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I. MECANIQUE 

Chapitre I: LA CINEMATIQUE 

Définition : la Cinématique étudie les mouvements indépendamment des causes qui les 

engendrent ou les modifient. 

1. Notion de référentiel  

La  description d’un mouvement d’un point est relative au référentiel d’espace choisi. Dans  

l’étude d’un mouvement, il importe de toujours préciser le référentiel choisi. 

2. Repérage d’un point    

2.1. La trajectoire  

La trajectoire d’un point est l’ensemble des positions successives qu’il occupe au cours de son 

déplacement par rapport à un repère d’espace donné. 

2.1.1. Trajectoires rectilignes   

Plus généralement, si un point décrit est une droite, sa trajectoire est dite rectiligne. 

2.1.2. Trajectoires Curvilignes  

Plus généralement, quand la trajectoire d’un point n’est pas rectiligne, elle est dite curviligne. 

2.2.Vecteur-Position  

La position d’un point 𝑀 au cours de son mouvement peut être définie soit par : 

 Ses coordonnées, cartésiennes 𝑥, 𝑦, 𝑧 dans un repère orthonormé lié au référentiel. 

 Son abscisse curviligne 𝑆 =  𝑂𝑀̅̅ ̅̅ ̅  

 Son abscisse angulaire 𝜃 

2.3.Notion de repère d’espace et de repère temps 

Pour décrire les caractéristiques d’un mouvement, il faut utiliser un repère d’espace et un 

repère temps : 

 un repère d’espace est déterminé par un point 𝑂 lié au référentiel d’observation et une 

base. 

 un repère temps permet de mesurer. 

2.3.1. Repérage sur une droite 
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Le vecteur-position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 

2.3.2. Repérage sur une droite 

          

 

 

 

 

 

 

 

Le vecteur-position  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 + 𝑦𝑗 

2.3.3. Repérage dans l’espace  

 

 

 

 

 

 

 

 

 

 

Le vecteur –position est repérée par ses coordonnées 𝑥, 𝑦, 𝑧 telles que 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗ . 

Les coordonnées cartésiennes 𝑥 = 𝑓(𝑡),   𝑦 = 𝑔(𝑡) 𝑒𝑡 𝑧 = ℎ(𝑡) sont les équations horaires ou 

paramétriques de la trajectoire. 
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𝑀2(𝑡2) 

𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑀1(𝑡1) 

𝑂𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 
𝑂𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑢⃗⃗ 

𝑗 

𝑘⃗⃗ 

𝑖 
𝑂 

𝑦 

𝑥 

Dans le plan, l’équation cartésienne 𝑦 = 𝑓(𝑥)  s’obtient en éliminant la variable 𝑡 dans les 

expressions algébriques des deux lois horaires 𝑥(𝑡)  𝑒𝑡 𝑦(𝑡) . 

Exemple : les coordonnées cartésiennes d’un point mobile sont :𝑥 = 4𝑡 − 4 𝑒𝑡 𝑦 = 2𝑡2 − 2 

dans le repère(𝑜, 𝑖 , 𝑗). 

Déterminons la trajectoire de ce point mobile. 

𝑡 =
𝑥+4

4
  ⇒  𝑦 = 2(

𝑥+4

4
 )2 − 2 ⇒  𝑦 = 2 (

𝑥2+8𝑥+16

16
) − 2  

  

⇒ 𝑦 =
𝑥2+8𝑥+16

8
−
16

8
 ⇒  𝑦 =  

𝑥2+8𝑥+16−16

8
 ⇒ 𝑦 =

𝑥2+8𝑥

8
  

 

𝑦 =
𝑥2

8
+ 𝑥  

3. Vecteur-vitesse 

Définition : dans un référentiel d’espace muni du repère orthonormé(𝑜, 𝑖 , 𝑗,⃗⃗⃗ 𝑘⃗⃗), un mobile 

ponctuel est considéré à deux instants différents de date 𝑡1 𝑒𝑡 𝑡2 ou il occupe les positions  

𝑀1 𝑒𝑡 𝑀2 

 

 

 

 

 

 

 

 

 

 

 

Le quotient 
𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑡2−𝑡1
  est le vecteur-vitesse moyen du point mobile pendant la durée 𝑡2 − 𝑡1. 

𝑉𝑚⃗⃗ ⃗⃗ ⃗ =
𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑡2−𝑡1
=

𝑂𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −𝑂𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑡2−𝑡1
 . C’est une grandeur vectorielle. 
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𝑀 

𝑉⃗⃗ 

 

(+) 

𝑇⃗⃗ 𝑣⃗ 

𝑁⃗⃗⃗ 

𝑀 

 

Par définition, le vecteur-vitesse 𝑉⃗⃗ du point en 𝑀 à la date 𝑡 (dit vecteur-vitesse instantanée) 

est la limite de ce quotient lorsque 𝑡2 𝑡𝑒𝑛𝑑 𝑣𝑒𝑟𝑠 𝑡1 :𝑉⃗⃗ = 𝑙𝑖𝑚
𝑡2→𝑡1

 
𝑀1𝑀2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑡2−𝑡1
   

Le vecteur –vitesse 𝑉⃗⃗ est la dérivée par rapport au temps du vecteur-position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ ;  𝑉⃗⃗ =
𝑑𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
 

 

 

 

 

 

Les caractéristiques du vecteur-vitesse à l’instant 𝑡 sont : 

 Origine : la position du mobile à l’instant 𝑡, 

 Direction : la tangente  en 𝑀 à la trajectoire  

 Sens : le sens du mouvement  

 mobile ou intensité : la vitesse instantanée du mobile à la date 𝑡. 

3.1.Expression de 𝑽⃗⃗⃗ dans l’espace 

Dans la base (𝑜, 𝑖 , 𝑗,⃗⃗⃗ 𝑘⃗⃗),le vecteur –position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ a pour expression : 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗. 

𝑉⃗⃗ =
𝑑𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘⃗⃗) =

𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘⃗⃗  

En notant 𝑉𝑥 =
𝑑𝑥

𝑑𝑡
= 𝑥̇, 𝑉𝑦 =

𝑑𝑦

𝑑𝑡
= 𝑦̇ 𝑒𝑡 𝑉𝑧 =

𝑑𝑧

𝑑𝑡
𝑧̇ , 

Il vient{
𝑉⃗⃗ = 𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧𝑘⃗⃗

𝑉 = 𝑥̇𝑖 + 𝑦̇𝑗 + 𝑧̇𝑘⃗⃗
  

Et 𝑊 = √𝑥̇2 + 𝑦̇2 + 𝑧̇2 = √𝑉𝑥2 + 𝑉𝑦2 + 𝑉𝑧2 

La norme de vitesse s’exprime en mètre par seconde de symbole 𝑚/𝑠. 

3.2.  Expression de  𝑽⃗⃗⃗ dans la base curviligne  
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𝑀 

𝑎𝑥𝑖 

𝑎𝑦𝑗 

𝑗 

𝑖 

 

Le vecteur -vitesse du point 𝑀 dans la base (𝑇⃗⃗, 𝑁⃗⃗⃗) est donnée par l’expression  

𝑉⃗⃗ =
𝑑𝑆

𝑑𝑡
𝑇⃗⃗  

Dans la base  (𝑇⃗⃗, 𝑁⃗⃗⃗), le vecteur vitesse 𝑉⃗⃗ est déterminé par les composantes : 

𝑉𝑇 = 𝑉𝑆 =
𝑑𝑆

𝑑𝑡
= 𝑆 𝑒𝑡 𝑉𝑁 = 0  

Cas particulier d’une trajectoire circulaire où  

𝑆 = 𝑅𝜃  𝑜𝑛 𝑎 𝑎𝑙𝑜𝑟𝑠 ∶  𝑉𝑇 = 𝑉𝑆 =
𝑑𝑆

𝑑𝑡
= 𝑅

𝑑𝜃

𝑑𝑡
= 𝑅𝑊  𝑎𝑣𝑒𝑐 𝜃̇ =

𝑑𝜃

𝑑𝑡
= 𝑊  

𝑉 = 𝑅𝑊  

W est la vitesse angulaire en  𝑟𝑎𝑑/𝑠 . 

4.  Le vecteur –accélération 𝒂⃗⃗⃗ 

Le vecteur-accélération d’un point mobile 𝑀 est égal à la dérivée par rapport au temps de son 

vecteur vitesse en 𝑀. 

𝑎⃗ =
𝑑𝑽⃗⃗⃗

𝑑𝑡
 . 𝑑𝑒 𝑝𝑙𝑢𝑠 𝑉⃗⃗ =

𝑑𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
 𝑑𝑜𝑛𝑐   𝑎⃗ =

𝑑2𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡2
  

  𝑎⃗ =
𝑑2𝑂𝑀⃗⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡2
  

Le vecteur-accélération d’un point mobile 𝑀 est égal à la dérivée seconde par rapport au 

temps de son vecteur position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗. 

4.1. Vecteur-accélération en coordonnées cartésiennes 

Dans le repère (𝑜, 𝑖 , 𝑗), on a 𝑉⃗⃗ = 𝑉𝑥𝑖 + 𝑉𝑦𝑗. Le vecteur-accélération  𝑎⃗ s’écrit donc : 

𝑎⃗ =
𝑑𝑽⃗⃗⃗

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑉𝑥𝑖 + 𝑉𝑦𝑗). 𝑖 𝑒𝑡 𝑗  sont des vecteurs constants. 

𝑎⃗ =
𝑑𝑉𝑥

𝑑𝑡
𝑖 +

𝑑𝑉𝑦

𝑑𝑡
 𝑗 =

𝑑2𝑥

𝑑𝑡2
𝑖 +

𝑑2𝑦

𝑑𝑡2
𝑗 = 𝑥̈𝑖 + 𝑦̈𝑗  

𝑎⃗ (𝑎𝑥 = 𝑉𝑥
′ = 𝑥̈; 𝑎𝑦 = 𝑉𝑦

′ = 𝑦̈)  

 

 

 

 

𝑎 
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𝑎⃗ 

𝑖 

𝑗 

𝑜 

𝑎⃗𝑇 

𝑎⃗𝑁 

𝑁⃗⃗⃗ 

𝑀 

 

(𝐷) 𝑖 𝑀 𝑉⃗⃗ 

 

En coordonnées cartésiennes, les coordonnées du vecteur-accélération, sont égales : 

 aux dérivées par rapport au temps des coordonnées du vecteur-vitesse ; 

 aux dérivées secondes par rapport au temps des coordonnées du vitesse position du 

mobile 

‖𝑎⃗‖ = √𝑎𝑥2 + 𝑎𝑦2 = √(
𝑑2𝑥

𝑑𝑡2
)
2

+ (
𝑑2𝑦

𝑑𝑡2
)
2

  

4.2. Vecteur-accélération dans la base de Frenet  

  

 

 

 

 

 

 

 

 

Dans la base de Frenet  (𝑇⃗⃗, 𝑁⃗⃗⃗) et par rapport au repère d’espace  (𝑜, 𝑖 , 𝑗 ⃗⃗⃗ ),on a :                      

𝑎⃗ = 𝑎𝑇 𝑇⃗⃗ + 𝑎𝑁 𝑁⃗⃗⃗ 

𝑎⃗ |
𝑎𝑇=

𝑑𝑉

𝑑𝑡

𝑎𝑁=
𝑉2

𝑅

  

On admet que 𝑎𝑇 =
𝑑𝑉

𝑑𝑡
 (accélération tangentielle) et  𝑎𝑁 =

𝑉2

𝑅
 (accélération normale) où 𝑅 est 

le rayon de courbure de la trajectoire 
𝑉2

𝑅
> 0, l’accélération normale est toujours positive donc 

le vecteur-accélération est toujours dirigé vers l’intérieur de la concavité de la trajectoire. 

5. Etude cinématique de quelques mouvements 

5.1.Mouvement rectiligne uniforme  

 

 

 

𝑜 
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La position du mobile 𝑀 est définie par son abscisse 𝑥. Le vecteur-position 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗, le vecteur-

vitesse 𝑉⃗⃗ et le vecteur-accélération s’écrivent : 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 , 𝑉⃗⃗ = 𝑉𝑥 𝑖 𝑒𝑡 𝑎⃗ = 𝑎𝑥𝑖 

 Un mobile est animé d’un mouvement rectiligne uniforme : 

 Si la trajectoire est une droite 

 et si la vitesse reste constante et l’accélération est nulle 

 Equation cinématique d’un mouvement rectiligne uniforme. 

𝑉 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑜𝑢 𝑉⃗⃗ = 𝑉𝑥 𝑖   

𝑎 =
𝑑𝑉

𝑑𝑡
= 0 𝑑′𝑜𝑢 𝑎𝑥 = 0  

L’équation horaire est : 𝑥 = 𝑉𝑡 + 𝑥0 

Dans un mouvement rectiligne uniforme, l’abscisse est une fonction affine du temps. 

5.2. Mouvement rectiligne Uniformément varié 

Un mobile est animé d’un mouvement uniformément varié : 

 Si la trajectoire est une droite  

 et si le vecteur-accélération 𝑎⃗ est constant (porté par la droite) 

 L’expression de la vitesse est : 𝑉 = 𝑎𝑡 + 𝑣0        (1) 

 L’expression de l’abscisse 𝑥 𝑒𝑠𝑡 ∶ 𝑥 =
1

2
𝑎𝑡2 + 𝑣0𝑡 + 𝑥0          (2) 

Cas particulier, si 𝑉0 = 0 𝑒𝑡 𝑥0 = 0  les équations précédentes se simplifient : 

 𝑉 = 𝑎𝑡 et  𝑥 =
1

2
𝑎𝑡2 

Relation indépendante du temps entre  𝑒𝑡 𝑥 . 

En éliminant 𝑡  entre (1)𝑒𝑡 (2), 𝑜𝑛 𝑜𝑏𝑡𝑖𝑒𝑛𝑡 : 

𝑉2 − 𝑉0
2 = 2𝑎(𝑥 − 𝑥0)  

 Mouvements accélérés ou retardés  

 Un mouvement est accéléré si le produit 𝑎⃗. 𝑣⃗ est positif, soit 𝑎𝑥. 𝑣𝑥 > 0 selon  (𝑜, 𝑖) . 

𝑎𝑥 𝑒𝑡 𝑣𝑥   ont donc même signe. 

C’est l’exemple de la bille en chute libre. 

 Un mouvement est retardé si le produit 𝑎⃗. 𝑣⃗ est négatif, soit 𝑎𝑥. 𝑣𝑥 < 0 selon (𝑜, 𝑖). 

𝑎𝑥 𝑒𝑡 𝑣𝑥   ont donc de signes contraires. 

C’est le cas d’une bille lancée verticalement vers le ciel. 
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 𝑀(
𝑥

𝑦
) 

𝑔 

𝑅 

𝑥 

𝜃 

𝑎⃗ 

 

5.3.Mouvement circulaire uniforme  

Repérage par les coordonnées cartésiennes de  𝑀 

 

 

 

 

 

 

 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ {
𝑥 = 𝑅𝑐𝑜𝑠𝜃
𝑦 = 𝑅𝑠𝑖𝑛𝜃

 

 Vitesse angulaire 

L’abscisse curviligne  𝑆 = 𝑅𝜃 𝑎𝑣𝑒𝑐 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , on a : 

𝑉 =
𝑑𝑆

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑅𝜃) = 𝑅

𝑑𝜃

𝑑𝑡
= 𝑅𝑊, 𝑎𝑣𝑒𝑐 𝑤 =

𝑑𝜃

𝑑𝑡
= 𝜃̇  

La vitesse angulaire en  𝑟𝑎𝑑/𝑠  est la dérivée par rapport au temps, de l’abscisse angulaire 

 (en rad). L’équation horaire s’écrit : 𝜃 = 𝑊𝑡 + 𝜃0.     𝐴𝑡 = 0 , 𝜃0 = 0 𝑑′𝑜𝑢 𝜃 = 𝑊𝑡 

En coordonnées cartésiennes, le vecteur-vitesse a pour expression : 𝑉⃗⃗ (𝑉𝑥 =
𝑑𝑥

𝑑𝑡
; 𝑉𝑦 =

𝑑𝑦

𝑑𝑡
)   

𝑥 = 𝑅𝑐𝑜𝑠𝑤𝑡 ⇒  𝑉𝑥 =
𝑑𝑥

𝑑𝑡
= −𝑅𝑊𝑆𝑖𝑛𝑤𝑡 

𝑥 = 𝑅𝑆𝑖𝑛𝑤𝑡 ⇒ 𝑉𝑦 =
𝑑𝑦

𝑑𝑡
= 𝑅𝑊𝐶𝑜𝑠𝑤𝑡  

𝑉⃗⃗ = 𝑉𝑥 𝑖 + 𝑉𝑦 𝑗 = 𝑅𝑊𝑠𝑖𝑛𝑤𝑡𝑖 + 𝑅𝑊𝑐𝑜𝑠𝑤𝑡𝑗  

‖𝑉⃗⃗‖ = √𝑉𝑥2 + 𝑉𝑦2 = √𝑅2𝑊2𝑆𝑖𝑛2𝑤𝑡 + 𝑅2𝑊2𝐶𝑜𝑠2𝑤𝑡 = 𝑅𝑊  

𝑉 = 𝑅𝑊  

 Accélération du mobile  

Les coordonnées du vecteur-accélération en coordonnées cartésiennes sont :                     

 𝑎⃗ (𝑎𝑥 =
𝑑𝑉𝑥

𝑑𝑡
;  𝑎𝑦 =

𝑑𝑉𝑦

𝑑𝑡
) 
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𝑜 𝑣⃗ 𝑎⃗ 

𝑖 
𝑀2(−𝑥𝑚) 

𝑀1(𝑥𝑚) 

𝑎𝑥 =
𝑑𝑉𝑥

𝑑𝑡
= −𝑅𝑊2𝑐𝑜𝑠𝑤𝑡 𝑒𝑡 𝑎𝑦 =

𝑑𝑉𝑦

𝑑𝑡
− 𝑅𝑊2𝑠𝑖𝑛𝑤𝑡  

𝑎⃗ = 𝑎𝑥 𝑖 + 𝑎𝑦 𝑗 = −𝑅𝑊
2𝑐𝑜𝑠𝑤𝑡𝑖 − 𝑅𝑊2𝑠𝑖𝑛𝑤𝑡𝑗   

𝑎⃗ = −𝑊2(𝑅𝑐𝑜𝑠𝑤𝑡𝑖 + 𝑅𝑠𝑖𝑛𝑤𝑡𝑗)  

𝑎⃗ = −𝑊2𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗  

Les vecteurs 𝑎⃗ 𝑒𝑡 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ ont même direction et sont de sens contraires. 

Dans un mouvement circulaire uniforme, le vecteur-accélération est porté par le rayon et 

dirigé vers le centre. On dit qu’il est centripète. Sa norme est  𝑎 = 𝑅𝑊2 

La période 𝑇  d’un mouvement circulaire uniforme est la durée pendant laquelle le mobile 

effectue un tour. 

Pour un tour, 𝜃 = 2𝜋 𝑒𝑡 𝑡 = 𝑇       𝜃 = 𝑤𝑡 ⇒ 2𝜋 = 𝑤𝑇 ⇒ 𝑇 =
2𝜋

𝑤
 

𝑇 =
2𝜋

𝑤
  

La fréquence 𝑁 du mouvement circulaire uniforme est le nombre de tours effectués par 

seconde. 

𝑁 =
1

𝑇
 𝑜𝑢 𝑁 =

𝑊

2𝜋
  

𝑁 est en 𝐻𝑧 𝑒𝑡 𝑇 𝑒𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑒𝑠  

5.4. Mouvement rectiligne sinusoïdale  

Définition : un point est animé d’un mouvement rectiligne sinusoïdal si sa trajectoire est 

rectiligne et si la loi horaire est une fonction sinusoïdale du temps. 

