hz

h est une constance universelle qui porte le nom de constante de planch : h = 6,62.10734S]

Exemple : Calculer, en Joules et en ev 1’énergie d’un photon

e Ultraviolet de fréquence 3.10'°Hz
e De lumiére visible jaune de longueur d’onde 589nm( dans le vide)
e infrarouge de longueur d’onde 10um(dans le vide)

On donne € = 300000km/s.h = 6,6310‘34].5. e=16.10"1°C.
Solution

a) calculons I’énergie d’un photon en joules et en en ev
= Photon ultraviolet
E =hU

AN:E =6,3.103* x3.10'° = 1,99.10718

1,99.10718 ] x 1er
1,6.10719 j

ouk = =12, uev

= Photon de la lumiere jaune
c c
E=hU oul = 1 =>E—hz

—-34 8
AN:E =280 X310 _338.1071%;
589.10

3,38.1071% x 1ev

ouk =
1,6.10~19

=211ev

= Photon infrarouge :

c
E = hI
—38 8
AN : E = 6,63.10 _)(6 3.10 — 1’99 10_20]
3.10
1,99.10720 x 1ev
ou F = = 0,124 ev

1,610719
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2.4. Transition électronique avec émission ou absorption d’un photon

Es

HHEEE00-—

Ep

e Sil’atome passe au niveau d’énergie E,, au niveau d’énergie inférieur E, , un photon

est produit qui emporte 1’énergie E et sa fréquence Uy, est telle que :

E =E,—E, =hU,,

Es

~LBHEO060

Ee

e Pour que ’atome passe du niveau d’énergie E), au niveau d’énergie supérieure E, , il

faut qu’il capte un photon qui lui fournit I’énergie E
E =E, —E, = hUy,

L’énergie du photon produit ou abordé est égale a I’énergie des transactions €lectronique
mise en jeu.

2.5.Interprétation d’un Spectre d’émission

A toute transaction possible : n = p (Ey, E},) correspond un photon d’énergie hU,,, et donc

une lumiere monochromatique émise de fréquence Uy, et de longueur d’onde 4, telle

En—Ep c hc
we:0,, =——etA,, =— =
d np h " Up, En—Ep

Cette radiation apparait dans le spectre sous forme d’une raie fine et brillante.

Les raies brillantes des spectres d’émission correspondent aux transitions électroniques au
cours desquelles I’énergie de 1’atome diminue.

3. Spectre de I’hydrogéne
3.1.Niveaux d’énergie de ’atome d’hydrogéne

L’atome d’hydrogene étant le plus simple de tous les atomes, son spectre est relativement
facile a interpréter. Nous allons donc admettre la formule qui donne 1’énergie des niveaux de
I’atome d’hydrogene. L’¢électron de 1’atome se situe dans la couche (n = 1) , c’est I’état
fondamental ou de plus base énergie. Dans les états excités, il se place dans la couche

L(n = 2), dans la couche M(n = 3)...

A chacun de ces états, il correspond I’énergie E,, relative a I’électron dans la couche n, ce
nombre n €tant le nombre quantique principal. L’énergie E,, de I’atome est de la forme :
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_ EO . *
En——ﬁ :neN

E,, esttoujours négatif, E, est I’énergie

—18
e E,Joules:E,=218.10"1%; E, = 2,18.1112 J
e E, électronvolt: Ey =136 ev ; E, = 13,12617

o n=1:E=E, —E, =13,6 ev.(état fondamental)
*n=2:E=E==2=-34ev

(premier état excité,l'électron est dans le couche L
# n=3E=FE=="=-151ev.

(secod état excité,l'électron est dans la couche L
Ensuite, les niveaux se resserrent
E,=-085ev ; Es=—-0,54¢ev ; E;,=—-0,38¢ev
Lorsque n tend vers I’infini E,, tend vers 0

L’origine des énergies (E = 0) correspond donc a I’¢électron infiniment éloigné du noyau,
¢’est-a-dire a ’atome ionisé H* .