𝑥 = 𝑥𝑚cos (𝑤𝑡 + 𝜑)  

𝑥𝑚 , 𝑤 𝑒𝑡 𝜑   sont des constantes 

Le mobile se déplace entre deux positions externes 𝑀1 𝑒𝑡 𝑀2 𝑑
′𝑎𝑏𝑠𝑐𝑖𝑠𝑠𝑒 𝑥𝑚  𝑒𝑡 −𝑥𝑚 dans le 

repère (𝑜, 𝑖)  

 

 

 

 

Les caractéristiques du mouvement rectiligne sinusoïdal sont :  
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𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑥𝑖 𝑎𝑣𝑒𝑐 𝑥 = 𝑥𝑚 cos (𝑤𝑡 + 𝜑)  

𝑉⃗⃗ =
𝑑𝑥

𝑑𝑡
𝑖 𝑎𝑣𝑒𝑐 𝑉𝑥 = 𝑥̇ − 𝑥𝑚𝑤𝑠𝑖𝑛(𝑤𝑡 + 𝜑)  

𝑎⃗ = 𝑎𝑥𝑖 =
𝑑𝑉𝑥

𝑑𝑡
𝑖 𝑎𝑣𝑒𝑐 𝑎𝑥 = 𝑥̈ = −𝑥𝑚𝑤

2 cos (𝑤𝑡 + 𝜑)  

𝑎𝑥 = 𝑥̈ − 𝑤2𝑥𝑚𝑐𝑜𝑠(𝑤𝑡 + 𝜑) = −𝑤2𝑥   

𝑥̈ = 𝑤2𝑥  𝑜𝑢   𝑥̈ + 𝑤2𝑥 = 0  

Exemple : 𝑥 = 3 cos (
2𝜋𝑡

6
) ; 𝑥𝑚 = 3 ;  𝜑 = 0 𝑒𝑡 𝑤 =

𝜋

3
 

 

{
 
 

 
 𝑥(𝑡) = 3 cos (

2𝜋

6
) 𝑡

𝑥(𝑡) = −𝜋 sin (
2𝜋

6
𝑡)

̇

𝑥̈(𝑡) =
−𝜋2

3
cos (

2𝜋

6
𝑡)
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CHAPITRE 2 LES CHAMPS ET INTERACTIONS UNIVERSELLES 

I. Interaction gravitationnelle 

1) Loi de gravitation 

 

 

 

 

 

 

Deux corps ponctuels A et B de masses 𝑚𝐴 et 𝑚𝐵 exercent l’un sur l’autre des forces 

d’attraction directement opposées, dirigées suivant la droite (𝐴𝐵), de valeurs proportionnelles 

aux masses et inversement proportionnelles au carrée de leur distance :  

𝐹⃗𝐴/𝐵 = −𝐹⃗𝐵/𝐴 = −𝐺
𝑚𝐴𝑚𝐵

𝑟2
𝑢⃗⃗𝐴𝐵 avec 𝑟 = 𝐴𝐵 𝑒𝑡 𝑢⃗⃗𝐴𝐵 =

𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗

𝑟
 vecteur unitaire 

- La valeur de la force s’exprime en Newton (N), la distance r en mètre et les masses en 

kg. 

- La constante G est appelée constante de gravitation universelle, une valeur approchée 

est : 𝐺 = 6,67. 10−11𝑚3. 𝑘𝑔−1. 𝑠−2 

2) Champ de gravitation 

2.1 Champ de gravitation pour un objet ponctuel 

 

 

 

 

 

Un objet ponctuel de masse M en O et un point P, un objet ponctuel de masse m. La force 

gravitationnelle exercée par la masse M sur la masse m s’écrit :  

𝐹⃗ = −𝐺
𝑀𝑚

𝑟2
𝑢⃗⃗𝑜𝑝 𝑠𝑜𝑖𝑡: 𝐹⃗ = 𝑚𝑔⃗(𝑃)  avec 𝑔⃗(𝑃) = −𝐺

𝑀

𝑟2
𝑢⃗⃗𝑜𝑝  et 𝑔(𝑃) =

𝐺𝑀

𝑟2
 

Le vecteur 𝑔⃗(𝑃) est appelé vecteur champ de gravitation créé par la masse M en tout point P 

de l’espace. Il caractérise la propriété de l’espace due à la présence de l’objet ponctuel de 

masse M situé en O ; il ne dépend pas de la masse placée en P. La valeur du champ de 

gravitation s’exprime en 𝑁. 𝑘𝑔−1 𝑜𝑢 𝑒𝑛 𝑚/𝑠2 

 

𝑢⃗⃗𝐴𝐵 𝐹⃗𝐴/𝐵 
𝑚𝐴 

𝑚𝐵 

𝐹⃗𝐵/𝐴 𝐴 

𝐵 

 
𝑃 

𝑂 

𝑚 

𝐹⃗ 
𝑢⃗⃗𝑜𝑝 

𝑔⃗(𝑃) 

𝑀 
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2.2 Force exercée sur un objet placé dans un champ de gravitation 

Un objet ponctuel de masse m, placée en P dans le champ de gravitation 𝑔⃗(𝑃), est soumis à 

une force : 𝐹⃗ = 𝑚𝑔⃗(𝑃)  

Exemple : Pour évaluer la constante de gravitation G, Cavendish, en 1798, mesure la force qui  

s’exerce entre deux sphères : l’une de platine, de masse 50g, l’autre de plomb, de masse 30kg. 

La distance entre les centres des sphères est r=15cm. 

Calculons la valeur de la force d’interaction 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
   

AN : 𝐹 =
6,67.10−11×50.10−3×30

(0,15)2
 

𝐹 = 4,45. 10−9𝑁  

3) Champ de gravitation et champ de pesanteur 

La terre peut être considérée comme un corps à répartition de masse symétrie sphérique, de 

centre O, de rayon 𝑅𝑇  et de masse 𝑀𝑇 

Elle est donc en tout point P, située à une distance 𝑂𝑝 = 𝑟 ≥ 𝑅𝑇, un champ de gravitation : 

𝑔⃗(𝑃) = −𝐺
𝑀

𝑟2
𝑢⃗⃗𝑜𝑝  

En tout point de la surface de la terre (𝑟 = 𝑅𝑇), ce champ de gravitation a la même valeur 

notée 𝑔0 

𝑔0 =
𝐺𝑀𝑇

𝑅𝑇
2   soit 𝑔0 = 9,8𝑚/𝑠 

Champ de Pesanteur 

Supposons que la Terre est une sphère de centre O, de rayon 𝑅𝑇  et de masse 𝑀𝑇. 

En un point M situé à une distance (𝑟 = 𝑅𝑇 + ℎ) où h est l’altitude du point M, la Terre créé 

un champ de gravitation 𝑔⃗ℎ = −𝐺
𝑀𝑇

(𝑅𝑇+ℎ)2
𝑢⃗⃗ 

Nous pouvons déduire l’intensité du champ de gravitation en M. 

𝑔ℎ = 𝐺
𝑀𝑇

(𝑅𝑇+ℎ)2
=

𝐺𝑀𝑇

𝑟2
  

Au point 𝑀0 d’altitude nulle (h=0), l’intensité de champ de pesanteur a pour expression : 

𝑔0 =
𝐺𝑀𝑇

𝑅𝑇
2  



13 
 

La relation entre 𝑔ℎ et 𝑔0 

Nous pouvons établir 𝑔ℎ = 𝐺
𝑀𝑇

(𝑅𝑇+ℎ)2
 et 𝑔0 =

𝐺𝑀𝑇

𝑅𝑇
2  

𝑔ℎ

𝑔0
=

𝐺𝑀𝑇
(𝑅𝑇+ℎ)

2

𝐺𝑀𝑇

𝑅𝑇
2

=
𝐺𝑀𝑇

(𝑅𝑇+ℎ)2
×

𝑅𝑇
2

𝐺𝑀𝑇
=

𝑅𝑇
2

(𝑅𝑇+ℎ)2
  

⇒ 
𝑔ℎ

𝑔0
=

𝑅𝑇
2

(𝑅𝑇+ℎ)2
 

Nous en déduisons que 𝑔ℎ = 𝑔0 ×
𝑅𝑇
2

(𝑅𝑇+ℎ)2
 est l’intensité du champ de pesanteur terrestre à 

l’altitude ℎ = 0 (au niveau de la mer). 

II. Les forces électriques et le champ électrique 

1) La loi de Coulomb 

 

 

 

 

 

Les charges 𝑞𝐴 et  𝑞𝐵 sont de même signe : elles se repoussent. 

Dans le vide, deux particules A et B, séparées d’une distance 𝑟 = 𝐴𝐵 et portant 

respectivement des charges électriques 𝑞𝐴 et  𝑞𝐵, sont soumises à deux forces opposées : la 

force 𝐹⃗𝐴→𝐵 exercée par la particule A sur la particule B est donnée par la relation : 

𝐹⃗𝐴→𝐵 = 𝑘
𝑞𝐴𝑞𝐵

𝑟2
𝑢⃗⃗𝐴𝐵  𝑜ù 𝑘 =

1

4𝜋𝜀0
= 9. 109𝑚/𝐹 ;  𝑢⃗⃗𝐴𝐵 =

𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗

𝑟
  

Avec 𝜀0, la permittivité du vide et 𝑢⃗⃗𝐴𝐵, le vecteur unitaire de la droite (𝐴𝐵) dirigé de A vers 

B. 

Exemple : Dans une molécule d’hydrogène, les protons constituant les noyaux de deux 

atomes sont distancés de 74,1𝑝𝑚. 

a) Calculer la valeur de la force d’interaction électrique entre les deux protons sachant 

que 𝑞 = 𝑒 = 1,6. 10−19𝑐. 
b) La comparer à la force de gravitation s’exerçant entre les deux protons. 

 𝑚𝑝 = 1,67. 10−27𝑘𝑔 et 𝐺 = 6,67. 10−11𝑆. 𝐼 

Solution 

 

𝑞𝐴 > 0 

𝑞𝐵 > 0 

𝐵 
𝐹⃗𝐴→𝐵 

𝐹⃗𝐴→𝐵 𝐴 
𝑂 

𝑢⃗⃗𝐴𝐵 
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a) Calculons la valeur de la force d’interaction électrique en appliquant la loi de 

Coulomb. 

𝐹𝑒 =
1

4𝜋𝜀0

𝑞𝐴𝑞𝐵

𝑟2
  ⇒𝐹𝑒 = 9. 109 (

𝑒2

𝑑2
) 

AN : 𝐹𝑒 = 9. 109 (
(1,6.10−19)2

(74,1.10−12)2
) 

𝐹𝑒 = 4,2. 10−8𝑁  

b) La force de gravitation 

𝐹𝑔 = 𝐺
𝑚𝑝2

𝑑2
  AN : 𝐹𝑔 = 9. 10

9 (1,6.10−19)2

(74,1.10−12)2
 

𝐹𝑔 = 3,39. 10−44𝑁  

𝐹𝑒

𝐹𝑔
= 1,24. 1036  ⇒  𝐹𝑒 = 1,24. 1036𝐹𝑔  

La force 𝐹𝑒 est environ 1036 fois plus grande que la force 𝐹𝑔 

2) Champ électrique 

 

 

 

 

  

 

On considère un point O du vide, un corps ponctuel portant la charge q et, en un point P, un 

corps ponctuel portant la charge q’. 

La force électrique exercée par la charge q sur la charge q’ est donnée par la relation  

𝐹⃗(𝑃) = 𝑘
𝑞𝑞′

𝑟2
𝑢⃗⃗𝑜𝑝  

L’expression de la force électrique peut aussi s’écrire sous la forme 

𝐹⃗(𝑃) = 𝑞′𝐸⃗⃗(𝑃)  avec 𝐸⃗⃗(𝑃) = 𝑘
𝑞′

𝑟2
𝑢⃗⃗𝑜𝑝    

Où 𝐸⃗⃗(𝑃) est un vecteur champ électrique créé par la charge q au point P de l’espace. 

La valeur du champ électrique E s’exprime en volt par mètre de symbole 𝑉/𝑚 ou 𝑉.𝑚−1 

* Champ uniforme 

 

𝑢⃗⃗𝑜𝑝 

𝑞 > 0 

𝑞′ > 0 𝐸⃗⃗ 𝐹⃗ 

𝑞 < 0 

𝑞′ > 0 

𝑃 

𝐸⃗⃗ 𝑃 

𝐹⃗ 

𝑢⃗⃗𝑜𝑝 
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Si le champ est uniforme, les lignes du champ sont des droites parallèles. 

* Dans le cas d’un condensateur plan à air, le champ électrique a pour valeur :  

𝐸 =
𝑈

𝑑
=

𝑞

𝜀0𝑆
 avec d, la distance entre les armatures en m et S la surface d’une armature en m

2
. 

 

 

  

 

Avec d : distance entre les armatures en m et S, la surface d’une armature m
2
. 

Les lignes du champ 𝐸⃗⃗ sont parallèles entre elles, perpendiculaires aux armatures et orientées 

de la plaque positive vers la plaque négative ou du potentiel le plus élevé vers le potentiel le 

moins élevé. 

Exemple 1 : Les armatures d’un condensateur plan ont une surface S=1dm
2
 et sont séparées 

par une couche d’air d’épaisseur d=5mm. Une tension U=4kv est appliquée entre les 

armatures. 

a) Calculer la valeur du champ électrique entre les armatures 

b) Calculer la valeur de la charge q du condensateur 

Solution : 

a) 𝐸 =
𝑈

𝑑
 AN : 𝐸 =

4.103

5.10−3
 

𝐸 = 8. 105𝑉/𝑚  

b) 𝐸 =
𝑞

𝜀0𝑆
 ⇒𝑞 = 𝐸 × 𝜀0 × 𝑆 

Sachant que 𝑘 =
1

4𝜋𝜀0
= 9. 109 𝑆. 𝐼 ⇒ 𝜀0 = 8,84. 10−2 𝑆. 𝐼 

⇒ 𝑞 = 8. 105 × 8,84. 10−2 × 10−2 = 7,1. 10−8𝑐 

𝑞 = 71𝑛𝑐  

Exemple 2 : La boule d’un pendule électrique, de masse m=2,5g porte une charge 𝑞 = 0,5𝜇𝑐 

Elle est placée dans un champ électrique uniforme et horizontal. 

1) Quel doit être la valeur du champ électrique E horizontal pour que le fil s’incline d’un 

angle de 30° par rapport à la verticale ? 

2) De quel angle le fil s’inclinera-t-il par rapport à la verticale, si le champ a pour valeur 

10v/m ? Prendre g=10ms
2
 

 

 

− 

+ + + + 

− − − 

𝐸⃗⃗ 𝐸⃗⃗ 𝐸⃗⃗ 
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Solution : 

 

 

 

 

 

 

  

1) La valeur de E 

- Système : la boule de masse m 

- Référentiel 

- Bilan des forces : 𝑃⃗⃗ , 𝑇⃗⃗, 𝐹⃗𝑒 

Condition d’équilibre : 𝑃⃗⃗ + 𝑇⃗⃗ + 𝐹⃗𝑒 = 0⃗⃗ 

Sur 𝑥′𝑥, on a : 𝑃𝑥 + 𝑇𝑥 + 𝐹𝑒𝑥 = 0 

⇒ 𝑞𝐸 − 𝑇𝑠𝑖𝑛𝛼 = 0  

⇒ 𝑇𝑠𝑖𝑛𝛼 = 𝑞𝐸    

Sur 𝑦′𝑦, on a : 𝑃𝑦 + 𝑇𝑦 + 𝐹𝑒𝑦 = 0 

⇒ −𝑃 + 𝑇𝑐𝑜𝑠𝛼 = 0  

⇒ 𝑇𝑐𝑜𝑠𝛼 = 𝑃   

𝑡𝑎𝑛𝛼 =
𝑞𝐸

𝑃
 ⇒ 𝑡𝑎𝑛𝛼 =

𝑞𝐸

𝑚𝑔
 

⇒ 𝐸 =
𝑚𝑔𝑡𝑎𝑛𝛼

𝑞
 

AN : 𝐸 =
2,5.10−3×10×𝑡𝑎𝑛30°

0,5.10−6
 

𝐸 = 2,9. 104𝑉/𝑚   

2) Calcul de l’angle 𝛼′ pour 𝐸 = 2,9. 104𝑉/𝑚 

𝑡𝑎𝑛𝛼′ =
𝑞𝐸′

𝑚𝑔
 ⇒ 𝛼′ = 𝑡𝑎𝑛−1 (

𝑞𝐸′

𝑚𝑔
) 

AN : 𝛼′ = 𝑡𝑎𝑛−1 (
0,5.10−6×104

2,5.10−3×10
) 

 𝑦 

𝑥 

𝛼 

𝐹𝑒⃗⃗⃗⃗  
𝑃⃗⃗ 

𝑇⃗⃗ 
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𝛼′ = 11,3°  

III. Le champ magnétique 

3.1) Forces magnétiques 

On appelle force magnétique, la force d’interaction entre deux aimants ou un aimant et un 

objet ferromagnétique. 

 

 

 

 

 

 

Plus généralement, les interactions électromagnétiques se manifestent entre les fils ou des 

bobines parcourues par des courants et entre les diamants. 

Des pôles des aimants de même nom se repoussent et des pôles de noms différents s’attirent. 

Des bobines ou des fils parcourus par un courant de sens contraire se repoussent et ils 

s’attirent s’ils sont de même sens. 

Une bobine parcourue par un courant se comporte comme un aimant droit. 

3.2) Champ magnétique 

On appelle champ magnétique, une région de l’espace dans laquelle une aiguille aimantée ou 

un objet ferromagnétique est soumis à des forces magnétiques. 

3.2.1) Vecteur champ magnétique 

Le vecteur champ magnétique 𝐵⃗⃗ est une grandeur associée à une région de l’espace. Les 

caractéristiques du vecteur champ magnétique sont les suivantes : 

- Direction et sens : on utilise une aiguille aimantée pour les déterminer. Ainsi, la 

direction du champ magnétique 𝐵⃗⃗ est celle de l’axe Sud-Nord de l’aiguille aimantée. 

Le sens est du Sud vers le Nord. 

- L’intensité du vecteur champ magnétique 𝐵⃗⃗ est mesurable avec un tesla mètre et 

s’exprime en tesla de symbole T. 

 

 

 

 

 

 
𝑁 𝑆 

𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝑅𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 

𝑆 𝑁 𝑆 𝑁 𝑆 𝑁 

𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑆 𝑁 𝑁 𝑆 
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3.2.2) Spectre magnétique 

On appelle ligne de champ une courbe qui en chacun des points est tangente au vecteur champ 

magnétique. 

Lorsque les lignes de champ sont des droites parallèles comme celles du champ magnétique 

entre les branches d’un aimant en U, ce champ magnétique est dit uniforme. 

3.2.3) Orientation du champ 𝑩⃗⃗⃗ 

* Observateur d’Ampère : l’observateur d’Ampère regardant le point M est 

couché sur le conducteur de telle sorte que le courant le traverse des pieds vers la tête. Son 

bras gauche tendu de côté, indique le sens du champ magnétique 𝐵⃗⃗ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- D’autres règles telles que la règle du tire-bouchon de Maxwell et celle de la main 

droite peuvent être aussi utilisées pour déterminer le sens du champ. 

* Champ créé par un conducteur rectiligne parcouru par un courant en un point M tel 

que 𝑂𝑀 = 𝑑, 𝐵 = 2. 10−7
𝐼

𝑑
 

 

 

𝑆 

𝑆 

 

𝑁 𝑀 

𝑆 

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑆 

 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑆 

 

𝑆𝑒𝑛𝑠 

𝑆 

 

𝑎𝑖𝑔𝑢𝑖𝑙𝑙𝑒 𝑎𝑖𝑚𝑎𝑛𝑡é𝑒 

𝑆 

 

𝑆 

𝑆 

 

𝑁 

𝑆 

 

 

𝐵⃗⃗ 

𝐼 

𝐼 



19 
 

 

 

 

 

 

 

* Champ créé par une bobine plate ou conducteur circulaire de N spires et de rayon 

R  𝐵 = 2𝜋. 10−7
𝑁

𝑅
𝐼 

Exemple : N=50 Spires ; I=20A et R=0,1m 

AN : 𝐵 = 2𝜋. 10−7 ×
50

0,1
× 20 

𝐵 = 6,28. 10−3𝑇  

* Cas d’un solénoïde 𝜇0 = 4𝜋. 10−7  

𝐵 = 𝜇0
𝑁

𝑙
𝐼 = 𝜇0𝐼𝑛  avec 𝑛, le nombre de spires par unité de longueur 

Exemple : On veut produire au centre d’un solénoïde de longueur l=60cm, un champ 

magnétique de 2. 10−2𝑇. L’intensité du courant est de 8A. 

Calculons le nombre de spires nécessaires. 

𝐵 = 𝜇0
𝑁

𝑙
𝐼 ⇒ 𝑁 =

𝐵𝑙

𝐼𝜇0
  

AN : 𝑁 =
2.10−2×0,6

4×3,14.10−7×8
 

𝑁 = 1200 𝑠𝑝𝑖𝑟𝑒𝑠  

4. Action d’un champ magnétique sur un conducteur : Force de Laplace 

Une portion rectiligne de conducteur de longueur l, parcourue par un courant d’intensité I et 

plongée dans un champ magnétique uniforme 𝐵⃗⃗ subit une force électromagnétique appelée 

force de Laplace qui a pour expression vectorielle : 𝐹⃗ = 𝐼𝑙˄𝐵⃗⃗ 

Les caractéristiques de cette force 𝐹⃗ sont : 

- Direction : perpendiculaire au plan défini par (𝑙, 𝐵⃗⃗) 

- Sens : donné par la règle d’observateur d’Ampère, celui-ci couché sur la portion de 

conducteur, traversé par le courant des pieds vers la tête et regardant fuir devant lui, 

les lignes de champ, tend son bras gauche dans le sens de la force 𝐹⃗. 

 

𝑑 𝐵⃗⃗ 

𝑀 

𝐼 
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- Module 𝐹 = 𝐼𝑙𝐵𝑠𝑖𝑛(𝑙, 𝐵⃗⃗) 
- Point d’application : le milieu de la portion rectiligne du conducteur plongé dans le 

champ 𝐵⃗⃗ 

Remarque : on peut aussi trouver le sens de la force de Laplace en utilisant entre autres la 

règle des trois doigts de la main droite. 

Etant donné que 𝐹⃗, 𝐼𝑙 et 𝐵⃗⃗ forment un trièdre direct, leurs sens permettent d’être déterminés 

par la règle des trois doigts de la main droite avec successivement : 

- Le pouce tend, indique le sens du courant (ou 𝐼𝑙). 

- L’index tendu perpendiculairement à 𝐼𝑙 indique le sens du champ 𝐵⃗⃗ 

- Le majeur tendu perpendiculairement à 𝐼𝑙 et 𝐵⃗⃗ indique le sens de la force 𝐹⃗ 

- L’intensité : 𝐹 = 𝐼𝑙𝐵𝑠𝑖𝑛(𝑙, 𝐵⃗⃗) 

5. Action d’un conducteur sur une particule chargée : Force de Lorentz 

Une particule de charge q en mouvement à la vitesse 𝑉⃗⃗ dans une région où règne un 

champ magnétique 𝐵⃗⃗ est soumise à une force magnétique 𝐹⃗ par la relation vectorielle 

𝐹⃗ = 𝑞𝑉⃗⃗˄𝐵⃗⃗  

Nous pouvons établir une expression de la force de Lorentz en partant de la force de 

Laplace 

𝑙 = 𝑉⃗⃗𝑡  et 𝐼 =
𝑞

𝑡
 

𝐹⃗ = 𝐼𝑙˄𝐵⃗⃗  devient 𝐹⃗ =
𝑞

𝑡
𝑉⃗⃗𝑡˄𝐵⃗⃗ 

𝐹⃗ = 𝑞𝑉⃗⃗˄𝐵⃗⃗  
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Chapitre 3 : LA RELATION  FONDAMENTALE DE LA DYNAMIQUE 

1. Notions sur la dynamique des points matériels 

1.1.Le point matériel  

Un point matériel est un point de l’espace auquel on lui affecte une masse 𝑚. Les dimensions 

d’un point matériel sont négligeables par rapport aux autres dimensions dans le référentiel. 

1.2.Système matériel :  

Un système matériel ou système mécanique est un ensemble de points matériels. Le système 

matériel est dit indéformable ou solide si les distances entre ses points sont invariables. 

1.3.Forces extérieures et forces intérieures  

 les forces extérieures sont celles qui agissent sur le point du système et proviennent 

d’autres points donnés étrangers au système. 

 Les forces intérieures sont celles qui agissent sur un point du système et proviennent 

d’autre point appartenant à ce système. 

La distinction entre ces deux types de forces dépend des limites arbitrairement choisi pour 

définir le système. 

2. Enoncé  des lois de Newton sur le mouvement  

2.1.Première loi de Newton  

Lorsque la somme vectorielle des forces appliquées au système est nulle, son centre d’inertie 

est : 

 au repos, si le système est initialement au repos, 

 animé d’un mouvement rectiligne uniforme si le système est initialement en 

mouvement à vitesse constant : ∑ 𝐹⃗ = 0⃗⃗ 𝑜𝑢 𝑉⃗⃗𝐺 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

2.2.Référentiel  galiléen  

La première loi de Newton caractérisé un ensemble de référentiels  

Les référentiels galiléens sont des référentiels particuliers ou le principe de l’inertie et le 

théorème de l’énergie cinétique sont appliqués. 

 Le référentiel héliocentrique est un référentiel qui a pour origine le centre du soleil et 

des axes dirigés vers les trois étoiles lointaines. Il est une approximation du référentiel 

galiléen. Ce référentiel convient à l’étude du mouvement des planètes et des sondes 

spatiales. 

 Le référentiel géocentrique a pour origine le centre de la Terre et des axes dirigés vers 

les trois étoiles lointaines. Ils  convient à l’étude du mouvement des satellites et à 

l’interprétation des phénomènes marins. 

 Le référentiel terrestre ou de laboratoire a pour origine un point de la surface de la 

Terre peut être considéré comme référentiel galiléen pour des expériences courantes 

de courte durée. 
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2.3.La Quantité de mouvement   

a) Définition : Pour le point matériel, de masse 𝑚 et dont la vectrice vitesse est 𝑣⃗, le 

vecteur quantité de mouvement 𝑝⃗ obtient par la relation vectorielle : 𝑃⃗⃗ = 𝑚. 𝑣⃗ 

𝑃⃗⃗ a une même direction et même sens que 𝑣⃗ ( car 𝑚 > 0) , sa norme 𝑃 porte le nom de 

quantité de mouvement du point matériel 𝑃 = 𝑚𝑣  {

𝑚 ∶ 𝑒𝑛 𝑘𝑔
𝑣 ∶ 𝑒𝑛 𝑚/𝑠

𝑝: 𝑒𝑛 𝑘𝑔𝑚/𝑠−1
  

Le vecteur quantité de mouvement d’un solide est celui de son centre d’inertie 

𝐺(vecteur vitesse 𝑉⃗⃗𝐺)  ou serait concentrée la masse totale 𝑀 su solide. 

 𝑃⃗⃗ = 𝑀𝑉⃗⃗𝐺 

Dans un repère galiléen, le vecteur quantité de mouvement d’un solide isolé ou pseudo-isolé 

est constant. 

𝑃⃗⃗ = 𝑀𝑉⃗⃗𝐺 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  

b) Conservation de la quantité de mouvement lors d’un choc 

La loi de conservation  

On construit alors le vecteur-quantité de mouvement du système {𝑆1, 𝑆2} avant le choc, et le 

vecteur : 𝑃⃗⃗ = 𝑃⃗⃗1 + 𝑃⃗⃗2 

Le vecteur-quantité de mouvement de ce même système après le choc est : 𝑃⃗⃗′ = 𝑃′⃗⃗⃗⃗ 1 + 𝑃′⃗⃗⃗⃗ 2 

On constate expérimentalement que   𝑃⃗⃗ =  𝑃⃗⃗′ 

Lors d’un choc, le vecteur-quantité de mouvement d’un système de deux solides isolés ou 

pseudo-isolés demeure constant. 

Dans un repère galiléen, le vecteur-quantité de tout système mécanique isolé ou pseudo-isolé 

demeure constant lors de son évolution : ∆𝑃⃗⃗ =  𝑃⃗⃗′(𝑎𝑝𝑟è𝑠 𝑙𝑒 𝑐ℎ𝑜𝑐) − 𝑃⃗⃗(𝑎𝑣𝑎𝑛𝑡 𝑙𝑒 𝑐ℎ𝑜𝑐) = 0⃗⃗ 

2.4.Deuxième loi de Newton ou la relation fondamentale de la dynamique  

Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un 

solide est égale au produit de la masse par le vecteur-accélération de son centre d’inertie 𝐺. 

On écrit ∑𝑓 𝑒𝑥𝑡 =
𝑑𝑃⃗⃗

𝑑𝑡
 

Sous cette forme, la deuxième loi de Newton est appelée relation fondamentale de la 

dynamique : ∑𝑓 𝑒𝑥𝑡 =
𝑑𝑃⃗⃗

𝑑𝑡
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𝑃⃗⃗ = ∑ 𝑃⃗⃗𝑖 = ∑ 𝑚𝑖
𝑛
𝑖=1

𝑛
𝑖=1 𝑉⃗⃗𝑖 = 𝑉⃗⃗𝑐𝑡 ∑ 𝑚𝑖

𝑛
𝑖=1   avec 𝑀 = ∑ 𝑚𝑖

𝑛
𝑖=1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑒𝑡

𝑑𝑉⃗⃗⃗𝐺

𝑑𝑡
= 𝑎⃗𝐺 

Donc ∑𝑓 𝑒𝑥𝑡 = 𝑀𝑎⃗𝐺   

2.5.Troisième loi de Newton ou Principe de l’action réciproque  

Si un corps 𝐴 exerce sur un corps 𝐵 une force 𝐹⃗𝐴/𝐵 (appelle action), simultanément le corps, 

𝐵 exerce sur le corps 𝐴 une force 𝐹⃗𝐵/𝐴 (dénommée réaction) et ces deux forces ont la même 

ligne d’action, des sens inverses et de même intensité.  

 

 

 

 

 

𝐹⃗𝐵/𝐴 = −𝐹⃗𝐴/𝐵  

3. Le théorème de l’énergie cinétique 

Dans un référentiel galiléen, la variation de l’énergie cinétique d’un solide en translation, 

entre deux instants 𝑡1 𝑒𝑡 𝑡2 est égale à la somme algébrique des travaux de toutes les forces 

qui lui sont appliquées dans l’intervalle [𝑡1, 𝑡2]. 

∆𝐸𝐶 =
1

2
𝑚𝑉2

2 −
1

2
𝑚𝑉1

2 = ∑𝑊1→2
(𝐹𝑒𝑥𝑡)

  

 Remarque : le théorème de l’énergie cinétique se démontre de la même manière pour un 

solide en rotation autour d’un axe fixe.   

∆𝐸𝐶 =
1

2
𝑗𝐷𝑊2

2 −
1

2
𝑗𝐷𝑊1

2 = ∑𝑊1→2
(𝐹𝑒𝑥𝑡)

  

4. Les différentes applications 

Pour résoudre un problème de mécanique proposé, il faut adopter une méthode résumée 

suivante :  

 Préciser le système étudié  

 Choisir le référentiel  

 faire  le bilan de forces appliquées au système et schématiser ces forces par des 

vecteurs  

 Appliquer dans le référentiel galiléen choisi le théorème d’inertie pour déterminer 

l’accélération et la nature du mouvement ou le théorème de l’énergie cinétique pour 

déterminer la vitesse, la distance ou bien la force. 

 Choisir un repère orthonormal de projection ou sera projetée la relation. 

 

𝐹⃗𝐴 𝐵⁄  𝐹⃗𝐵 𝐴⁄  

𝐵 𝐴 
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𝛼 

𝑅⃗⃗ 

𝑃⃗⃗ 

𝐺 

𝑥 

𝑥′ 

𝑦 

𝑦′ 

Bac  2013 et  2019 

Exemple1 : un Skieur de masse  𝑚 = 80𝑘𝑔 , équipement compris, prend le départ sur une 

piste de descente rectiligne incliné d’un angle  𝛼 = 300 

1) La piste étant  verglacée, on néglige tout frottement sur la piste et dans l’air   

a) Calculer l’accélération 𝑎1 du skieur dans la descente. On prendra 𝑔 = 9,8𝑚/𝑠2 

b) On suppose que le skieur part avec une vitesse initiale 𝑉0 = 𝑚/𝑠 . Calculer sa vitesse 

𝑉1 lorsqu’il a parcouru la distance 𝑑 = 25𝑚 

2) La piste est maintenant recouverte de neige fraiche créant une force de frottement. 

L’ensemble des forces de frottement agissant sur le skieur est équivalent à une force 

unique et constante 𝑓 = 90𝑁  de même direction que sa vitesse et de sens opposé. 

a) Calculer la nouvelle accélération 𝑎2 du skieur dans la descente. 

b) On suppose que ce dernier part toujours avec la même vitesse initiale 𝑉0 . calculer la 

nouvelle vitesse 𝑉2 lorsqu’il a parcouru la distance  𝑑 = 25𝑚. 

Solution :  

1) La piste de descente est verglacée. 

a) Calculons l’accélération 𝑎1 du skieur 

 Système : le skieur et son équipement de masse 𝑚 

 Référentiel terrestre supposé galiléen  

 Bilan des forces : 

 Le poids 𝑃⃗⃗ , appliqué en 𝐺, vertical et vers le bas 

 La réaction  𝑅⃗⃗ perpendiculaire au déplacement car il n’y a pas de frottement  

 Appliquons le théorème du centre d’inertie 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺 ⇒ 𝑃⃗⃗ + 𝑅⃗⃗ = 𝑚𝑎⃗𝐺  
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𝛼 

𝑅⃗⃗𝑁 

𝑃⃗⃗ 

𝐺 

𝑥 

𝑥′ 

𝑦 

𝑦′ 

𝑓 

 

 

 𝑠𝑖𝑛𝑥′𝑥  𝑜𝑛 𝑎: 𝑃𝑥 + 𝑅𝑥 = 𝑚𝑎1 

𝑃𝑠𝑖𝑛𝛼 + 0 =  𝑚𝑎1  

 𝑚𝑔𝑠𝑖𝑛𝛼 = 𝑚𝑎1 ⇒ 𝑎1 = 𝑔𝑠𝑖𝑛𝛼 

AN : 𝑎1 = 9,8 𝘹
1

2
= 4,9𝑚/𝑠2 

𝑎1 = 4,9𝑚/𝑠2  

b) Calculons la vitesse 𝑉1 lorsqu’il a parcouru une distance  𝑑 = 25𝑚 

Le mouvement est uniformément accéléré d’accélération  𝑎1 = 4,9𝑚/𝑠2 . On a la relation 

𝑉1
2 − 𝑉0

2 = 2𝑎, (𝑥1 − 𝑥0) 

𝑥1 − 𝑥0 = 𝑑  𝑒𝑡 𝑉1
2 − 𝑉0

2 = 2𝑔𝑠𝑖𝑛𝛼𝑑   

𝑉1 = √𝑉0
2 + 2𝑔𝑑𝑠𝑖𝑛𝛼    

 𝑉1 = 15,8𝑚/𝑠 

On peut aussi appliquer le théorème de l’énergie cinétique. 

2) La piste est couverte de neige fraiche : i y a frottement  

a) Calculons l’accélération  𝑎2  

 Système : Skieur et son équipement de masse  𝑚 

 Référentiel terrestre supposé galiléen  

 Bilan des forces : 

 Le poids 𝑃⃗⃗  

 La réaction  𝑅⃗⃗ 

 La force de frottement  𝑓 
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ℎ𝐴 
𝐵 

𝐴 

ℎ𝐵 

 

 Appliquons le théorème du centre d’inertie : ∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺 ⇒ 𝑃⃗⃗ + 𝑅⃗⃗𝑁 + 𝑓 = 𝑚𝑎⃗𝐺  

𝑠𝑖𝑛𝑥′𝑥  𝑜𝑛 𝑎 ∶ 𝑃𝑥 + 𝑅𝑁𝑥 + 𝑓𝑥 = 𝑚𝑎2  

 𝑚𝑔𝑠𝑖𝑛𝛼 + 0 − 𝑓 = 𝑚𝑎2 

𝑎2 = 𝑔𝑠𝑖𝑛𝛼 −
𝑓

𝑚
       

AN : 𝑎2 = 9,8 𝘹
1

2
−

90

80
= 3,8𝑚/𝑠2 

𝑎2 = 4,5 − 1,125 ≃ 3,8𝑚/𝑠2  

𝑎2 = 3,8𝑚/𝑠
2  

b) Calculons la nouvelle  vitesse 𝑉2 du skieur  

𝑉2
2 − 𝑉0

2 = 2𝑎, (𝑥1 − 𝑥0) = 2𝑎2𝑑  

𝑉2
2 = √𝑉0

2 + 2𝑎2𝑑 = 14,1𝑚/𝑠   

𝑉2 = 14,1𝑚/𝑠    

Exemple 2 : 

a) On suppose qu’un skieur glisse sans frottement  le long d’une piste 𝐴𝐵. On donne les 

altitudes des points 𝐴 𝑒𝑡 𝐵 : ℎ𝐴 = 1850𝑚 𝑒𝑡 ℎ𝐵 = 1780𝑚 . Le skieur part de 𝐴  avec 

une vitesse 𝑉𝐴 = 1,5𝑚/𝑠  

Calculer sa vitesse 𝑉𝐵 lors de son passage en 𝐵. 𝑔 = 8,9𝑚/𝑠2 

b) En réalité, le skieur passe en 𝐵 avec une vitesse 𝑉′𝐵 = 30𝑚/𝑠 

Calculons la valeur de la force de frottement qui s’exerce sur le skieur si l’on suppose qu’elle 

reste constante. 

Pendant toute la durée de la descente. On donne : 𝑀 = 75𝑘𝑔, la longueur de la piste 𝑙 =

315𝑚 
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Solution 

a) Calculons la vitesse 𝑉𝐵 du skieur à son passage 𝐵 

 Système : Skieur de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces  

 Le poids 𝑃⃗⃗  

 La réaction  𝑅⃗⃗ 

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑𝑓 𝑒𝑥𝑡.  𝐸𝐶𝐵 − 𝐸𝐶𝐴 = 𝑊𝐴→𝐵
𝑃⃗⃗ +𝑊𝐴→𝐵

𝑅⃗⃗   

𝑊 𝑅⃗⃗ = 0 𝑐𝑎𝑟 𝑅⃗⃗ 𝑒𝑠𝑡 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑖𝑟𝑒 à 𝑙𝑎 𝑝𝑖𝑠𝑡𝑒    

1

2
𝑚𝑉𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑚𝑔(ℎ𝐴 − ℎ𝐵)   

𝑉𝐵 = √𝑉𝐴
2 + 2𝑔(ℎ𝐴 − ℎ𝐵)    

𝑉𝐵 = √(1,5)2 + 2 𝘹 9,8(1850 − 1780) = 37,1𝑚/𝑠  

𝑉𝐵 = 37,1𝑚/𝑠    

b) Calculons la vitesse de la force de frottement  

 Système : Skieur de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces  

 Le poids 𝑃⃗⃗  

 La réaction normale 𝑅⃗⃗𝑁 

 La force de frottement 𝑓 

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑ 𝑊⃗⃗⃗⃗𝐴→𝐵
𝑒𝑥𝑡   

1

2
𝑚𝑉′𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑊 𝑃⃗⃗ +𝑊𝑓 +𝑊𝑅⃗⃗𝑁   𝑎𝑙𝑜𝑟𝑠𝑞𝑢𝑒   𝑊𝑅⃗⃗𝑁 = 0  

1

2
𝑚𝑉′𝐵

2 −
1

2
𝑚𝑉𝐴

2 = 𝑚𝑔(ℎ𝐴 − ℎ𝐵) − 𝑓𝑙  

𝑉′𝐵
2 − 𝑉𝐴

2 = 2𝑔(ℎ𝐴 − ℎ𝐵) −
2𝑓𝑙

𝑚
  

2𝑓𝑙

𝑚
= 𝑉𝐴

2 − 𝑉𝐵
′2 + 2𝑔(ℎ𝐴 − ℎ𝐵)  

𝑓 =
𝑚

2𝑙
(𝑉𝐴

2 − 𝑉𝐵
′2 + 2𝑔(ℎ𝐴 − ℎ𝐵))  

𝑓 = 56,5𝑁  
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Exemple3 

Un skieur assimilé à un point  𝐺, de masse 𝑚 = 80𝑘𝑔, glisse sur une piste formée de deux 

parties 𝐴𝐵 𝑒𝑡 𝐵𝐶  situées dans un même plan vertical. L’arc 𝐴𝐵̂  de rayon  𝑟 = 50𝑚  et 𝐵𝐶  

est la partie rectiligne  horizontale de longueur = 50𝑚 .  Le skieur part sans vitesse initiale de 

𝐴 tel que  (𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗̂ ) = 𝛼 =
𝜋

3
 

1) En négligeant les frottements, calculer la vitesse du skieur au point  𝐸 , tel que  

(𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗̂ ) = 𝛼𝐸 =
𝜋

6
 , puis calculer sa vitesse en 𝐵. 

2) En fait, sur le trajet  , existent des forces de frottements assimilables à une forte 

tangente à la trajectoire et d’intensité constants 𝐹. Si le skieur arrive en 𝐶 sans vitesse, 

quelle est la valeur 𝐹  de cette force de frottement ?  