3.2.Interprétation du Spectre d’hydrogene

Lorsqu’une transaction s’effectue du niveau Ej, au niveau E, avec E;, > E), , il y’a émission
d’un photon d’énergie
hUyyp. Telque: E = E, — Ep = hUyp,

. -Ey _ —Ep
E, > E,impose — > donc

Eg

Eg
2 <32
n P2

n?>Pletn>p

En —E, =Eo(n—12—P—12) = AU,

V. —=Fo(l _1)y_FE(1_1
np T p \nz p2)" p\pz n2
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Chapitre 9 : DECROISSANCE RADIOACTIVE

1. Le noyau de I’atome
1.1. La composition d’un noyau

Le noyau d’un atome correspondant a un élément X comportant A nucléon et Z proton est
noté :4X . La masse d’un noyau ou d’un atome est souvent exprimée en unité de masse
atomique de symbole y .

L’unité de masse atomique est le douziéme de la masse de carbone 12.

1y = % avec N, la valeur de la constance d’Avogadro
1y = % = 1,66054.10%" kg
Proton Neutron Electron
Masse en 1,00728 1,00686 0,00055
Masse en kg 1,67263.10727 1,67492.107%7 9,1.10731
Charge + e 0 — e

Caractéristique des particules constituants I’atome .

1.2.  Les Isotopes d’un élément

Deux noyaux isotopes possedent le méme nombre de protons, mais différent par leur nombre
de neutrons plus généralement les noyaux 4X et 4,X sont des noyaux isotopes de
I’élément X .

L’abondance naturelle est le pourcentage en masse de chacun des isotopes dans le mélange
naturel d’un élément.

Exemple d’abondance isotopique naturelle pour les éléments oxygene et chlore.

20 99,76% 35 ¢l 75,4%
170 0,04% 37 ¢l 24,6%
120 0,2%
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2. La Radioactivité
Un noyau radioactif est un noyau instable qui se désintégre spontanément en donnant un

noyau différent et en émettant des particules @ ou [ et, souvent, un rayonnement. Le noyau
qui se désintegre est appelé noyau-pére et le noyau obtenu est appelé noyau-fils.

3. Lois de conservation et équation d’une désintégration nucléaire
Une désintégration nucléaire peut étre modélisée par une équation qui obéit aux deux lois
suivantes.

% Loi de conservation du nombre de charge

La somme des nombres de charge du noyau-fils et de la particule qui sont formés est égale au
nombre de charge du noyau désintégré (noyau-pere) Z = z; + z,
7

+» Loi de conservation du nombre de nucléons

La somme des nombres de nucléons du noyau-fils et de la particule qui sont formés est égale
aux nombres de nucléons du noyau désintégré (noyau-pere) A = A; + A4,

Exemple :

o Radioactivité a 4X — 423X + 4H,

Exemple : 233U — 23! Th + 3H,

On constate que cette équation de désintégration vérifie les deux lois énoncées ci-dessus.

: r . A=A1 +A2
e Conservation du nombre de nucléons : 5. "7 2,
: Z=Zl +Zz
[ ]
Conservation du nombre de charges ,-¢ "%

Les particules a sont émises avec des vitesses de 1I’ordre de 20.000km/s. Ce sont des
noyaux d’hélium 3H,

o Radioactivité B~ : Ce sont des électrons, notés _9 e. Ils sont émis a trés grandes
vitesse de I’ordre de 280.000km/s. et possedent une grande énergie. L’équation
séerit: 2X — A X+ le

Exemple : $9C, — SN, + Qe

Dans la classification périodique, le noyau-fils est placé dans la case suivante de celle du

noyau-pere

32P— 32 0
15 165 +_ie

Phosphore — Soufre

14 S— 14N +

0
6 7 -1€
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Carbone — azote
o Radioactivité B :

Dans la radioactivité 87 il y’a émission de position (,9 €). Le bilan s’écrit donc :
A A 0
72X — 5 X+ 4B

Dans la classification périodique, le noyau-fils est placé dans la case précédant de celle
du noyau-pére.