On prendra                   𝑔 = 10𝑚/𝑠2. 

 

 

 

 

 

 

 

 

Solution 

1) Calculons la vitesse du skieur en 𝐸 puis e 𝐵 

 Système : Skieur de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces :  

 Le poids 𝑃⃗⃗  

 La réaction normale 𝑅⃗⃗ 

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑ 𝑊⃗⃗⃗⃗𝐴→𝐵
𝑒𝑥𝑡   

1

2
𝑚𝑉𝐸

2 −
1

2
𝑚𝑉𝐴

2 = 𝑚𝑔(𝑧𝐸 − 𝑧𝐵) = 𝑚𝑔𝑟(𝑐𝑜𝑠𝛼𝐸 − 𝑐𝑜𝑠𝛼)    

1

2
𝑚𝑉𝐸

2 = 𝑚𝑔𝑟(𝑐𝑜𝑠𝛼𝐸 − 𝑐𝑜𝑠𝛼)     

𝑉𝐸 = √2𝑔𝑟(𝑐𝑜𝑠𝛼𝐸 − 𝑐𝑜𝑠𝛼)      

 

𝛼𝐸 

𝐵 

𝐴 

𝐸 

𝛼 
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𝐴𝑁: 𝑉𝐸 = √2 𝘹 10 𝘹 50 (
√3

2
−
1

2
)   ≃ 19,13𝑚/𝑠  

𝑉𝐸 = 19,13𝑚/𝑠  

Puis 𝑉𝐸 = √2𝑔𝑟(1 − 𝑐𝑜𝑠𝛼) 

𝐴𝑁: 𝑉𝐵 = √2 𝘹 50 𝘹 10 (1 −
1

2
) = √500 = 22 ,36𝑚/𝑠  

𝑉𝐵 = 22,36𝑚/𝑠  

2) Calculons la valeur 𝐹  de la force de frottement. 

 Système : Skieur de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces :  

 Le poids 𝑃⃗⃗  

 La réaction normale 𝑅⃗⃗  

 La force de frottement 𝑓 

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑ 𝑊⃗⃗⃗⃗𝐴→𝐵
𝑒𝑥𝑡   

𝑉𝐴 = 0 𝑒𝑡 𝑉𝐶 = 0 ⇒  0 = 𝑚𝑔𝑟(1 − 𝑐𝑜𝑠𝛼) − 𝐹𝑟𝛼   𝑜𝑟  𝑟 = 𝑙  

0 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝛼) − 𝐹𝑙𝛼 − 𝐹𝑙  

𝐹𝑙(𝛼 + 1) = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝛼)  

 𝐹 =
𝑚𝑔𝑙(1−𝑐𝑜𝑠𝛼)

𝜋

3
+1

=
𝑚𝑔(1−𝑐𝑜𝑠𝛼)

𝛼+1
 

𝐴𝑁: 𝐹 =
80 𝘹 10(1−

1

2
)

𝜋

3
+1

=
400

3,14

3
+1
= 195,43𝑁  

𝐹 = 195,43𝑁  

Exemple 4 

Un solide 𝑆 de petite dimension et de masse 𝑚  assimilable à un point matériel, est placé au 

sommet  𝐴 , d’une sphère  de rayon 𝑅 et de centre  𝑂. On déplace légèrement le point matériel 

𝑆 pour qu’il quitte la position 𝐴 avec une vitesse quasiment nulle et glisse sans frottements le 

long de la sphère en décrivant un arc de cercle dans le plan vertical passant par  𝐴. La position 

de 𝑆 est repérée par l’angle  𝜃 = (𝑂𝐴⃗⃗⃗⃗ ⃗⃗  𝐴𝑆⃗⃗⃗⃗⃗̂⃗  ). 

1) En appliquant le théorème de l’énergie cinétique, trouver une relation entre 

𝑣, 𝑔, 𝑅 𝑒𝑡 𝜃. 

2) Appliquer la deuxième loi de Newton au solide ponctuel  
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𝑆 

𝐴 

𝜃 
𝑅 

3) Déterminer la position du solide au moment où il quitte la sphère. Quelle est alors sa  

vitesse? 

 

 

 

 

 

Solution 

1) En appliquant le théorème de l’énergie cinétique, trouvons la relation entre 𝑣, 𝑔, 𝑅 𝑒𝑡 𝜃 

 Système : Solide de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces :  

 Le poids 𝑃⃗⃗  

 La réaction normale 𝐹⃗  de la sphère sur le solide 

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑ 𝑊⃗⃗⃗⃗𝐴→𝐵
𝑒𝑥𝑡   

1

2
𝑚𝑉𝑆

2 −
1

2
𝑚𝑉𝐴

2 = 𝑊 𝑃⃗⃗ +𝑊𝐹⃗ 𝑜𝑟 𝑊 𝐹⃗ = 0  

 
1

2
𝑚𝑉𝑆

2 = 𝑚𝑔ℎ  𝑜𝑟 ℎ = 𝑅 − 𝑅𝑐𝑜𝑠𝜃 = 𝑅(1 − 𝑐𝑜𝑠𝜃) 

1

2
𝑚𝑉𝑆

2 = 𝑚𝑔𝑅(1 − 𝑐𝑜𝑠𝜃)  

𝑉𝑆 = √2𝑔𝑅(1 − 𝑐𝑜𝑠𝜃)  

2) En appliquant la deuxième loi de Newton, déterminons la relation 𝐹⃗   de la sphère sur 

le solide. 

∑ 𝐹⃗𝑒𝑥𝑡 = 𝑚𝑎⃗  

𝑃⃗⃗ + 𝐹⃗ = 𝑚𝑎⃗   

Dans la base de Freinet, projetons cette relation suivant la normale  𝑛⃗⃗ 

𝑃𝑐𝑜𝑠𝜃 − 𝐹 = 𝑚
𝑉𝑆
2

𝑅
  

𝑚𝑔𝑐𝑜𝑠𝜃 − 𝐹 = 𝑚 𝘹 
(2𝑔𝑅(1−𝑐𝑜𝑠𝜃)

𝑅
 ⇒ 𝑚𝑔𝑐𝑜𝑠𝜃 − 2𝑚𝑔 + 2𝑚𝑔𝑐𝑜𝑠𝜃 = 𝐹   

𝐹 = 𝑚𝑔(3𝑐𝑜𝑠𝜃 − 2)  
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𝐵 

𝑡 

𝑛⃗⃗ 

𝜃 
𝑇⃗⃗ 

3) Déterminons la position du solide au moment où il quitte la sphère 

Le solide quitte la sphère lorsque 𝐹 ≥ 0 

Cas limite 𝐹 = 0 ⇒ 𝑚𝑔(3𝑐𝑜𝑠𝜃 − 2) = 0  

𝑚𝑔 ≠ 0 𝑒𝑡 𝑐𝑜𝑠𝜃 =
2

3
   

𝜃 = 𝑎𝑟𝑐 cos
2

3
= 48, 180  

La vitesse est alors de : 

𝑉 = √2𝑔𝑅 (1 −
2

3
) = √

2

3
𝑔𝑅  

𝑉 = √
2

3
𝑔𝑅  

Exemple 5 : On considère un pendule constitué d’une boule 𝐵 (de masse  𝑚  et de centre 𝐺) 

et d’un fil inextensible de longueur 𝑙 et de masse négligeable. Ce pendule est mis en 

mouvement de rotation uniforme au tour d’un axe vertical ∆ d’un référentiel galiléen. 

Montons qu’un tel mouvement n’est possible que si la vitesse angulaire 𝑤 est supérieure à la 

valeur 𝑤0 que l’on calculera. 

Déterminons alors la valeur de l’angle d’inclinaison 𝜃  que prend le fil par rapport à l’axe ∆, 

ainsi que la tension du fil. 

Solution 

 Système : boule de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces :  

 Le poids 𝑃⃗⃗  

 

 La réaction  𝑇⃗⃗  

 Appliquons le théorème de l’énergie cinétique 
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𝑚𝑎⃗ 

𝑇⃗⃗ 

𝑃⃗⃗ 
𝐵 

𝐵′ 

𝑙 

𝜃 

𝑃⃗⃗ 

𝑇⃗⃗ 

 

 

 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺 ⇒ 𝑃⃗⃗ + 𝑅⃗⃗ = 𝑚𝑎⃗𝐺            𝑟 = 𝑙𝑠𝑖𝑛𝜃  

Suivant la tangentielle on a : 𝑇𝑐𝑜𝑠𝜃 = 𝑚𝑔            (1) 

Suivant la normale on a : 𝑇𝑐𝑜𝑠𝜃 = 𝑚𝑤2𝑙𝑠𝑖𝑛𝜃        (2) 

(1)

(2)
 𝑑𝑜𝑛𝑛𝑒 ∶ 𝑇𝑎𝑛𝛼 =

𝑤2𝑙𝑠𝑖𝑛𝜃

𝑔
   

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
=

𝑤2𝑙𝑠𝑖𝑛𝜃

𝑔
 ⇒

1

𝑐𝑜𝑠𝜃
 ⇒

1

𝑐𝑜𝑠𝜃
=

𝑤2𝑙

𝑔
  

D’où  𝑐𝑜𝑠𝜃 =
𝑔

𝑤2𝑙
 𝑜𝑟  𝑐𝑜𝑠𝜃 < 1 ⇒

𝑔

𝑤2𝑙
< 1  

Le pendule ne s’écarte de la vitesse que si 𝑤 > 𝑤0 = √
𝑔

𝑙
  

Si 𝑤 > 𝑤0 le pendule prend une inclinaison 𝜃 déterminée par 𝑐𝑜𝑠𝜃 =
𝑔

𝑤2𝑙
 

La tension 𝑇 du fil a pour expression : 

𝑇 =
𝑚𝑔

𝑐𝑜𝑠𝜃
=

𝑚𝑔
𝑔

𝑤2𝑙

=
𝑚𝑔 𝘹 𝑤2𝑙 

𝑔
= 𝑚𝑤2𝑙  

𝑇 = 𝑚𝑤2𝑙   

Exemple 6 : Un pendule est constitué par une petite boule de petite dimension, de masse 𝑚, 

suspendue à un point fixe par un fil inextensible de longueur 𝑙. Lae pendule est écarté d’un 

angle 𝜃 de sa position d’équilibre et abandonné sans vitesse initiale. 

a) Déterminer la vitesse 𝑉  du pendule lorsqu’il passe par sa position d’équilibre. 

b) quelle est alors la tension du fil ? 

Solution 
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a) Déterminer la vitesse 𝑉du pendule lorsqu’il passe par sa position d’équilibre.  

 Système : boule de masse 𝑚 

 Référentiel terrestre  supposé galiléen  

 Bilan des forces :  

 Le poids 𝑃⃗⃗  

 La réaction  𝑇⃗⃗  

 Appliquons le théorème de l’énergie cinétique 

𝐷𝐸𝐶 = ∑𝑊𝐹⃗𝑒𝑥𝑡  

1

2
𝑚𝑉2 = 𝑚𝑔ℎ = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃)  

𝑉 = √2𝑔𝑙(1 − 𝑐𝑜𝑠𝜃)  

b) Déterminons la tension du fil  

Appliquons le théorème du centre d’inertie 

∑𝑓 𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺  

𝑃⃗⃗ + 𝑅⃗⃗ = 𝑚𝑎⃗𝐺  

Suivant 𝑘 verticale on a : 𝑇 −𝑚𝑔 = 𝑚
𝑉2

𝑙
 

𝑇 = 𝑚𝑔 +𝑚(2𝑔𝑙
(1−𝑐𝑜𝑠𝜃)

𝑙
  

𝑇 = 𝑚𝑔 + 2𝑚𝑔 − 2𝑚𝑔𝑐𝑜𝑠𝜃 = 3𝑚𝑔 − 2𝑚𝑔𝑐𝑜𝑠𝜃  

𝑇 = 𝑚𝑔(3 − 2𝑐𝑜𝑠𝜃)   
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Chapitre 4 : APPLICATION DES LOIS DE NEWTON 

I. Mouvement dans le champ de gravitation 

1.1) Première Loi de Kepler 

Par rapport au référentiel héléocentrique (ou de Copernic), les trajectoires des planètes sont 

des ellipses dont le soleil occupe le foyer. En réalité, ces ellipses sont très proches des cercles. 

Remarque : une planète est soumise essentiellement à l’attraction du soleil et l’action des 

autres ne se manifeste que par de très faibles perturbations qui sont négligeables par la suite. 

1.2) Démonstration des 2e et 3e lois de Kepler dans l’approvisionnement des 

trajectoires circulaires 

* La 2
e
 loi se simplifie : la vitesse angulaire d’une planète sur la trajectoire est une 

constante donc le mouvement est circulaire uniforme. 

D’où 𝑎⃗ =
𝑓

𝑚
 est centripète. 

𝑎𝑡 =
𝑑𝑉

𝑑𝑡
= 0 ⇒ 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝑒𝑡 𝑤 =

𝑉

𝑅
  

* La 3
e
 loi 

Le carré de la période de révolution est proportionnel au cube du rayon de la trajectoire. 

𝑇 =
2𝜋𝑅

𝑉
 ⇒ 𝑇2 =

4𝜋2𝑅2

𝑉2
 𝑒𝑡 𝑎 = 𝑔0 =

𝑉2

𝑅
=

𝐺𝑀

𝑅2
  

⇒𝑉2 =
𝐺𝑀𝑅

𝑅2
=

𝐺𝑀

𝑅
 

L’expression devient 𝑇2 =
4𝜋2𝑅2

𝐺𝑀

𝑅

=
4𝜋2𝑅2

𝐺𝑀
 

D’où 
𝑇2

𝑅3
=

4𝜋2

𝐺𝑀
 

Le deuxième membre de cette expression ne dépend pas de la planète considérée puisque M 

est la masse du soleil. 

Pour toutes les planètes, 
𝑇2

𝑅3
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 

1.3) Mouvement d’un satellite 

Lors d’un lancement d’un satellite autour de la Terre, il est soumis au champ de gravitation 

terrestre. Considérons les satellites de trajectoires circulaires. On démontre que le plan de la 

trajectoire contient le centre de la Terre. On établit les relations donnant la vitesse et la 

période de révolution en fonction de l’altitude Z du satellite. 

- Choisissons le référentiel géocentrique supposé galiléen 

- Le système : satellite 

- Bilan des forces : 𝐹⃗ = 𝑚𝑔⃗ 

- Le théorème du centre d’inertie 
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∑𝑓𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺  ⇒ 𝑚 𝑔⃗ = 𝑚𝑎⃗𝐺   

⇒ 𝑎⃗𝐺 = 𝑔⃗  

Dans la base de Frenet (𝑇⃗⃗, 𝑁⃗⃗⃗), on a : 

 

 

 

 

 

 

 

𝐺⃗ (0
𝑔
) et 𝑎⃗𝐺 (

𝑑𝑉

𝑑𝑡
𝑉2

𝐹

), donc 
𝑑𝑉

𝑑𝑡
= 0 et 𝐺 =

𝑉2

𝑟
 avec 𝑟 = 𝑅𝑇 + 𝑍 

Le mouvement étant uniforme, 𝐺 =
𝑉2

𝑟
 ⇒ 𝑉 = √𝑟𝐺 

⇒ 𝑉 = √𝐺(𝑅𝑇 + 𝑍) or 𝐺 =
𝐺𝑀

(𝑅+𝑍)2
= 𝐺0

𝑟2

(𝑅+𝑍)2
 

Avec 𝐺0 = 𝑔0, la valeur du champ de pesanteur à l’altitude Z=0 

D’où 𝑉 = 𝑅√
𝑔0

(𝑅+𝑍)
 

𝑎𝐺 =
𝑉2

𝑅
=

𝑅2𝑔0

𝑅(𝑅+𝑍)
=

𝑅𝑔0

𝑅+𝑍
  

𝑎𝐺 =
𝑅𝑔0

𝑅+𝑍
  

La vitesse diminue quand l’altitude augmente et est indépendante de la masse du satellite. 

Ainsi, pour une altitude donnée Z=300km, on trouve (V=7,72km/s). La période ou la durée 

d’un tour du satellite est : 𝑇 =
2𝜋(𝑅+𝑍)

𝑉
= 2𝜋√

(𝑅+𝑍)3

𝑔0𝑅2
 pour Z=300km, 𝑇 = 5429𝑠 ≅ 1ℎ30𝑚𝑖𝑛 

II. Mouvement dans un champ uniforme indépendant du temps 

Un projectile de masse m est lancé dans un champ de pesanteur 𝑔⃗ considéré localement 

comme uniforme. La vitesse de lancement 𝑉⃗⃗0 fait un angle de tir 𝛼 avec le plan horizontal. La 

résistance de l’air et la poussée d’Archimède sont négligeables. On étudie le mouvement du 

centre d’inertie du projectile. 

 

 

𝑇⃗⃗ 
𝑁⃗⃗⃗ 

𝑍 

𝑅𝑇 
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1. Accélération du centre d’inertie 

La deuxième loi de Newton permet de déterminer l’accélération du point G. 

* Choix du référentiel terrestre supposé Galiléen 

* Système : projectile de masse m 

* Bilan des forces appliquées : 𝑃⃗⃗ = 𝑚𝑔⃗ 

* Appliquons le théorème du centre d’inertie : 𝑃⃗⃗ = 𝑚𝑔⃗ = 𝑚𝑎⃗ ⇒ 𝑎⃗𝐺 = 𝑔⃗ 

Lors d’un mouvement de chute libre dans le champ de pesanteur 𝑔⃗ uniforme, le vecteur 

accélération du centre d’inertie 𝑎⃗𝐺 du projectile est égal à 𝑔⃗. Le mouvement est indépendant 

de la masse du projectile. 

2. Equations universelles du mouvement du centre d’inertie 

𝑎⃗𝐺 = 𝑔⃗ : Equation 1 

A 𝑡0 = 0, G occupe 𝐺0 avec une vitesse 𝑉0. Les équations vectorielles du mouvement 

s’obtiennent par intégration successives de l’équation 1. 

𝑉⃗⃗ = 𝑔⃗𝑡 + 𝑉⃗⃗0 : Equation 2 

𝑂𝐺⃗⃗⃗⃗ ⃗⃗ =
1

2
𝑔⃗𝑡2 + 𝑉⃗⃗0𝑡 + 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ 0 : Equation 3 

3. Equations horaires 

Choisissons le repère (𝑜, 𝑖, 𝑗, 𝑘⃗⃗) le mieux adapté pour déterminer les coordonnées des vecteurs 

accélération, vitesse et position du centre d’inertie. 

 

 

 

  

 

 

 

 

𝛼 

𝑉⃗⃗0 𝑔⃗ 𝑃⃗⃗ 

𝑗 

𝑜 

𝐺 

𝑥 

𝑦 

𝑖 

 

𝑉0 

𝑔⃗ 

𝑖 

𝑗 

𝑘⃗⃗ 

𝐺 
𝐺′′ 

𝑃⃗⃗ 

𝑥 

𝑦 

𝐺′ 
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* Le point G’ décrit l’axe horizontal (𝑜, 𝑖) avec un mouvement uniforme. 

* Le point G’’ décrit l’axe vertical (𝑜, 𝑗) avec un mouvement uniformément varié. 

* L’axe (𝑜, 𝑗) vertical ascendant, alors 𝑔⃗ = −𝑔𝑗 avec ‖𝑔⃗‖ = 𝑔 

* L’axe (𝑜, 𝑖) horizontal, le plan (𝑖, 𝑗) contenant le vecteur vitesse initiale 𝑉⃗⃗0, caractérisé 

par la mesure de l’angle (𝑖, 𝑉⃗⃗0)̂ telle que 0 < 𝛼 ≤
𝜋

2
. 

Alors,  𝑉⃗⃗0 {
𝑉0𝑥 = 𝑉0𝑐𝑜𝑠𝛼
𝑉0𝑦 = 𝑉0𝑠𝑖𝑛𝛼

 

𝑉⃗⃗0 = 𝑉0𝑐𝑜𝑠𝛼𝑖 + 𝑉0𝑠𝑖𝑛𝛼𝑗  avec ‖𝑉⃗⃗0‖ = 𝑉0 

Les équations cartésiennes du mouvement s’obtiennent : 

𝑎⃗ {

𝑎𝑥 = 0
𝑎𝑦 = −𝑔

𝑎𝑧 = 0
 ; 𝑉⃗⃗𝐺 {

𝑉𝑥 = 𝑉0𝑐𝑜𝑠𝛼
𝑉𝑦 = −𝑔𝑡 + 𝑉0𝑠𝑖𝑛𝛼

𝑉𝑧 = 0
 ; 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ {

𝑥 = 𝑉0𝑐𝑜𝑠𝛼𝑡

𝑦 = −
1

2
𝑔𝑡2 + 𝑉0𝑠𝑖𝑛𝛼𝑡

𝑧 = 0

  

Les équations horaires du mouvement nous montrent que : 

- Le mouvement du projeté G selon l’horizontale est uniforme ; 

- Le mouvement du projeté G selon la verticale est uniformément varié. 

 Cas particuliers 

Pour 𝑉⃗⃗0 = 0⃗⃗, nous obtenons l’équation d’un mouvement de chute libre sans vitesse initiale : 

𝑦 = −
1

2
𝑔𝑡2 

Pour 𝛼 = 𝜋/2, le vecteur vitesse initiale est parallèle à 𝑔⃗ ; le mouvement est rectiligne, 

uniformément varié, selon la verticale : 𝑦 = −
1

2
𝑔𝑡2 + 𝑉0𝑡 

4. Etude de la trajectoire 

Pour 0 < 𝛼 <
𝜋

2
, l’équation cartésienne de la trajectoire dans le repère (𝑜, 𝑖, 𝑗, 𝑘⃗⃗),s’obtient en 

éliminant le temps t entre les expressions 𝑥(𝑡) et 𝑦(𝑡), il vient : 

𝑡 =
𝑥

𝑉0𝑐𝑜𝑠𝛼
  d’où 𝑦 = −

1

2

𝑔

𝑉0
2𝑐𝑜𝑠2𝛼

𝑥2 + 𝑥𝑡𝑎𝑛𝛼 

Soit avec 
1

𝑐𝑜𝑠2𝛼
= 1 + 𝑡𝑎𝑛2𝛼, on obtient : 

𝑦 = −
𝑔

2𝑉0
2 (1 + 𝑡𝑎𝑛

2𝛼)𝑥2 + 𝑥𝑡𝑎𝑛𝛼  

1

𝑐𝑜𝑠2𝛼
=

𝑐𝑜𝑠2𝛼+𝑠𝑖𝑛2𝛼

𝑐𝑜𝑠2𝛼
=

𝑐𝑜𝑠2𝛼

𝑐𝑜𝑠2𝛼
+

𝑠𝑖𝑛2𝛼

𝑐𝑜𝑠2𝛼
= 1 + 𝑡𝑎𝑛2𝛼  

La trajectoire est une parabole située dans le plan de tir (𝑜, 𝑖, 𝑗) et dont la concavité est tournée 

vers le bas. 
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Exprimons quelques caractéristiques de la trajectoire parabolique. 

 La flèche est l’altitude maximale ℎ = 𝑍𝑚 atteinte par le projectile. 

Au point M, le vecteur vitesse 𝑉⃗⃗𝑀est parallèle à (𝑜𝑥) donc 𝑉𝑦 = 0 ⇔ −𝑔𝑡 + 𝑉0𝑠𝑖𝑛𝛼 = 0 

⇒ 𝑡𝑀 =
𝑉0𝑠𝑖𝑛𝛼

𝑔
 

En reportant 𝑡𝑀 dans l’expression de 𝑦, on obtient : 

𝑦𝑀 = ℎ = −
1

2
𝑔 (

𝑉0𝑠𝑖𝑛𝛼

𝑔
)
2

 + 𝑉0𝑠𝑖𝑛𝛼 (
𝑉0𝑠𝑖𝑛𝛼

𝑔
)  

⇒ ℎ =
𝑉0
2𝑠𝑖𝑛2𝛼

𝑔
(−

1

2
+ 1) 

⇒ 𝑦𝑀 = ℎ =
𝑉0
2𝑠𝑖𝑛2𝛼

2𝑔
 

La flèche est évidemment maximale pour 𝛼 =
𝜋

2
 (𝑡𝑖𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙) 

 La portée horizontale est l’abscisse du point C de la trajectoire d’ordonnée nulle, c’est-

à-dire situé dans le plan horizontal passant par O. 

Avec 𝑍𝑐 = 0, on obtient : 0 = −
1

2

𝑔𝑥𝑐
2

𝑉0
2𝑐𝑜𝑠2𝛼

+ 𝑥𝑐𝑡𝑎𝑛𝛼 

⇒ 𝑥𝑐(−
1

2

𝑔𝑥𝑐

𝑉0
2𝑐𝑜𝑠2𝛼

+ 𝑡𝑎𝑛𝛼) = 0 

𝑥𝑐 = 0  correspond au point de lancement O, l’autre solution au point C, d’où : 

−
1

2

𝑔𝑥𝑐

𝑉0
2𝑐𝑜𝑠2𝛼

= −
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
  ⇒ 𝑥𝑐 =

2𝑉0
2𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼

𝑔
 Or 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛼 = 𝑠𝑖𝑛2𝛼 

Donc, 𝑥𝑐 =
2𝑉0

2𝑠𝑖𝑛2𝛼

𝑔
 

Pour une vitesse initiale 𝑉0 donnée, la portée est maximale pour 𝑠𝑖𝑛2𝛼 = 1 𝑠𝑜𝑖𝑡 𝛼 = 45° 

 

𝑖 𝑑 

 

𝑗 

𝑉⃗⃗𝑚 
𝑀 

𝑜 

𝑉⃗⃗0 

ℎ 

 

𝑦𝑀 

𝑥𝑀 𝐶 
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D’où 𝑑𝑚𝑎𝑥 =
𝑉0
2

𝑔
 

Pour 𝑑 < 𝑑𝑚𝑎𝑥, 𝑠𝑖𝑛2𝛼 =
𝑔𝑑

𝑉0
2 

Cette équation admet deux solutions 𝛼1 𝑒𝑡 𝛼2 telles que : 

2𝛼2 = 𝜋 − 2𝛼1 soit 𝛼2 =
𝜋

2
− 𝛼1 

Exemple : un projectile est lancé dans le champ de pesanteur avec une vitesse 𝑉0 = 200𝑚/𝑠  

Calculer, pour une portée horizontale de 25000m 

1) Les angles de tir possibles 

2) La flèche 

3) La durée de tir, l’impact se reproduisant sur le sol, plan horizontal contenant le point 

de lancement 

4) La vitesse lors de l’impact. (g=9,8m/s
2
) 

Solution 

1) Les angles de tir possible 

Nous avons : 𝑠𝑖𝑛2𝛼1 =
𝑔𝑑

𝑉0
2 

AN : 𝑠𝑖𝑛2𝛼1 =
9,8×2500

(200)2
= 0,6125 

⇒ 2𝛼1 = arcsin(0,6125) = 37,8° 𝑠𝑜𝑖𝑡 𝛼1 = 18,9° et 

 2𝛼2 = 𝜋 − 2𝛼1 ⇒ 𝛼2 =
𝜋

2
− 𝛼1 

𝛼2 = 90° − 18,9° = 71,1°  

2) La flèche ℎ =
𝑉0
2𝑠𝑖𝑛2𝛼

2𝑔
 

* Avec 𝛼1 = 18,9°, ℎ = 214𝑚 (tir tendu) 

* Avec 𝛼2 = 74,1°, ℎ = 1825𝑚 (tir en cloche) 

3) La durée du tir 

𝑍𝐶 = −
1

2
𝑔𝑡2 + 𝑉0𝑠𝑖𝑛𝛼𝑡 = 0  

⇒ 𝑡(−
1

2
𝑔𝑡 + 𝑉0𝑠𝑖𝑛𝛼) = 0 

⇒ 𝑡 = 0 𝑜𝑢 𝑡 =
2𝑉0𝑠𝑖𝑛𝛼

𝑔
 

* Avec 𝛼1 = 18,9°, 𝑡1 = 13,2𝑠  

* Avec 𝛼2 = 71,1°, 𝑡2 = 38,6𝑠 
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4) La vitesse lors de l’impact 

{

𝑥̇𝑐 = 𝑉0𝑐𝑜𝑠𝛼
𝑦̇0 = −𝑉0𝑠𝑖𝑛𝛼

𝑧̇𝑐 = 0
  d’où, 𝑉𝑐 = √𝑥̇𝑐2 + 𝑦̇𝑐2 + 𝑧̇𝑐2 = 𝑉0 = 200𝑚/𝑠 

𝑉𝑐 = 𝑉0 = 200𝑚/𝑠 

III. Mouvement d’une particule chargée 

Considérons un champ électrique uniforme 𝐸⃗⃗ existant entre deux plaques parallèles A et C tel 

que 𝑉𝐴 − 𝑉𝐵 = 𝑈𝐴𝐶 > 0 

Une particule de masse m et de charge q est lancé dans ce champ à partir du point O avec une 

vitesse initiale 𝑉⃗⃗0. 

Pour déterminer les caractéristiques du mouvement de son centre d’inertie, appliquons à la 

particule le théorème du centre d’inertie. 

 

 

 

 

 

 

 Accélération 

La seule force appliquée à la particule est la force électrique 𝐹⃗, son poids est négligeable. 

Dans le référentiel terrestre considéré comme galiléen, on peut écrire : ∑𝑓𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺 

𝐹⃗ = 𝑚𝑎⃗𝐺 𝑜𝑟 𝐹⃗ = 𝑞𝐸⃗⃗  

D’où 𝑞𝐸⃗⃗ = 𝑚𝑎⃗𝐺 𝑒𝑡 𝑎⃗𝐺 =
𝑞𝐸⃗⃗

𝑚
 

 Vitesse 

La vitesse du centre d’inertie de la trajectoire dans la zone où règne le champ est 𝑉⃗⃗𝐺 tel que 

𝑑𝑉𝐺⃗⃗ ⃗⃗ ⃗⃗

𝑑𝑡
= 𝑎⃗𝐺  ⇒  𝑉𝐺⃗⃗⃗⃗⃗ = 𝑎𝐺⃗⃗ ⃗⃗⃗𝑡 + 𝑉⃗⃗0 où 𝑉⃗⃗0 est la vitesse initiale du centre d’inertie de la particule à la 

date prise comme origine des dates. 

 Position 

La position du centre d’inertie de la particule est donnée par le vecteur 𝑂𝐺⃗⃗⃗⃗ ⃗⃗  où O est l’origine 

du repère d’espace choisi. 

+ 

 

𝑂 

+ + + + + + + + 

𝐶 

𝐴 

𝑉⃗⃗0 𝐸⃗⃗ 

− − − − − − − − 
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𝑂𝐺⃗⃗⃗⃗ ⃗⃗  est tel que 
𝑑𝑂𝐺⃗⃗⃗⃗⃗⃗⃗

𝑑𝑡
= 𝑉𝐺⃗⃗⃗⃗⃗ = 𝑎𝐺⃗⃗ ⃗⃗⃗𝑡 + 𝑉⃗⃗0  ⇒  𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ =

1

2
𝑎𝐺⃗⃗ ⃗⃗⃗𝑡

2 + 𝑉⃗⃗0𝑡 + 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ 0  

 Trajectoire 

Les équations paramétriques de la trajectoire du centre d’inertie de la particule s’obtiennent en 

faisant les projections sur les axes du repère d’espace du vecteur position. On a donc : 

𝑂𝐺⃗⃗⃗⃗ ⃗⃗ =

{
 
 

 
 𝑥 =

1

2
𝑎𝐺𝑥𝑡

2 + 𝑉0𝑥𝑡 + 𝑥0

𝑦 =
1

2
𝑎𝐺𝑦𝑡

2 + 𝑉0𝑦𝑡 + 𝑦0

𝑧 =
1

2
𝑎𝐺𝑦𝑡

2 + 𝑉0𝑦𝑡 + 𝑦0

  

Les conditions initiales du mouvement peuvent apporter des simplifications qui permettent de 

déterminer la nature géométrique de la trajectoire de la particule. 

* Cas où 𝐸⃗⃗ est parallèle à 𝑉⃗⃗0 

 

 

 

 

 

 

   

 

 

 

 

 

 

Considérons une particule de charge q et de masse m qui pénètre à une date prise comme 

origine des dates dans un espace où règne un champ électrique uniforme 𝐸⃗⃗, avec une vitesse 

𝑉⃗⃗0 de même direction que 𝐸⃗⃗. 

Appliquons la 2
e
 loi de Newton 

∑𝑓𝑒𝑥𝑡 = 𝑚𝑎⃗  sachant que 𝑃 ≪ 𝐹𝑒 

⇒ 𝑞𝐸⃗⃗ = 𝑚𝑎⃗𝐺 

⇒ 𝑎⃗𝐺 =
𝑞𝐸⃗⃗

𝑚
 

 

− 

− 

− 

− 

− 

− 

− 

+ 

+ 

+ 

+ 

+ 

+ 

𝐸⃗⃗ 

𝐸⃗⃗ 

𝐸⃗⃗ 

𝑉⃗⃗0 
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Faisons la projection de 𝑎⃗𝐺 sur les axes du repère d’étude et nous obtenons : 

𝑎⃗𝐺 {

𝑎𝑥 =
𝑞𝐸

𝑚

𝑎𝑦 = 0

𝑎𝑧 = 0

  

De cette projection, on peut obtenir les composantes du vecteur vitesse du centre d’inertie de 

la particule : 

𝑉⃗⃗𝐺 {

𝑉𝑥 =
𝑞𝐸

𝑚
𝑡 + 𝑉0

𝑉𝑦 = 0

𝑉𝑧 = 0

  

Puis celles du vecteur position 

𝑂𝐺⃗⃗⃗⃗ ⃗⃗ {
𝑥 =

1

2

𝑞𝐸

𝑚
𝑡2 + 𝑉0𝑡

𝑦 = 0
𝑧 = 0

  

Les équations paramétriques du mouvement montrent que la particule se déplace suivant l’axe 

x’ox (y=0 et z=0). 

* Cas où 𝐸⃗⃗ est orthogonal à 𝑉⃗⃗0 

 

 

 

 

 

 

 

Considérons une particule de charge q et de masse m qui pénètre à une date prise comme 

origine des dates dans un espace où règne un champ électrique 𝐸⃗⃗, avec une vitesse 𝑉⃗⃗0 

orthogonal à 𝐸⃗⃗. Prenons comme origine des espaces le point d’entrée de la particule dans la 

région et comme axes des coordonnées de la direction du champ 𝐸⃗⃗, celle de 𝑉⃗⃗0 et une 

direction qui leur est normale. 

Appliquons le théorème du centre d’inertie : 

∑𝑓𝑒𝑥𝑡 = 𝑚𝑎⃗𝐺 suivant 𝑃⃗⃗ ≪ 𝐹⃗𝑒 

⇒ 𝑞𝐸⃗⃗ = 𝑚𝑎⃗𝐺 

+ 

 

+ + + + + 

− − − − − − 

𝑥 𝑥′ 

𝑦′ 

𝑦 

𝑉⃗⃗0 

𝐸⃗⃗ 𝐸⃗⃗ 
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+ + + + 

− − − − − 

𝑉⃗⃗𝑠  

𝐹⃗  𝐸⃗⃗  
𝐻  

𝑁  𝐸  

𝑄  𝑆  

𝑉𝑠𝑦   

𝑉𝑠𝑥  

𝐷  

𝑙  

𝑃  

𝑑  

𝑂  

⇒ 𝑎⃗𝐺 =
𝑞𝐸⃗⃗

𝑚
 

La projection de 𝑎⃗𝐺 sur les axes donne : 

𝑎⃗𝐺 {

𝑎𝑥 = 0

𝑎𝑦 = −
𝑞𝐸

𝑚

𝑎𝑧 = 0

  d’où 𝑉⃗⃗𝐺 {

𝑉𝑥 = 0

𝑉𝑦 = −
𝑞𝐸

𝑚
𝑡

𝑉𝑧 = 0

 et 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ {

𝑥 = 𝑉0𝑡    (1)

𝑦 = −
1

2

𝑞𝐸

𝑚
𝑡2    (2)

𝑧 = 0

 

Les équations paramétriques montrent que le mouvement de la particule est : 

- Uniforme sur l’axe x’ox 

- Uniformément varié suivant l’axe y’oy 

Comme z=0 à chaque instant, la particule se déplace donc dans le plan contenant 𝑉⃗⃗0 et 𝐸⃗⃗. 

En calculant t dans (1) on a :𝑡 =
𝑥

𝑉0
  (3) et en le remplaçant par sa valeur dans (2), on obtient : 

𝑦 = −
1

2

𝑞𝐸𝑥2

𝑚𝑉0
2     (4)  

La trajectoire de la particule est une parabole de sommet O. 

 Déviation et déflexion 

 

 

 

 

 

 

 

 

Considérons une particule de charge 𝑞 < 0 et de masse m animée d’un vecteur vitesse 𝑉⃗⃗0 

horizontale qui pénètre entre les armatures d’un condensateur plan chargé sous une tension U. 

La distance entre les armatures est d et leur longueur l. 

A la sortie du condensateur la particule frappe un écran en P. L’écran est situé à une distance 

D de O. 

* Equation du mouvement 

La particule est soumise à la force électrostatique 𝐹⃗ = 𝑞𝐸⃗⃗ de même direction que 𝐸⃗⃗ et de sens 

opposé, d’intensité 𝐹 = 𝑞𝐸. Le mouvement se fait dans le plan xoy. 

𝑉⃗⃗0  
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La 2
e
 loi de Newton donne 𝑎⃗𝐺 =

𝑞𝐸⃗⃗

𝑚
 

𝑎⃗𝐺 {
𝑎𝐺𝑥 = 0

𝑎𝐺𝑦 =
𝑞𝐸

𝑚

 d’où 𝑉⃗⃗𝐺 {
𝑉𝐺𝑥 = 𝑉0

𝑉𝐺𝑦 =
𝑞𝐸

𝑚
𝑡
  et 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ {

𝑥 = 𝑉0𝑡

𝑦 =
1

2

𝑞𝐸

𝑚
𝑡2

 

L’équation de la trajectoire 

𝑥 = 𝑉0𝑡 ⇒ 𝑡 =
𝑥

𝑉0
  

Donc 𝑦 = −
1

2

𝑞𝐸𝑥2

𝑚𝑉0
2  Pour x=l, on a : 

𝑦 = −
1

2

𝑞𝐸𝑙2

𝑚𝑉0
2  la trajectoire est un arc de parabole. 

* Vitesse à la sortie du condensateur 

1
ere 

méthode : Théorème de Pythagore 

𝑉𝑠
2 = 𝑉𝑠𝑥

2 + 𝑉𝑠𝑦
2  ⇒ 𝑉𝑠 = √𝑉𝑠𝑥2 + 𝑉𝑠𝑦2   

𝑉𝑠𝑥 =
𝑑𝑥

𝑑𝑡
= 𝑉0  et 𝑉𝑠𝑦 =

𝑑𝑦

𝑑𝑡
=

𝑞𝐸𝑙

𝑚𝑉0
 or 𝐸 =

𝑈

𝑑
 d’où 𝑉𝑠𝑦 =

𝑞𝑈𝑙

𝑚𝑉0𝑑
 

⇒ 𝑉𝑠 = √𝑉0
2 + (

𝑞𝑈𝑙

𝑚𝑉0𝑑
)
2

     

2
e
 méthode : théorème de l’énergie cinétique 

∆𝐸𝑐 = ∑𝑊𝑓𝑒𝑥𝑡  

1

2
𝑚𝑉𝑠

2 −
1

2
𝑚𝑉0

2 = 𝐹𝑦  

1

2
𝑚𝑉𝑠

2 −
1

2
𝑚𝑉0

2 = 𝑞𝐸 ×
𝑞𝐸𝑙2

2𝑚𝑉0
2  

𝑉𝑠
2 − 𝑉0

2 =
𝑞2𝑈2𝑙2

𝑚2𝑉0
2𝑑2

  

𝑉𝑠
2 = 𝑉0

2 −
𝑞2𝑈2𝑙2

𝑚2𝑉0
2𝑑2

  

⇒ 𝑉𝑠 = √𝑉0
2 −

𝑞2𝑈2𝑙2

𝑚2𝑉0
2𝑑2

 

* Déviation et déflexion 

Entre l’entrée et la sortie S du champ E, la trajectoire de la particule est déviée d’un angle 𝛼 

appelé déviation. La distance HP est la déflexion. 