Cette fois « le fils précede le pere ». La position est I’antiparticule de I’¢lectron.
Exemple :

30
14

30 0
P = Sit e
19 19 0

o Désintégration 0

Le rayonnement 0 est un rayonnement ¢lectromagnétique de trés courte longueur d’onde ; il
est donc visible. Ce rayonnement se propage a la vitesse de la lumicre.

L’énergie E du photon est liée a la fréquence 9 ou a la longueur d’onde A de I’onde par les
formules :

c
E=h9= hi
Le photon d emporte la quasi-totalité de I’énergie de désexcitation du noyau.

Une radioactivité d pour un noyau excite issu d’une désintégration a, 3=, B+ peut se
schématiser comme suit :

nX —  ZX+0
Noyau excité Noyau dans son état fondamental

4. Décroissance radioactive
Le nombre de noyau (ou d’atome) d’une source radioactive diminue constamment au cours du
temps par transformation en d’autres noyaux. La loi de décroissance radioactive permet le
calcul du nombre de noyaux (atomes) restant a un instant ¢ quelconque.

4.1. Etablissement de la loi

Lors de la désintégration, notons N, le nombre initial des noyaux radioactifs X(t = 0); N
leur nombre a I’instant t et N + dN leur nombre a ’instant infiniment voisin t + dt:
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t+dt N+dN

N diminue au cours du temps, donc dN est négatif.

N—(N+dN)=—dN

Le nombre de noyaux désintégrés entre les instants t et t + dt est égal a —dN
Notons : —dN = ANdt

A est une constante de proportionnalité qui dépend de la nature du noyau X et porte le nom de
constante radioactive du nucléide.

Par intégration, on obtient :

dN

— = —Adt
N
InN = —At + constante

At =0 ona: N = Ny; donc Constante = InN,

InN = —At + InN,

InN — InNg = —At = In— = —At

0

Et en prenant I’exponentielle de chaque membre :
Dot > N(t) = Nye™*

La fonction N(t) est une exponentielle décroissante. C’est pourquoi on utilise 1’expression
décroissance radioactive

Le nombre des noyaux radioactifs diminue exponentiellement en fonction du temps.

La loi de décroissance radioactive peut aussi s’exprimer en fonction de la masse sous la
at

forme : m = mye”
4.2. Période radioactive
a) Définition : La période radioactive T d’un nucléide est le temps nécessaire pour que
la moitié des noyaux de ce nucléide subisse la désintégration. Elle porte aussi le nom
de demi-vie.
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b) Relation entre AetT

Utilisons la loi de décroissance radioactive sous la forme lnN— = —At
0
N, No 1
At =0 lenombreest NyetaT,il vaut 70 donc NL = —At; lnz — At
0

—In = —At

In2 0,69
T=Z=7

La période T est inversement proportionnelle a la constante radioactive A . Par conséquent,
la loi de décroissance radioactive s’écrit :

t

- -0,693=

:N = Nye *ou N = Nye T
Dans le systéme international, 1 s’exprime en S~1

4.3.  Activité d’une source radioactive
a) Définition : I’activité d’une source radioactive est le nombre de désintégration qui s’y
produisent pendant 1’unité de temps (1S).

Dans le systéme international, I’activité d’une source radioactive s’exprime en désintégration
par seconde, soit S~ . Pour éviter une confusion avec 1’unité de fréquence ou de constante
radioactive, , on a donné un nom a ’unité , ST d’activité : le becquerel , (Bq).

Le becquerel (Bq) est 'unité SI d’activité, il représente 1 désintégration par seconde.

Remarque : L’ancienne unité d’activité : le curie (Ci) est encore utilisée ; c’est I’activité de
1g de radium et 1 Ci = 3,7.101°Bq

b) L’expression de I’activité d’une source

Soit A D’activité d’une source a I’instant ¢t . Avec —dN le nombre de désintégration pendant

T —-dN . . —dN
le temps dt, en 1s, le nombre de désintégration vaut donc - Ainsi: A = —

La relation différentielle : —dN = ANdt nous conduit a I’expression

A==Z=ANou A=AN

Utilisons la loi de décroissance radioactive : N = Nge™*t ; A = AN = ANye

AN, est I’activité de la source a I’instant t = 0, on peut donc écrire : A = Age

227

0 Th est la radioactif.

Exemple : Le Thorium

a) Ecrire I’équation bilan de sa désintégration radioactive sachant qu’elle conduit au
radium R,
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b) La période (ou demi-vie) du thorium 227 vaut : T = 18,3 jours . Calculer I’activité
Ay d’un échantillon de masse 1mg de thorium 29207 Th. N = 6,02.10%3mol™?

¢) Quelle masse de thorium 227 de 1’échantillon. Considéré a-t-elle disparu au bout de
36h ? Quelle est alors 1’activité de I’échantillon ?

Solution :

a) Ecrivons I’équation bilan de la désintégration radioactive.
2'Th — $H, + %X
La courbe conduit a :

{227=4+A :{A=223
90=2+7 Z = 88

, 227 4 223
D’ou finalement ona: ;' Th — 3H, + “G3R,

b) L’activité de la source radioactive est égale au nombre de désintégration par seconde

—dN
Ay — = AN,
A=22= 088 _ 438107751
T ~ 183 X 24 x3600
_ 1073 23 _ 18
Ny = PYYS X 6,02.10%° = 2,65.10"° noyaux

Ay = ANy = 4,38.1077 X 2,65.10'8 = 1,16..10'2Bq
Ay = 1,16..10'2Bq
c) La masse de thorium présente au temps.
t =36h = 36 x 3600 = 1,30.10°S
m=mye M =1 x e *38,1077 x 1,30.10° = 0,945mg
m = 0,945mg
La masse de thorium disparu
m' =1- 0,945 = 0,055mg

5. Réaction nucléaire provoquée
Il y’a réaction provoquée lorsque le choc d’un noyau projectile sur un noyau cible engendre
de noyaux nouveaux

5.1. La Fission

Il y’a fission ‘un noyau lorsque le choc avec un neutron le brise en deux noyaux plus légers.
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Exemple : jn + Pu — %eSr+ '8X, +2in

Uranium Strontium Xénon
235 91 140

%n+ 2 U — 36KT + 56 Ba+3%n
Uranium Kripton baryum

La fission de I’Uranium s’effectue en chaine, car elle produit d’avantage de neutrons qu’elle
consomme. Les réactions de fission de 1’'uranium sont provoquées par des neutrons
thermiques.

5.2.

5.3.

Les nucléides fissiles
Un nucléide est fissile si le noyau correspondant est capable de subir la réaction de
fission.
Un nucléide est fertile si le noyau correspondant peut par réaction nucléaire, engendrer
un nucléide fissile.

La Fusion

Il y’a fusion lorsque deux noyaux 1égers s’unissent et constituent un noyau plus lourd.

27742
iH+1H

— §H+%H

Deutériun Triton

Exercice d’application

1))

b)

L’activité A d’une substance radioactive représente le nombre de désintégration par

. . -d .
seconde et peut s’exprimer par la relation A = d—tN . D’autre part la loi de

décroissance radioactive se traduit par la relation (Nt) = Nye~*t ou N, représente le
nombre de particules radioactivea t = 0

Quelle est I'unité 1égale d’activité et comment nommé —t-on A ?

Etablir la relation donnant A(t) en fonction de N et 1 ou A(t) est I’activité de la
substance radioactive a I’instant t. En déduire 1’expression donnant

TN . A ae \
Ay (ativité at = 0) et exprimer le rapport % que vous pouvez utiliser a la derniere
0

question du 2)

Qu’appelle-t-on période radioactive T ? Etablir la relation entre A et T

L’isotope 14 du carbone est radioactif. Sa formation est provoquée par le choc des
neutrons présents a haute altitude, son azote ZN. On obtient ainsi un atome 13C et
une particule de type 4X que 1’on identifiera en appliquant les lois de conservation.
Ecrire I’équation de cette réaction nucléaire

L’Isotope 14 du carbone est émetteur 5~ Ecrire I’équation de cette désintégration.