𝑡𝑎𝑛𝛼 =
𝑉𝑠𝑦

𝑉𝑠𝑦
=

𝑞𝑈𝑙

𝑚𝑉0𝑑

𝑉0
=

𝑞𝑈𝑙

𝑚𝑉0
2𝑑
     (1)  
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𝑡𝑎𝑛𝛼  
𝐻𝑃

𝐻𝑁
=

𝑦(𝑃)

𝐷−
𝑙

2

=
𝑦𝑆
𝑙

2

       (2)  

(1)=(2) ⇔ 
𝑞𝑈𝑙

𝑚𝑉0
2𝑑
=

𝑦(𝑃)

𝐷−
𝑙

2

 ⇒ 𝑦(𝑃) =
𝑞𝑈𝑙

𝑚𝑉0
2𝑑
(𝐷 − 𝑙 2⁄ ) 

La charge massique est déterminée par la relation : 
𝑞

𝑚
=

𝑦(𝑃)𝑉0
2𝑑

𝑈𝑙(𝐷−𝑙 2⁄ )
 

La condition pour que les particules sortent du champ E. 

Le faisceau sort des plaques si 𝑥 = 𝑙 𝑒𝑡 𝑦 <
𝑑

2
  

Soit 𝑦 =
𝑞𝑈𝑙2

2𝑚𝑑𝑉0
2 <

𝑑

2
 ⇒  

𝑞𝑈𝑙2

𝑚𝑑2𝑉0
2 < 1 

Pour la tension U donnée, les particules sortent du champ si 𝑉0
2 >

𝑞𝑈𝑙2

𝑚𝑑2
. Sinon, elles sont trop 

déviées et heurtent une des armatures. 

(page 9 et 10 manquantes) 

De S et arrivent en I et J avec une vitesse.  

Pour la première particule de masse 𝑚1 et de rayon 𝑅𝑖 

D’après ∆𝐸𝑐 

1

2
𝑚1𝑉1

2 = 𝑞𝑈0  ⇒ 𝑉1 = √
2𝑞𝑈0

𝑚1
  

On sait que 𝑅1 =
𝑚1𝑉1

𝑞𝐵
=

𝑚1

𝑞𝐵
√
2𝑞𝑈0

𝑚1
= √

𝑚1
22𝑞𝑈0

𝑚1𝑞2𝐵2
 

𝑅1 = √
2𝑚1𝑈0

𝑞𝐵2
=

1

𝐵
√
2𝑚1𝑈0

𝑞
  

La seconde particule de masse 𝑚2 et de rayon 𝑅2 

On a : 
1

2
𝑚𝑉2

2 = 𝑞𝑈0  ⇒  𝑉2 = √
2𝑞𝑈0

𝑚2
 

Or 𝑅2 =
𝑚2𝑉2

𝑞𝐵
=

𝑚2

𝑞𝐵
√
2𝑞𝑈0

𝑚2
=

1

𝐵
√
2𝑚2𝑈0

𝑞
 

𝑅2 =
1

𝐵
√
2𝑚2𝑈0

𝑞
  

Le rapport 
𝑅1

𝑅2
= √

𝑚1

𝑚2
 ⇒

𝑚1

𝑚2
=

𝑅1
2

𝑅2
2 



46 
 

Ce dispositif permet de séparer les isotopes. Les particules de plus grandes masses tombent 

plus loin que les particules  de petites masses. 
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Chapitre 5: AUTO-INDUCTION  

1. Mise en induction expérimentale de l’auto-induction 

 

 

 

 

Le circuit est constitué par un générateur de tension continue, une bobine emportant un noyau 

de fer doux, une lampe et un interrupteur. 

 Lorsque l’on  ferme le circuit en baissant l’interrupteur, la lampe ne brille de tout, son 

éclat qu’après 1 à 2 secondes. Jl y’a  donc un retard à l’établissement du courant 

électrique dans le circuit.  

 Lorsque l’on ouvre le circuit en soulevant l’interrupteur, la lampe brille encore 

pendant 1 à 2 secondes  avant de s’éteindre. Il y’ a donc un retard à la coupure du 

courant dans le circuit. 

2. Un courant induit  

Quand approche rapidement le pôle nord de l’aimant de l’une des forces de la bobine, le 

galvanomètre détecte le passage d’un bref courant dans un  sens déterminé.  

Le  courant est apparu dans un circuit qui ne compte pas un générateur. ce courant porte le 

nom de courant induit : le phénomène physique qui l’engendre s’appelle l’induction 

électromagnétique. Le circuit dans lequel il apparait (la bobine) constitue l’induit et l’aimant 

qui permet de le créer est l’inducteur. 

 Un courant induit apparait dans un circuit si on déplace un aimant dans son  voisinage  

ou si on déplace le circuit devant un aimant 

 le courant induit s’annule lorsque le déplacement relatif cesse  

3. Le flux magnétique  

 

 

 

 

Lorsqu’un circuit parcouru ou non par un courant est plongé dans un champ magnétique que 

l’on note   𝛷 

 On choisit  de manière arbitraire un sens positif sur le circuit. 

 On définit le vecteur surface 𝑆  du circuit dont les caractéristique sont :  

 Direction : la normale au circuit  
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 Sens : vers la gauche du bonhomme d’ampère couché sur le circuit de façon que le 

sens positif choisi entre par ses pieds et sort par la tête et qui regarde l’intérieur du 

circuit. 

 Norme : égale à la surface S du circuit. 

Le flux magnétique à travers le circuit vaut : 

𝛷 = 𝐵⃗⃗. 𝑆 = 𝐵. 𝑆. cos 𝜃  

𝜃 = (𝐵⃗⃗. 𝑆̂)  𝑒𝑡 0 < 𝜃 < 1800   

𝐵  𝑒𝑛  𝑇  ;     𝑆  𝑒𝑛   𝑚2      𝑒𝑡    𝛷  𝑒𝑛  𝑤𝑏  

Dans le système international d’unité, le flux se mesure en webers de symbole 𝑤𝑏  

Exemple : Une bobine plate d’aire 𝑆 = 30 𝑐𝑚2 comporte  𝑁 = 50 𝑠𝑝𝑖𝑟𝑒𝑠. Elle est placée 

dans un champ magnétique uniforme d’intensité  𝐵 = 0,02 𝑇 , comme l’indique la figure 

ci-dessous. 

Traçons un vecteur normal  𝑛⃗⃗  tel que (𝐵⃗⃗, 𝑛⃗⃗) = 600  

 

 

 

 

Le flux  est  𝛷 = 𝑁𝐵𝑆𝑐𝑜𝑠600   

𝐀𝐍:𝛷 = 50 × 0,02 × 30. 10−4  × 𝑐𝑜𝑠600 = 1,5. 10−3𝑤𝑏  

𝛷 = 1,5. 10−3𝑤𝑏   

Si l’orientation imposée avait été de sens contraire nous aurions trouvé :   

𝛷 = −1,5. 10−3𝑤𝑏   

Remarque : toute variation du flux magnétique à travers un circuit fermé  𝑦  fait 

apparaitre un courant  induit. 

4. La loi de Lenz  

Le sens du courant induit est tel que le flux magnétique qu’il crée à travers l’induit s’oppose à 

la variation du flux  qui lui donne naissance. 

Quand le champ magnétique inducteur  𝐵⃗⃗   augmente le courant induit crée un champ 𝐵⃗⃗′   de 

sens opposé à celui de 𝐵⃗⃗. 

𝛷𝑡𝑜𝑡𝑎𝑙 = 𝛷 + 𝛷′ = 𝑁𝑆(𝐵 − 𝐵′)  
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Quand le champ magnétique inducteur 𝐵⃗⃗ diminue, le courant induit crée un champ 𝐵⃗⃗′ de 

même sens que  𝐵⃗⃗. 

𝛷𝑡𝑜𝑡𝑎𝑙 = 𝛷 + 𝛷′ = 𝑁𝑆(𝐵 − 𝐵′)  

5. Force électromagnétique auto-induite   

Pour une bobine sans noyau en fer, on a l’expression suivant :  𝑒 =  −𝐿
𝑆𝑖

𝑆𝑡
 𝑎𝑣𝑒𝑐 𝐿 > 0     (1) 

𝑒 s’exprime en V; Si en ampère(A),   𝑆𝑡 𝑒𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑒𝑠   𝑒𝑡 𝐿 𝑒𝑛 𝐻𝑒𝑢𝑟𝑦𝑠 𝑑𝑒 𝑠𝑦𝑚𝑏𝑜𝑙𝑒 𝐻   

La force électromotrice auto-induite instantané est donnée par la relation :                                

𝑒 =  −𝐿
𝑆𝑖

𝑑𝑡
      (2) 

6. Auto-inductance d’une bobine  

Le calcul de l’inductance 𝐿 d’une bobine comportant 𝑁  spires, de surface 𝑆, sur une longueur  

𝑙    créant un champ uniforme 𝐵. Cette bobine est assimilée  à un solénoïde théorique :  

Son flux magnétique vaut : 

𝛷𝜑 = 𝐵⃗⃗. 𝑆 = 𝐵. 𝑆   (1) 𝑐𝑎𝑟 𝜃 = 0   

Son flux magnétique a pour expression   

 𝛷𝑝 = 𝐿𝑖 

A travers 𝑁 𝑠𝑝𝑖𝑟𝑒𝑠   

𝛷𝜑 = 𝑁𝐵𝑆 𝑜𝑟 𝐵 = 𝜇0𝑛𝑖 = 𝜇0  
𝑁

𝑙
𝑖   

𝛷𝜑 = 𝑁𝜇0
𝑁

𝑙
𝑆𝑖 = 𝜇0

𝑁2

𝑙
 𝑆𝑖  

𝛷𝜑 = 𝜇0
𝑁2

𝑙
 𝑆𝑖        (1)′  

Egalisons : (1)′  𝑒𝑡 (2)      𝛷𝑝 = 𝛷𝜑 

𝐿𝑖 = 𝜇0
𝑁2

𝑙
 𝑆𝑖  ⇒    𝐿 =

𝜇
0𝑁2𝑆

𝑙
  

Définition : Le coefficient positif 𝐿, s’appelle auto-inductance de la bobine. On le désigne 

simplement par inductance de la bobine. L’inductance est caractéristique de la bobine, elle 

est indépendante de l’intensité du courant électrique qui parcourt la bobine. 

Exemple : calculer l’inductance d’un solénoïde dont la longueur  𝑙 est  très grande devant 

le rayon   𝑟. Le nombre de spires par unité de longueur est  𝑛. 

Application numérique  

𝑙 = 0,5𝑚 , 𝑟 = 2,5𝑐𝑚 , 𝑛 = 2. 104 𝑠𝑝𝑖𝑟𝑒𝑠.𝑚−1  
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Solution  

Calculons l’inductance  𝐿 de la bobine  

𝐵 = 𝜇0𝑛𝑖  

 Le  flux magnétique pour une spire est : 𝛷0 = 𝐵𝑆 = 𝜇0𝑛𝜋𝑟
2𝑖  

 Le flux propre traversant  𝑁 spires avec  

 𝑁 = 𝑛𝑙 𝑒𝑠𝑡 ∶  𝛷 = 𝑛𝑙𝛷0 = 𝜇0𝑛
2𝑙𝜋𝑟2𝑖   (1) 

 Cette expression est aussi de la forme :  𝛷 = 𝐿𝑖     (2) 

(1) = (2)  

𝐿𝑖 = 𝜇0𝑛
2𝑙𝜋𝑟2𝑖  

𝐿 = 𝜇0𝑛
2𝑙𝜋𝑟2  

𝐴𝑁: 𝐿 = 4𝜋. 10−7   × 4. 104  ×  0,5  ×  𝜋 × (2,5. 10−2)2 = 0,5 𝐻  

𝐿 = 0,5 𝐻  

7. Loi de Faraday-Lenz  

La force électromagnétique d’auto-induction  𝑒  est proportionnelle à l’imposée de la dérivée 

de l’intensité du courant par rapport au temps. 

𝑒 =
𝑑𝛷

𝑑𝑡
    𝑜𝑟 𝛷 = 𝐿𝑖  

𝑒 = −𝐿
𝑑𝑖

𝑑𝑡
  

8. Tension aux bornes de la bobine  

  

 

 

𝑈𝐴𝐵 = 𝑟𝑖 − 𝑒  

𝑈𝐴𝐵 = 𝑟𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
  

Aux bornes (𝐴, 𝐵) d’une bobine d’inductance 𝐿 et de résistance  , orientée de 𝐴 𝑣𝑒𝑟𝑠 𝐵 et 

traversée par un courant  d’intensité 𝑖,la tension est égale à :  𝑈𝐴𝐵 = 𝐴 + 𝐿
𝑑𝑖

𝑑𝑡
  

 Intensité du courant induit  

Si  𝑅 est la résistance  d’un circuit induit en l’absence de toute autre force électromotrice dans 

le circuit, l’intensité algébrique du courant induit est donnée par la relation : 𝑖 =
𝑒

𝑅
= −

1

𝑅
  
𝑑𝛷

𝑑𝑡
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Si  𝑖 > 0 , le courant induit circule dans le sens positif d’orientation ;  𝑠𝑖 𝑖 < 0, il circule dans 

le sens inverse.  

Remarque : Le plus souvent, on se borne à calculer |𝑒| = |
𝑑𝛷

𝑑𝑡
|  𝑒𝑡 |𝑖| = |

𝑒

𝑅
|  , le sens du 

courant induit étant directement donné par la loi Lenz. 

Exemple : Un conducteur rectiligne 𝐶𝐷 de longueur 𝑙  est posé sur deux rails parallèles et 

horizontaux, perpendiculairement à ceux-ci. L’ensemble est placé dans 𝑙′  entre  fer d’un 

aimant en  𝑈. Les lignes du champ uniforme 𝐵⃗⃗ sont perpendiculaires au plan des rails. Un 

milliampèremètre, branché aux extrémités  𝐸 𝑒𝑡 𝐹, ferme le circuit  𝐹𝐶𝐷𝐸𝐹. On provoque le 

déplacement de la bande  𝐶𝐷 le long des rails : le microampèremètre détecte un courant 

induit. La résistance du circuit, supposée constante est égale à 𝑅  

Etablir l’expression de l’intensité 𝑖 du courant induit en fonction de 𝐵, 𝑙  𝑒𝑡 𝑣 vitesse de la 

barre par rapport au laboratoire. 

𝐴𝑁:𝐵 = 0,1 𝑇 ;     𝑉 = 1𝑚/𝑠;    𝑙 = 5𝑐𝑚  ;   𝑅 = 200𝛺  

Solution  

 

 

 

 

 

 

Le vecteur normal   𝑛⃗⃗ au plan est orienté dans le sens de 𝐵⃗⃗. Le sens positif de  𝑖  est dans le 

sens de 𝐹𝐶𝐷𝐵 

Soit  𝛷0 le flux à travers le circuit comprenant la barre et les rails. 𝐷𝑆 = 𝑥 𝑙 

Etablissons l’expression de 𝑖 

𝛷 = 𝛷0 + 𝐵⃗⃗. 𝑛⃗⃗ 𝑙𝑥   

𝑒 = −
𝑑𝛷

𝑑𝑡
= −𝐵

𝑙𝑑𝑥

𝑑𝑡
   𝑜𝑟    

𝑑𝑥

𝑑𝑡
= 𝑣  

Soit   𝑒 = −𝐵𝑙𝑣   𝑑′𝑜𝑢    𝑖 =
𝑒

𝑅
=

𝐵𝑙𝑣

𝑅
  

𝐴𝑁: 𝑖 =
0,1 ×5.10−2 ×  1

200
= 2,5. 10−5 = 25 𝜇𝐴  

𝑖 = 25 𝜇𝐴  
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9. Etablissement et annulation du courant dans un circuit induit ; constante de 

temps. 

 

 

 

 

 

 

 

Durant l’établissement du courant, le générateur de résistance négligeable, délivre une tension 

constante 𝑒0  il convient      𝑈𝐴𝑀 = 𝑒0 = 𝑈𝐴𝐵 + 𝑈𝐵𝑀 

Soit   𝑒0 =
𝐿𝑑𝑖

𝑑𝑡
+ 𝑟𝑖 + 𝑟′𝑖 

En posant   𝑅 = 𝑟 + 𝑟′  résistance totale du circuit :  𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑒0  

Compte tenu de la condition initiale  𝑖 = 0  𝑝𝑜𝑢𝑟 𝑡 = 0  la solution de cette équation 

différentielle est :  

𝐿𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 0  

𝑑𝑖

𝑖
= −

𝑅

𝐿
𝑑𝑡  

𝑙𝑛 𝑖 = −
𝑅

𝐿
𝑡  

𝑖 = 𝐴𝑒
−𝑅

𝐿
𝑡
  

𝑖 =
𝑒

𝑅
(1 − 𝑒

−𝑅

𝐿
𝑡)  

En posant 𝐼0 =
𝑒

𝑅
  𝑒𝑡   𝜏 =

𝐿

𝑅
 , 𝑜𝑛 𝑎  𝑖(𝑡) = 𝐼0 (1 − 𝑒

−𝑅

𝜏 ) 

𝜏 =
𝐿

𝑅
    est appelée constance temps du circuit et s’exprime en seconde 
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La durée d’établissement du courant augmente avec la constance de temps du circuit : 

(𝜏2 > 𝜏1) 

Annulation du courant 

Durant l’annulation du courant, le générateur de résistance négligeable, délivre une tension 

nulle ; il convient : 𝑈𝐴𝑀 = 0 =
𝐿𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 0 

Compte tenu de la condition initiale 𝐼 = 𝐼0    pour    t = 0   la solution de l’équation 

différentielle est : 

𝑖(𝑡) = 𝐼0𝑒
−𝑡

𝜏   

Conclusion 

L’établissement et l’annulation du courant dans le circuit inductif de résistance totale   𝑅  et 

d’inductance L, ne se font pas instantanément  dans un tel circuit, l’intensité ne varie jamais 

de façon discontinue. 

Les durées d’établissements et d’annulations du courant sont caractérisées par la constante de 

temps du circuit : 𝜏 =
𝐿

𝑅
 .  𝜏 𝑒𝑛 (𝑠) ;    𝐿 𝑒𝑛 (𝐻)    𝑒𝑡 𝑅 𝑒𝑛 (𝛺) 

Energie emmagasinée 

L’énergie magnétique emmagasinée dans la bobine d’induction   𝐿  est proportionnelle au 

carré de l’intensité du courant qui la traverse. 

ℇ𝑚 =
1

2
𝐿𝑖2 
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II. ELECTRICITE 

Chapitre VI : LES OSCILLATIONS ELECTRIQUE  

1. Les condensations  

Définition : Un condensateur est un ensemble de deux conducteurs qui se font face et qui sont 

séparés par une faible épaisseur de substance isolante. Les conducteurs s’appellent armatures  

du condensateur et l’isolant est un diélectrique. 

Le condensateur est symbolisé par 

1.1.Charge et décharge du condensateur  

 

 Quand l’interrupteur est dans la position 1, le courant électrique circule dans le sens de 

flèche c’est-à-dire du générateur vers l’armature  𝐴 . On dit que le condensateur se 

charge. La circulation des charges se traduit par : la plaque 𝐴  se charge positivement 

et la plaque 𝐵 négativement. 

 Quand l’interrupteur est en position 2, les porteurs de charge circulent dans l’autre 

sens : On dit que le condensateur se décharge. La charge de l’armature 𝐴 diminue et 

s’annule à la fin de la décharge. 

1.2.Relation entre la charge 𝒒 et l’intensité 𝒊 

L’intensité 𝑖 du courant qui arrive sur l’armature d’un condensateur portant la charge 𝑞 est 

égale à la dérivée de la charge par rapport au temps. 

𝑖 =
𝑑𝑞

𝑑𝑡
{
𝑖: 𝑒𝑛 𝐴
𝑞 ∶ 𝑒𝑛 𝐶
𝑡: 𝑒𝑛 𝑆

  

𝑖 > 0; 𝑙𝑎 𝑐ℎ𝑎𝑟𝑔𝑒  

𝑖 < 0; 𝑙𝑎 𝑑é𝑐ℎ𝑎𝑟𝑔𝑒   

1.3.Capacité du condensateur 

La capacité du condensateur plan est proportionnelle à la surface 𝑆 commune aux armatures 

en regard et inversement proportionnelle à la distance 𝑑 qui les sépare. 

𝐶 =
𝜀.𝑠

𝑑
  

 

+ 
+ + + 

− − − 
− 

1 2 0 𝐼 

𝐴 
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𝜀  est le coefficient de proportionnalité appelé permittivité du diélectrique. 

Pour le vide 𝜀 est noté 𝜀0 qui est la permittivité du vide. 𝜀0 =
1

36𝜋.109
= 8,84. 10−12𝐹.𝑚−1 

La permittivité des milieux matériaux est supérieure à  celle du vide 𝜀 > 𝜀0 

On pose 𝜀 = 𝜀𝑟𝜀0 et l’expression de la capacité dévient  𝐶 = 𝜀𝑟𝜀0
𝑆

𝑑
  

L’expression de la charge d’un condensateur de capacité  𝐶 est :
𝑞=𝐶 𝑢
𝐶  𝐹  𝑉

 

 Unité de la capacité  

Dans le système international, l’unité de la capacité est farad de symbole  𝐹.  Le farad est 

l’unité très grande pour les condensateurs usuels. On utilise couramment : 

 Le microfarad (𝜇𝐹): 1𝜇𝐹 = 10−6𝐹 

 Le nanofarad (𝑛𝐹): 1𝑛𝐹 = 10−9𝐹 

 Le picofarad (𝑃𝐹): 1𝑃𝐹 = 10−12𝐹 

Exemple : Un condensateur plan a deux armatures circulaires de rayon 𝑟 = 5𝑐𝑚, distantes de  

𝑑 = 1𝑚𝑚 

a. Calculer sa capacité si le diélectrique est du mica (𝜀𝑟 = 8) 

b. On maintient une ddp de 500𝑣 entre ses bornes. Quelle est sa charge ? 

c. La ddp précédente étant toujours maintenue, on retire le mica. La charge du 

condensateur varie-t-elle ? Si oui, quelle est la nouvelle valeur. 

Solution 

Données : 𝑆 = 𝜋𝑟2 = 3,14 𝘹 25. 10−4𝑚2 = 25𝜋. 10−4𝑚2 

𝑑 = 10−3𝑚  ; 𝜀𝑟 = 8 ; 𝜀0 = 8,84. 10−12   

a. Calculons la capacité  𝐶 = 𝜀𝑟𝜀0
𝑆

𝑑
 

𝐶 = 
8

36𝜋.109
 𝘹 

25𝜋.10−4

10−3
= 5,56. 10−10𝐹  

𝐶 = 5,56. 10−10𝐹 = 5,56 𝑛𝐹    

b. Calculons la charge  

𝑞 = 𝐶𝑈   ⇒  𝑞 = 5,56. 10−10 𝘹  500 = 2,78. . 10−7𝐶    

𝑞 = 2,78. 10−7𝐶    

c. Si on retire le mica 

𝐶′ = 𝜀0
𝑆

𝑑
  𝑜𝑢 𝐶 = 8𝐶′ ⇒ 𝐶′ =

𝐶

8
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𝐶′ = 6,93. 10−11𝐹  

La nouvelle charge 

𝑞′ = 𝐶′𝑈  

𝑞′ = 6,93. 10−11 𝘹  500 = 3,47. 10−8𝐶   

𝑞′ = 3,47. 10−8𝐶   

1.4.Association des condensateurs  

1.4.1. Association en parallèle  

           

𝑞1 = 𝐶1𝑈𝐴𝐵   𝑒𝑡 𝑞2 = 𝐶2𝑈𝐴𝐵 . 𝑞 = 𝐶𝑒𝑈𝐴𝐵     

 𝑞 =  𝑞1 + 𝑞2  

𝐶𝑒𝑈𝐴𝐵  = 𝐺𝑈𝐴𝐵    +  𝐶2𝑈𝐴𝐵 ⇒ 𝐶𝑒 = 𝐶1 + 𝐶2  

La capacité 𝐶𝑒 du condensateur équivalent à l’association de deux condensateurs en parallèle 

est égale à la somme des capacités de ces deux condensateurs. 

 𝐶𝑒 = 𝐶1 + 𝐶2 

 pour 𝑛 condensateurs de capacités différentes, on a : 𝐶𝑒 ∑ 𝐶𝑖𝑛
𝑖=1  

 Pour  𝑛 condensateurs de capacités identiques : on a : 𝐶𝑒 = 𝑛𝐶𝑖 

1.4.2. Association en série  

 

𝑈 = 𝑈1 + 𝑈2  𝑒𝑡 𝑞 = 𝑞1 + 𝑞2  

𝑞

𝐶𝑒
=

𝑞

𝐶1
+

𝑞

𝐶2
⇒ 

1

𝐶𝑒
=

1

𝐶1
+

1

𝐶2
  

 

𝐴 𝐵 

𝐶2 

𝐶1 

 

𝐴 

𝐶𝑒 

𝐵 

= 
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L’inverse de la capacité du condensateur équivalent  à l’association des condensateurs en série 

est égal à la somme des  inverses des capacités de ces deux condensateurs. 
1

𝐶𝑒
=

1

𝐶1
+

1

𝐶2
 

 pour 𝑛 condensateurs de capacités différentes, on a : 
1

𝐶𝑒
∑

1

𝐶𝑖

𝑛
𝑖=1  

 Dans le cas où l’on associe 𝑛 condensateurs identiques de capacité 𝐶0, 𝑜𝑛 𝑎 : 𝐶𝑒 =
𝐶0

𝑛
 

1.4.3. Energie emmagasinée dans le condensateur  

Energie emmagasinée dans un condensateur de capacité  𝐶 portant une charge 𝑞  a pour 

expression : 

𝐸 =
1

2

𝑞2

𝐶
  

Si 𝑈𝐴𝐵 est la tension aux bornes du condensateur de capacité. 𝑞 = 𝐶𝑈𝐴𝐵 , l’expression de 

l’énergie devient : 𝐸 =
1

2
𝐶𝑈𝐴𝐵

2   𝑜𝑢 𝐸 =
1

2
𝑞𝑈𝐴𝐵  

2.  Oscillations électriques : circuit LC 

 

Considérons un oscillateur électrique constitué par une bobine d’inductance  𝐿, de résistance 

négligeable et un condensateur de capacité 𝐶. En l’absence du courant et de tension, le 

système n’évolue pas : il est en équilibre. Pour que des oscillateurs prennent naissance, il faut 

avoir écarté le système en chargeant le condensateur. 

2.1.Etude théorique   

Soit un circuit  constitué d’une bobine et d’un condensateur initialement chargé. Choisissons 

le sens positif arbitrairement. 𝑞𝐴  est la charge de l4armature rncontr2e en tournant dans le 

sens positif. 

A l’instant 𝑡  𝑈𝐴𝐵 =
𝑞

𝐶
  aux bornes des condensateurs. 

La tension aux bornes de la bobine est : 𝑈𝐴𝐵 = 𝐿
𝑑𝑖

𝑑𝑡
= −𝑈𝐴𝐵 ; 𝑑𝑜𝑛𝑐 

𝑞𝐴

𝐶
= −𝐿

𝑑𝑖

𝑑𝑡
 

𝑖 =
𝑑𝑞𝐴

𝑑𝑡
 𝑒𝑡 

𝑑𝑖

𝑑𝑡
=

𝑑2𝑞𝐴

𝑑𝑡2
  

Nous déduisons que 
𝑞𝐴

𝐶
= −

𝑑2𝑞𝐴

𝑑𝑡2
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Nous retrouvons l’équation différentielle analogue à celle obtenue par le pendule élastique. 

L’oscillateur  𝐿𝐶 est un oscillateur harmonique. 

Posons : 𝑊0
2 =

1

𝐿𝐶
⇒ 𝑊0 =

1

√𝐿𝐶
 

Une solution de cette équation différentielle est donc de la forme.𝑞(𝑡) = 𝑄𝑚cos (𝑊0𝑡 + 𝜑) de 

charge 𝑞 du condensateur est une fonction sinusoïdale du temps de pulsation  𝑊0 =
1

√𝐿𝐶
 et de 

période 𝑇0 = 2𝜋√𝐿𝐶  

𝑄𝑚  est l’amplitude maximale de la charge qui est constante et dépend des conditions initiales. 

𝜑  est la phase à l’origine des dates. 

 La tension aux bornes du condensateur est :𝑈𝐴𝐵 =
𝑞𝐾

𝐶
=

𝑄𝑚

𝐶
cos(𝑊0𝑡 + 𝜑). En posant 

𝑈𝑚 =
𝑄𝑚

𝐶
 

L’expression devient : 𝑈(𝑡) = 𝑈𝑚𝑐𝑜𝑠(𝑊0𝑡 + 𝜑) 

 L’intensité du courant est : 𝑖 =
𝑑𝑞

𝑑𝑡
= −𝑊0𝑄𝑚𝑠𝑖𝑛 (𝑊0𝑡 + 𝜑)  

𝑖 = 𝐼𝑚 cos (𝑊0𝑡 +
𝜋

2
)  

 Le circuit est parcouru par un courant alternatif sinusoïdal de pulsation 𝑊0 . 

2.2.Etude énergétique  

L’énergie cinétique totale du circuit à la date 𝑡 est la somme de l’énergie du condensateur  𝜀𝑐 

et l’énergie de la bobine 𝜀𝑏   : 𝜀𝑡 = 𝜀𝑐 + 𝜀𝑏  

𝜀𝑐 =
𝑞𝐴
2

2𝐶
=

𝑄𝑚
2

2𝐶
𝑐𝑜𝑠2 (𝑊0𝑡 + 𝜑)  

𝜀𝑏 =
1

2
𝐿𝑖2 =

1

2
𝐿𝑄𝑚

2𝑊0
2 𝑠𝑖𝑛2(𝑊0𝑡 + 𝜑) =

1

2
𝐿𝑄𝑚

1

𝐿𝐶
𝑠𝑖𝑛2(𝑊0𝑡 + 𝜑)   

𝜀𝑏 =
𝑄𝑚

2𝐶
𝑠𝑖𝑛2(𝑊0𝑡 + 𝜑)  

𝜀𝑡 = 𝜀𝑐 + 𝜀𝑏 =
𝑄𝑚
2

2𝐶
[𝑐𝑜𝑠2(𝑊0𝑡 + 𝜑) + 𝑠𝑖𝑛

2(𝑊0𝑡 + 𝜑)]  

𝜀𝑡 =
𝑄𝑚
2

2𝐶
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  

L’énergie totale du circuit oscillant  𝐿𝐶  est constante. L’énergie de la bobine correspond à 

l’énergie cinétique et l’énergie du condensateur correspond à l’énergie potentielle. 

3. Oscillations électriques en régime forcé  

Quand le circuit oscillant est excité par un générateur qui impose une tension sinusoïdale, on 

dit qu’il est le siège d’oscillations forcées ou alors qu’il fonctionne en régime forcé. 
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L’excitation est un dispositif qui impose à l’oscillateur sa fréquence propre  𝑁0  subit ainsi la 

fréquence 𝑁. 

3.1.Circuit 𝑹𝑳𝑪 en régime sinusoïdal forcé 

3.1.1. Généralités sur les régimes variables 

a. Les grandeurs variables  

Les  lettres minuscules 𝑖(𝑡)𝑒𝑡 𝜇(𝑡)  représentent les grandeurs variables  

b. Les grandeurs alternatives  sinusoïdales 

La fonction  𝑖(𝑡) telle que  𝑖(𝑡) = 𝐼𝑚𝑐𝑜𝑠 (𝑤𝑡)  est l’expression d’une intensité alternative 

sinusoïdale. Un courant alternatif sinusoïdal change de sens deux fois pendant une période. 

De la même façon, une tension alternative sinusoïdale se présenté par des fonctions telles 

que : 

𝜇(𝑡) = 𝑈𝑚𝑐𝑜𝑠 𝑤𝑡  𝑜𝑢 𝑈(𝑡) = 𝑈𝑚𝑐𝑜𝑠 (𝑊𝑡 + 𝜑)  

𝐼𝑚 𝑒𝑡 𝑈𝑚   sont respectivement l’intensité maximale et la tension maximale. 

c. Notion de Phase  

Considérons deux grandeurs alternatives sinusoïdales 𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡 𝑒𝑡 𝜇 = 𝑈𝑚𝑐𝑜𝑠(𝑊𝑡 + 𝜑)   

Définition : La phase  𝜑 de la fonction 𝑈(𝑡) est par définition la phase de 𝜇(𝑡)  par rapport à 

la fonction 𝑖(𝑡).  𝜑 est exprimée en radians  

On dit que :  

 𝜑  mesure l’avance de phase de  𝜇(𝑡)  par rapport à 𝑖(𝑡) ou le retard de phase de 𝑖(𝑡) 

par rapport   𝜇(𝑡).  L’angle  𝜑 est algébrique. 

 Lorsque l’angle 𝜑 est  nul, les deux grandeurs sinusoïdales sont en phase. 

Exemple : 𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡  𝑒𝑡 𝜇 = 𝑈𝑚𝑐𝑜𝑠𝑊𝑡 𝑑𝑜𝑛𝑐 𝑖 𝑒𝑡 𝜇  sont en phase. 

 Pour = ± 𝜋𝑟𝑎𝑑 , elle sont en opposition de phase                                                            

𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡  𝑒𝑡 𝑈 = 𝑈𝑚 cos(𝑊𝑡 + 𝜋) = −𝑈𝑚𝑐𝑜𝑠𝑊𝑡 

 Quand  𝜑 = ±
𝜋

2
𝑟𝑎𝑑, elles sont en quadrature  

Exemple : 𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡  𝑒𝑡 𝜇 = 𝑈𝑚 cos (𝑊𝑡 +
𝜋

2
) = −𝑈𝑚𝑠𝑖𝑛𝑊𝑡 

𝜇  est en quadrature avance par rapport à 𝑖 

3.1.2. Les Grandeurs efficaces  

Le voltmètre et l’ampèremètre en alternatif mesurent respectivement la tension efficace et 

l’intensité efficace : 𝑈𝑒𝑓𝑓  𝑒𝑡 𝐼𝑒𝑓𝑓   
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𝑈𝑒𝑓𝑓 =
𝑈𝑚

√2
   𝑒𝑡 𝐼𝑒𝑓𝑓 =

𝐼𝑚

√2
   

3.2.Notion d’impédance  

L’impédance d’un dipôle est le quotient de la tension maximale 𝑈𝑚𝑎𝑥 à ses bornes par  

l’intensité maximale 𝐼𝑚𝑎𝑥 du courant qui le traverse.  

𝑍 =  
𝑈𝑚𝑎𝑥

 𝐼𝑚𝑎𝑥
=

𝑈𝑒𝑓𝑓√2

𝐼𝑒𝑓𝑓√2
=

𝑈𝑒𝑓𝑓

𝐼𝑒𝑓𝑓
  

𝑍 =
𝑈𝑚𝑎𝑥

 𝐼𝑚𝑎𝑥
=

𝑈𝑒𝑓𝑓

𝐼𝑒𝑓𝑓
  

L’impédance est toujours positive et dépend de la fréquence. 

3.3.Etude de quelques dipôles  

 

Soit un dipôle 𝐴𝐵 orienté  de 𝐴 𝑣𝑒𝑟𝑠 𝐵. Soit 𝑖 l’intensité instantanée du courant dans le 

dipôle. Choisissons l’origine des dotes de sorte que 𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡 . Soit 𝜇 = 𝜇𝐴𝐵 la tension 

aux bornes du dipôle  𝜇 = 𝑈𝑚cos (𝑊𝑡 + 𝜑). 

Déterminons l’expression de l’impédance 𝑍 et celle du déphasage 𝜑 de la tension par rapport  

à l’intensité. 

3.3.1. Conducteur ohmique  

Soit un conducteur ohmique de résistance  𝑅. D’après la loi  d’ohms, on a : 𝜇 = 𝑅𝑖 

𝜇 = 𝑅𝐼𝑚𝑐𝑜𝑠𝑤𝑡 = 𝑅𝐼𝑚cos (𝑊𝑡 + 𝜑).  

Posons : 𝑈𝑚 = 𝑅𝐼𝑚 

L’expression de l’impédance 𝑍 est donc :  

𝑍 =
𝑈𝑚

 𝐼𝑚
=

𝑅𝐼𝑚

𝐼𝑚
= 𝑅    

𝑍 = 𝑅    𝑒𝑡 𝜑 = 0   

L’impédance d’un conducteur ohmique est égale à sa résistance. La tension à ses bornes est 

en phase de l’intensité du courant qui le traverse. 

 

 

𝐴 𝐵 𝑖 
𝑅 

𝑢𝐴𝐵 
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3.3.2. Le Condensateur  

 

𝑖 =
𝑑𝑞𝐴

𝑑𝑡
 . Donc 𝑞𝐴 est la primitive de 𝑖 

𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡 𝑒𝑡 𝑞 =
𝐼𝑚

𝑤
𝑠𝑖𝑛𝑤𝑡 𝘹 𝐴   

Si le condensateur est initialement déchargé , 𝐴 = 0 

𝑞𝐴 =
𝐼𝑚

𝑤
𝑠𝑖𝑛𝑤𝑡 =

𝐼𝑚

𝑤
cos (𝑤𝑡 −

𝜋

2
)  

Nous savons que 𝑞𝐴 = 𝐶𝑈𝐴𝐵  ⇒  𝑈𝐴𝐵 =
𝑞𝐴

𝐶
 

Donc 𝜇 =
𝐼𝑚

𝐶𝑤
cos (𝑤𝑡 −

𝜋

2
) − 𝑈𝑚𝑎𝑥cos (𝑊𝑡 + 𝜑) 

En identifiant les deux expressions, on a : 𝑈𝑚 =
𝐼𝑚

𝐶𝑤
 

L’impédance d’un condensateur de capacité  𝐶 est :  

𝑍 =
𝑈𝑚

 𝐼𝑚
=

𝐼𝑚

𝐶𝑊
 𝘹

1

𝐼𝑚
=

1

𝐶𝑊
  

𝑍 =
1

𝐶𝑊
  

Le déphasage de la tension par rapport à l’intensité est donc  𝜑 =
𝜋

2
 

 

 

 

𝐴 

𝑢 

𝐵 

𝑍 = −
1

𝑐𝑤
 

𝑐 

−𝜋 2⁄  

𝑖 

𝑖 

𝑢𝐴𝐵 
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La tension aux bornes du condensateur est en retard de phase par rapport à l’intensité : 𝜑 =
𝜋

2
 

3.3.3. La Bobine  

 

Posons  𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡  𝑒𝑡 𝜇 = 𝑈𝐴𝐵 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
 

  𝑈 = 𝑅𝐼𝑚 𝑐𝑜𝑠𝑤𝑡 − 𝐿𝑤𝐼𝑚 sin(𝑤𝑡)  𝑜𝑢 

 𝑈 = 𝑅𝐼𝑚 𝑐𝑜𝑠𝑤𝑡 − 𝐿𝑤𝑐𝑜𝑠 (𝑤𝑡 +
𝜋

2
)  

Faisons la somme de deux fonctions sinusoïdales de même pulsation en utilisant la 

construction de Fresnel. 

Soit un axe de phase  𝑜𝑥 et un sens trigonométrique positif choisis. 