La période ou demi-vie du carbone 14 a pour valeur T = 5590 années . Pour dater
un échantillon de bois ancien, on mesure son activité A et on la compare a celle d’un
bois récent. On rappelle que le carbone de 1’atmosphére contient en proportion
constante les différents isotopes de carbone. Les plantes vivantes assimilent le carbone
dans I’atmosphere. A leur mort, le processus d’assimilation s’arréte. Un échantillon de
bois ancien donne 325 désintégrations par minute. Un échantillon de méme masse de
bois récent donne 1350 désintégrations par minute. Quel est I’age du bois ancien ?
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Solution :

1) a- L’unité légale d’activité d’un corps radioactif est le becquerel (Bq). La constante A
est la constante radioactive.

b- L’activité d’une source est par définition

A(t) = —Z—IZ or N = Nye ™ d’ou A(t) = ANye . On a alors A(t) = AN

At =0,0na N = Ny d'oi Ay = ANy . Il convient A(t) = Age™ d'on 42 = e~
0

c- La période radioactive est la durée T au bout de laquelle la moitié des noyaux initialement
présents dans I’échantillon a disparu.

t t —

N, _ N . _ 1
N = 70 pour t =T dans la formule N = Nye At ol on obtient et = >

2) a- L’équation
BN 4+ n — 14C + 10
b- ¢ - 1IN+ le

c- Calcul de I’age du bois ancien

A __In2

_ . A

Z=e Mot In22 = At ==t
Ao A T

T , A
t=—In=2

in2 A

5590 , 1350 , )

AN:t = m—zlna = 11484 années environ

6. Noyaux, masse et énergie
6.1.  Aspect énergétique des réactions nucléaires
6.1.1. Energie libérée par une désintégration radioactive

Considérons la désintégration spontanée du radium : *?°R,
226 222 4
gsRa — “geRn +2He +0

Cette réaction nucléaire libeére de I’énergie sous deux formes : I’énergie cinétique et de
I’énergie rayonnante.

6.1.2. Perte de masse
e Avant laréaction : m,V = m(226Ra) = 2259770 N
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e Apres laréaction : mp = m(226Rn) + m( 4He)
mgp = 221,970 + 4,0015 = 225,9718 u

On constate que m,p < m,V

Conclusion : Dans toute réaction nucléaire spontanée, la masse des noyaux apres la réaction
est inférieure a la masse des noyaux avant la réaction

On appelle perte de masse la différence entre la masse totale m,V avant la réaction et la
masse totale m,p apres la réaction : perte de masse masse = m,V —myp > 0

Calculons la perte de masse dans I’exemple précédent :

m,V —mgp = 225,9770 — 225,9718 = 0,0052

C’est la perte de masse qui est a I’origine de I’énergie libérée par une réaction nucléaire.
6.1.3. Relation d’Einstein

Toute particule de masse m possede au repos, une énergie &, donnée par la relation :
gy = mc? avecc =3.108m/s

6.2.  Unité de masse et énergie
» Les Chimistes expriment parfois les énergies des liaisons chimiques en eV
» Les physiciens utilisent couramment le méga .

1MeV = 10%eV

1leV =1,6.1071j et 1MeV =1,6.10713

D’aprés la relation d’Einstein,  une masse m = 1U = 1,66055.10%” kg . Correspond une
énergie d’environ 931,5 MeV

6.3. Défaut de masse d’un noyau

On appelle défaut de masse d’un noyau, la différence entre la masse des nucléons séparés et
au repos, et la masse du noyau au repos

Pour un nucléide 4X , le défaut de masse est : [ZmP + (4 — Z)m,,] — m(4X) oumP et m,,
sont respectivement la masse du proton et du neutron.

6.3.1. Energie de liaison

L énergie de liaison E, d’unnoyau du nucléide 42X est 1’énergie libérée, lois de sa formation
a partir des nucléons sépares et au repos : E, = [ZmP + (A — Z)m,].c? —m X c?

L’énergie de liaison E, d’un noyau est I’énergie qu’il faut lui fournir lorsqu’il est au repos,
pour le dissocier en ses nucléons isolés et séparés.
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6.3.2. Fission et fusion

e La fission est une réaction nucléaire provoquée au cours de laquelle un noyau lourd
¢éclate généralement en deux fragments sous I’impact de neutron. La fission de
certains noyaux libére de I’énergie.

e La fusion est une réaction nucléaire provoquée au cours de laquelle deux noyaux
l1égers fusionnent pour former des noyaux plus lourds.

La fusion des noyaux légers libére de I’énergie
6.3.3. Bilan énergétique

Les réactions de fusion et de fission vérifient les équations de conservation : conservation de
la charge électrique, conservation du nombre de nucléon et conservation de I’énergie.

L’énergie Q libérée sous la forme d’énergie cinétique et de rayonnement lors d’une réaction
nucléaire est égale au produit de la perte de masse par : ¢?

Q = (myV — myP)c?

Exemple : Le combustible des réactions de fusion dans les futures centrales est un mélange de
deutérium (d) et de tritium (t). La réaction de fusion est la suivante :

2H+3H > 3H, + in

1) Calculer la quantité d’énergie libérée au cours de cette réaction nucléaire.
2) Calculer la quantité d’énergie en joule libérée lors de la formation d’une mole
d’hélium soit environ 4g

Données :
m(d) = 2,01355 U ;
m(t) = 3,01550 U;
m(n) = 1,00866 U ;
m(3H,) = 4,00150 U
Solution :
1) Calculons la perte de masse
mgV —m,P = (2,01355 + 3,01550) — (1,00866 + 4,00150)
=1,889.107%2U
Q = (mgV —mgP)c?

Q =17889.1072 x 931?75 = 17,6 MeV
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2) L’¢énergie libérée lors de la formation d’une mole d’hélium vaut :
E=Ny, XQ
E =6,02.1023 x17;6 x1,6.10713 =1,70.101% )
Exemple : Dans un « pile atomique » ; une des réactions est le suivante :
22U+ n— 288, + 12X, + xln

1) Déterminer en les justifiant, les valeurs de Z et de x

2) a- Calculer la perte de masse
b- calculer en joule et en MeV 1’énergie libérée par la fission d’un noyau d’uranium
235

3) a- Calculer I’ordre de grandeur de 1’énergie libérée par la fission de 5,00g d’uranium
235
b- Calculer la masse de pétrole libérant, par combustion, la méme énergie

Données : 22°U:234,99332 U ; °*S, : 93,89446 U ; *° X, = 139,89194 U .;
in =1,00866 U

Pouvoir calorifique du pétrole U2MJ. kg~!

N, =6,02.10%3>mol™t. U = 1,66054.10"%"kg

Solution

1) Les valeurs de x et z doivent vérifier la conservation des nombres de nucléons et de
charge.

235+1=94+140+x> x=2
92 # 38 +z
=7 =54
L’équation est 233U + In — 385, + 129X, + 2in
2) a- La perte de masse

mgyV —mg,P = m(235U) + m, — m(94Sr) -m(*°Xx,) - m,
m,V —m,P = 0,19826 U

b- Energie
e = (myV —m,P)C?

AN : e =0,19826 x 1,6605410727 x (3.108)? = 2,9588.107 11 J
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£=29588.10"11]
& e, — MeV

_ 2958810711
"~ 1,6022.10-13

= 184,67MeV

3) a- L’énergie libérée par 5g d’uranium
n=——=213.10"2 mol
235

Nombre d’atome N =n X Ny,

N =2,13.107% x 6,02.10%% = 1,28.10%? atomes
£=2,9588.10"11 x 1,28.10%% = 3,79.10Y)

b- La masse du pétrole

11
_ 379108 o 103 kg

Z 7 42106
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