 A la tension 𝑈1 = 𝑅𝐼𝑚 𝑐𝑜𝑠𝑤𝑡, on associe le vecteur 𝑉⃗⃗1 tel que 

‖𝑉⃗⃗1‖ = 𝑅𝐼𝑚 𝑒𝑡 𝑜𝑥⃗⃗⃗⃗⃗ , 𝑉⃗⃗1 = 0 𝑟𝑎𝑑𝑖𝑎𝑛  

 A la tension  𝑈2 = 𝐿𝑤𝑐𝑜𝑠 (𝑤𝑡 +
𝜋

2
), on associe en vecteur 𝑉⃗⃗2 tel que ‖𝑉⃗⃗2‖ = 𝐿𝑤𝐼𝑚                   

et  𝑜𝑥⃗⃗⃗⃗⃗ , 𝑉⃗⃗2 =
𝜋

2
 

 A la tension  𝜇 = 𝜇1 + 𝜇2 = 𝑈𝑚cos (𝑤𝑡 + 𝜑), on associe un vecteur 𝑉⃗⃗ tel que 

‖𝑉⃗⃗‖ = 𝑈𝑚  𝑒𝑡 ( 𝑜𝑥⃗⃗⃗⃗⃗, 𝑉⃗⃗ ) = 𝜑   

 

D’après le théorème de Pythagore, on a : 𝑉2 = 𝑉1
2 + 𝑉2

2 𝑑𝑜𝑛𝑐 𝑈𝑚
2 = 𝑅2 𝐼𝑚

2 + 𝐿2𝑊2𝐼𝑚
2  

𝑈𝑚
2 = 𝐼𝑚

2 (𝑅2 + 𝐿2𝑊2) ⇒ 𝑈𝑚  = 𝐼𝑚√𝑅2 + 𝐿2𝑊2    

 

𝑅𝐼𝑚 

𝑉⃗⃗ 

𝑉⃗⃗1 

𝑉⃗⃗2 

𝜑 

0 

𝑥 

𝐿𝑤𝐼𝑚 

+ 
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L’impédance d’une bobine de résistance 𝑅 et d’inductance 𝐿 est : 

𝑍 =
𝑈𝑚 

𝐼𝑚
=

𝐼𝑚√𝑅2+𝐿2𝑊2

𝐼𝑚
= √𝑅2 + 𝐿2𝑊2  

𝑍 = √𝑅2 + 𝐿2𝑊2  

Le déphasage 𝜑 de la tension par rapport à  𝑖 l’intensité est alors : 𝑡𝑎𝑛𝜑 =
𝑉2

𝑉1
=

𝐿𝑊𝐼𝑚

𝑅𝐼𝑚
=

𝐿𝑊

𝑅
 

𝑡𝑎𝑛𝜑 =
𝐿𝑊

𝑅
  

𝐶𝑜𝑠𝜑 =
𝑉1

𝑉
=

𝑅𝐼𝑚

𝐼𝑚√𝑅2+𝐿2𝑊2
=

𝑅

𝑍
  

𝐶𝑜𝑠𝜑 =
𝑅

𝑍
  

Remarque : Pour une inductance pure, (𝑅 = 0), on a :  𝑍 = 𝐿𝑊, 𝑡𝑎𝑛𝜑 = +∞ 𝑒𝑡 𝜑 = +
𝜋

2
 

3.3.4. Dipôle 𝑹𝑳𝑪 série 

 

D’après  la loi des tensions  𝑈 = 𝑈1 + 𝑈2 + 𝑈3 = 𝑈𝐴𝐵 

Soit 𝑞𝐴 = 𝑞  la charge de la première armature rencontre en tournant dans le sens positif et 

𝑖 =
𝑑𝑞

𝑑𝑡
 

𝑈1 = 𝑅𝑖 = 𝑅
𝑑𝑞

𝑑𝑡
 ;   𝑈2 = 𝐿

𝑑𝑖

𝑑𝑡
= 𝐿

𝑑2𝑞

𝑑𝑡2
 𝑒𝑡 𝑈3 =

𝑞

𝐶
   

On obtient l’équation différentielle d’un circuit  𝑅𝐿𝐶 série qui est la suivante :                       

𝑈 = 𝐿
𝑑2𝑞

𝑑𝑡2
+
𝑅𝑑𝑡

𝑑𝑡
+
𝑞

𝐶
 

 Impédance et déphasage  

Posons 𝑖 = 𝐼𝑚 𝑐𝑜𝑠𝑤𝑡   et la loi des tensions donne : 

 𝑈 = 𝑅𝐼𝑚𝑐𝑜𝑠𝑤𝑡 + 𝐿𝑊𝐼𝑚 cos (𝑤𝑡 +
𝜋

2
) +

𝐼𝑚

𝐶𝑊
cos (𝑤𝑡 − 

𝜋

2
)   

Faisons la somme des trois fonctions sinusoïdales en utilisant la construction de Fresnel  

 On associe à la tension  𝑈1 un vecteur 𝑉⃗⃗1 de norme                                                             

‖𝑉⃗⃗1‖ = 𝑅𝐼𝑚 𝑒𝑡  𝜑1 = ( 𝑜𝑥⃗⃗⃗⃗⃗, 𝑉⃗⃗1 ) = 0 𝑟𝑎𝑑  
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 On associe à la tension  𝑈2 un vecteur 𝑉⃗⃗2 de norme                                                      

‖𝑉⃗⃗2‖ = 𝐿𝑤𝐼𝑚 𝑒𝑡 𝜑2 = 𝑜𝑥⃗⃗⃗⃗⃗ , 𝑉⃗⃗2 =
𝜋

2
𝑟𝑎𝑑  

 On associe à la tension 𝑈3 un vecteur 𝑉⃗⃗3 de nome                                                         

‖𝑉⃗⃗3‖ =
𝐼𝑚

𝐶𝑤
 𝑒𝑡  𝜑3 = 𝑜𝑥⃗⃗⃗⃗⃗ , 𝑉⃗⃗2 = −

𝜋

2
𝑟𝑎𝑑  

 On associe à la tension 𝑈 un vecteur 𝑉⃗⃗ de norme                                                            

‖𝑉⃗⃗‖ = 𝑈𝑚  𝑒𝑡 𝜑 = ( 𝑜𝑥⃗⃗⃗⃗⃗, 𝑉⃗⃗ ) 𝑒𝑡 𝑉⃗⃗ = 𝑉⃗⃗1 + 𝑉⃗⃗2 + 𝑉⃗⃗3    

 

D’après le théorème de Pythagore, on a : 𝑉2 = 𝑉1
2 + (𝑉2 − 𝑉3)

2 

𝑈𝑚
2 = [𝑅2 + (𝐿𝑤 −

1

𝑐𝑤
)
2

] 𝐼𝑚
2   

L’impédance  𝑍 dépend de la pulsation  𝑤. Le déphasage de la tension sur l’intensité 𝑖 du 

courant est tel que :  

𝑡𝑎𝑛𝜑 =
𝑉2−𝑉3

𝑉1
  

𝑡𝑎𝑛𝜑 =
𝐿𝑊−

1

𝐶𝑊

𝑅
  

Ou 𝑐𝑜𝑠𝜑 =
𝑉1

𝑉
=

𝑅𝐼𝑚  

𝑍𝐼𝑚  
=

𝑅

𝑍
 

𝑐𝑜𝑠𝜑 =
𝑅

𝑍
  

Remarque :  

 Si  𝜑 > 0 𝑐′𝑒𝑠𝑡 − à − 𝑑𝑖𝑟𝑒  𝐿𝑤 >
1

𝐶𝑤
 , la tension est en avance sur l’intensité. Le 

circuit est dit inductif 
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 Si  𝜑 < 0 𝑐′𝑒𝑠𝑡 − à − 𝑑𝑖𝑟𝑒  𝐿𝑤 >
1

𝐶𝑤
 , l’intensité est en avance sur la tension. Le 

circuit est capacitif  

 

 

 Si le circuit comporte une bobine de résistance  interne 𝑟, l’expression de l’impédance 

devient : 𝑍 = √(𝑅 + 𝑟)2 + (𝐿𝑤 −
1

𝐶𝑤
)
2

 

 Si par contre 𝐿𝑤 = 1 𝑎𝑙𝑜𝑟𝑠 𝜑 = 0. Cela veut dire que l’intensité et la tension sont en 

phase. On dit alors que le circuit est à la résonance. Donc 𝑍 = 𝑅 

 Pour un circuit 𝑅, 𝐶 l’expression de l’impédance est :                     

𝑍 = √𝑅2 +
1

𝐶2𝑊2   ; 𝑡𝑎𝑛𝜑 =
−1

𝑅𝐶𝑤
  

𝜇  est en retard de phase sur 𝑖 

4. Circuit 𝑹𝑳𝑪 série  à la résonance  

Puissance en alternatif 

4.1.Phénomène de résonance électrique  

L’impédance  𝑍 du dipôle 𝑅𝐿𝐶 série dépend de la pulsation 𝑤 imposée. La tension efficace 

imposée est constante. L’intensité imposée efficace dépend de la pulsation  𝑤. 
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𝐼 =
𝑈

𝑍
 ⇒ 𝐼(𝑤) =

𝑈

√𝑅2+(𝐿𝑤−
1

𝐶𝑤
)
2
  

Etudions cette fonction  𝐼(𝑤)  

 Domaine de définition : 𝐷𝐼 = ]0,+∞[ 

 Dérivée : 
𝑑𝐼

𝑑𝑤
= −𝑈 [𝑅2 + (𝐿𝑤 −

1

𝐶𝑤
)
2

]

−3
2⁄

(𝐿 +
1

𝑤2
) 

Le signe de la dérivée est celui de – (𝐿𝑤 −
1

𝐶𝑤
) 

𝑑𝐼

𝑑𝑤
= 0 ⇒ 𝐿𝑤 −

1

𝐶𝑤
= 0  𝑠𝑜𝑖𝑡 𝑤 =

1

√𝐿𝐶
  

 

Tableau de variation  

 

𝐼𝑅(𝑤0) =
𝑢

𝑅
  

 

𝑤 < 𝑤0    ;  𝑤 = 𝑤0    ;  𝑤 > 0  

𝑤 < 𝑤0  ⇒
1

𝐶𝑤
> 𝐿𝑤. L’effet de capacité l’emporte sur l’effet d’inductance. 

𝑤 > 0 ⇒ 𝐿𝑤 >
1

𝐶𝑤
  .L’effet d’inductance l’emporte sur l’effet de capacité   
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La résonance correspond au maximum de la courbe. A la résonance, la fréquence imposée par 

le générateur est égale à la  fréquence propre de l’oscillateur : 𝑁 = 𝑁0  

 Fréquence à la résonance  

L’impédance d’un circuit 𝑅𝐿𝐶  série 𝑍 = √𝑅2 + (𝐿𝑤 −
1

𝐶𝑤
)
2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

Chapitre 8 : EFFET PHOTO ELECTRIQUES 

1. Spectres atomiques 

1.1.Spectres d’émission : 

 Les spectres atomiques d’émission sont constitués de raies fines correspondant à des 

radiations monochromatiques bien déterminées. Les spectres d’émission sont caractéristiques 

des atomes qui les produisent. 

1.2.Spectres d’absorption 

Les spectres atomiques d’absorption sont formés de raies noires et fines dans le spectre 

continu de la lumière blanche. Les longueurs d’ondes correspondantes ont des valeurs bien 

déterminées. 

1.3.Caractérisation  d’un élément chimique 

Chaque élément chimique donne un spectre d’émission de raies caractéristique et qui permet 

de l’identifier  

2. Interprétation des Spectres   

2.1.Quantification de l’énergie d’un atome  

L’énergie d’un atome d’un atome ne peut prendre que certaines valeurs bien déterminée des 

électrons d’un atome. On dit que l’atome est dans un niveau d’énergie. 

Mécanique classique : 𝐸𝐶 =
1

2
𝑚𝑉2  

Energie potentielle électro statique :𝐸𝑝 = 𝑞𝑉 = 𝐶𝑉  pour un électron  

2.2.Les transitions électroniques 

Le passage d’un atome d’un niveau d’énergie à un autre est une transition électronique.  

 

 

 

 

 

 

Cette énergie de transition est considérée de l’ordre quelques électro volts (ev) 

1𝑒𝑣 = 1,6. 10−19𝐽  

A chaque transition électronique correspond une énergie  𝐸 = 𝐸𝑛 − 𝐸𝑝. L’énergie associée 

aux transitions électroniques d’un atome est quantifiée  

Transition au cours de 

laquelle l’atome perd 

l’énergie E 

Transition au cours de 

laquelle l’atome reçoit 

l’énergie E 
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2.3.L’énergie d’un Photon  

Un faisceau lumineux dans le vide, peut être considéré comme un onde qui se propage ou bien 

un ensemble de photons en mouvement à la vitesse C. La longueur d’onde vaut alors : 

𝜆
𝑚
=

𝐶(𝑚)

Ʋ(𝐾𝑧).
 

L’énergie d’un photon est proportionnelle à sa fréquenceƲ. 𝐸 = ℎƲ ; ℎ 𝑒𝑛  𝐽. 𝑠 𝑒𝑡 𝜈 𝑒𝑛 𝐻𝑧  

ℎ est une constance universelle qui porte le nom de constante de planch : ℎ = 6,62. 10−34𝑆𝐼 

Exemple : Calculer, en Joules et en  𝑒𝑣  l’énergie d’un photon  

 Ultraviolet de fréquence 3. 1015𝐻𝑧 

 De lumière visible jaune de longueur d’onde 589𝑛𝑚( 𝑑𝑎𝑛𝑠 𝑙𝑒 𝑣𝑖𝑑𝑒) 

 infrarouge de longueur d’onde 10𝜇𝑚(𝑑𝑎𝑛𝑠 𝑙𝑒 𝑣𝑖𝑑𝑒) 

On donne 𝐶 = 300000𝑘𝑚/𝑠. ℎ = 6,6310−34𝐽. 𝑆.   𝑒 = 1,6. 10−19𝐶.  

Solution  

a) calculons l’énergie d’un photon en joules et en  en  𝑒𝑣    

 Photon ultraviolet 

 𝐸 = ℎƲ  

AN : 𝐸 = 6,3. 1034 𝘹 3. 1015 = 1,99. 10−18 𝐽 

ou 𝐸 =
1,99.10−18 𝐽  × 1 𝑒𝑟  

1,6.10−19 𝑗
= 12, 𝑢 𝑒𝑣 

 Photon de la lumière jaune  

𝐸 = ℎƲ  𝑜𝑢 Ʋ =  
𝐶

𝜆
 ⇒ 𝐸 = ℎ

𝐶

𝜆
  

AN : 𝐸 =
6,63.10−34 ×  3.108  

589.10−19
= 3,38. 10−19 𝑗  

 𝑜𝑢 𝐸 =
3,38.10−19 ×  1ev

1,6.10−19
= 2,11 𝑒𝑣  

 Photon infrarouge : 

𝐸 = ℎ
𝐶

𝜆
    

AN : 𝐸 =
6,63.10−38 ×  3.108  

3.10−6
= 1,99. 10−20 𝐽 

ou  𝐸 =
1,99.10−20  ×   1 ev

1,610−19
= 0,124 𝑒v 
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2.4.Transition électronique avec émission ou absorption d’un photon  

 

 

 

 Si l’atome passe au niveau d’énergie 𝐸𝑛  au niveau d’énergie inférieur  𝐸𝑝 , un photon 

est produit qui emporte l’énergie 𝐸 et sa fréquence Ʋ𝑛𝑝 est telle que : 

𝐸 = 𝐸𝑛 − 𝐸𝑝 = ℎƲ𝑛𝑝    

 

 

 

 Pour que l’atome passe du niveau d’énergie  𝐸𝑝 au niveau d’énergie supérieure  𝐸𝑛  , il 

faut qu’il capte un photon qui lui fournit l’énergie  𝐸  

𝐸 = 𝐸𝑛 − 𝐸𝑝 = ℎƲ𝑛𝑝    

L’énergie du photon produit  ou abordé est égale à l’énergie des transactions électronique 

mise en jeu.  

2.5.Interprétation d’un Spectre d’émission  

A toute transaction  possible : 𝑛 → 𝑝 (𝐸𝑛, 𝐸𝑝) correspond un photon d’énergie  ℎƲ𝑛𝑝   et donc 

une lumière monochromatique émise de fréquence Ʋ𝑛𝑝   et de longueur d’onde 𝜆𝑛𝑝   telle 

que : Ʋ𝑛𝑝 =
𝐸𝑛− 𝐸𝑝

ℎ
 𝑒𝑡 𝜆𝑛𝑝 =

𝐶

Ʋ𝑛𝑝
=

ℎ𝑐

𝐸𝑛− 𝐸𝑝
    

Cette radiation apparait dans le spectre sous forme d’une raie fine et brillante. 

Les raies brillantes des spectres d’émission correspondent aux transitions électroniques au 

cours desquelles l’énergie de l’atome diminue. 

3. Spectre de l’hydrogène   

3.1.Niveaux d’énergie de l’atome d’hydrogène  

L’atome  d’hydrogène étant le plus simple de tous les atomes, son spectre est relativement 

facile à interpréter. Nous allons donc admettre la formule qui donne l’énergie des niveaux de 

l’atome d’hydrogène. L’électron de l’atome se situe dans la couche (𝑛 = 1) , c’est l’état 

fondamental ou de plus base énergie. Dans les états excités, il se place dans la couche  

𝐿(𝑛 = 2) , dans la couche 𝑀(𝑛 = 3)… 

A chacun de ces états, il correspond l’énergie 𝐸𝑛 relative à l’électron  dans la couche  𝑛, ce 

nombre 𝑛 étant le nombre quantique principal. L’énergie  𝐸𝑛 de l’atome est de la forme :  
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𝐸𝑛 = −
𝐸0

𝑛2
   ; 𝑛 𝜖 𝑁∗  

𝐸𝑛  est toujours négatif, 𝐸0 est l’énergie  

 𝐸𝑛 Joules : 𝐸0 = 2,18. 10−18𝐽 ;      𝐸𝑛 =
2,18.10−18𝐽

𝑛2
 

 𝐸𝑛 électronvolt : 𝐸0 = 13,6 𝑒𝑣    ;  𝐸𝑛 =
13,6 𝑒𝑣    

𝑛2
  

 𝑛 = 1 ∶ 𝐸 = 𝐸1 − 𝐸0 = 13,6 𝑒𝑣. (é𝑡𝑎𝑡 𝑓𝑜𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙) 

 𝑛 = 2 ∶ 𝐸 = 𝐸2 =
−𝐸0

4
= −3,4 𝑒𝑣 

 (𝑝𝑟𝑒𝑚𝑖𝑒𝑟 é𝑡𝑎𝑡 𝑒𝑥𝑐𝑖𝑡é, 𝑙′é𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑒𝑠𝑡 𝑑𝑎𝑛𝑠 𝑙𝑒 𝑐𝑜𝑢𝑐ℎ𝑒 𝐿  

 𝑛 = 3: 𝐸 = 𝐸3 =
−𝐸0

9
= −1,51 𝑒𝑣.  

(𝑠𝑒𝑐𝑜𝑑 é𝑡𝑎𝑡 𝑒𝑥𝑐𝑖𝑡é, 𝑙′é𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑒𝑠𝑡 𝑑𝑎𝑛𝑠 𝑙𝑎 𝑐𝑜𝑢𝑐ℎ𝑒 𝐿  

Ensuite, les niveaux se resserrent  

𝐸4 = −0,85 𝑒𝑣   ;   𝐸5 = −0,54 𝑒𝑣  ;  𝐸6 = −0,38 𝑒𝑣  

Lorsque  𝑛  tend vers l’infini  𝐸𝑛 tend vers 0 

L’origine des énergies (𝐸 = 0)  correspond donc à l’électron infiniment éloigné du noyau, 

c’est-à-dire à l’atome ionisé 𝐻+ . 

3.2.Interprétation du Spectre d’hydrogène  

Lorsqu’une transaction s’effectue du niveau  𝐸𝑛 au niveau 𝐸𝑝 avec 𝐸𝑛 > 𝐸𝑝 , il y’a émission 

d’un photon d’énergie  

ℎƲ𝑛𝑝.  Tel que : 𝐸 = 𝐸𝑛 − 𝐸𝑝 = ℎƲ𝑛𝑝  

𝐸𝑛 > 𝐸𝑝 𝑖𝑚𝑝𝑜𝑠𝑒 
−𝐸0

𝑛2
>

−𝐸0

𝑃2
  𝑑𝑜𝑛𝑐 

𝐸0

𝑛2
<

𝐸0

𝑃2
  

𝑛2 > 𝑃2 𝑒𝑡 𝑛 > 𝑝  

𝐸𝑛 − 𝐸𝑝 = 𝐸0 (
1

𝑛2
−

1

𝑃2
) = ℎƲ𝑛𝑝  

Ʋ𝑛𝑝 =
−𝐸0

ℎ
(
1

𝑛2
−

1

𝑃2
) =

𝐸0

ℎ
(
1

𝑃2
−

1

𝑛2
)  
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Chapitre 9 : DECROISSANCE RADIOACTIVE  

1. Le noyau de l’atome  

1.1. La composition d’un noyau 

Le noyau d’un atome correspondant à un élément 𝑋 comportant  𝐴 nucléon et 𝑍 proton est 

noté : 𝑋𝑍
𝐴  . La masse d’un noyau ou d’un atome est souvent exprimée en unité de masse 

atomique de symbole  𝜇 . 

L’unité de masse atomique est le douzième de la masse de carbone 12. 

1𝜇 =
12.10−3 𝑘𝑔

12𝑁𝐴
 𝑎𝑣𝑒𝑐 𝑁𝐴   la valeur de la constance d’Avogadro  

1𝜇 =
12.10−3 𝑘𝑔

12 × 6,02.1023
= 1,66054. 10−27 𝑘𝑔  

 Proton Neutron Electron 

Masse en 𝜇 1,00728 1,00686 0,00055 

Masse en 𝑘𝑔 1,67263. 10−27 1,67492. 10−27 9,1. 10−31 

Charge +          𝑒 0 −                  𝑒 

 

Caractéristique des particules constituants l’atome . 

1.2. Les Isotopes d’un élément  

Deux noyaux isotopes possèdent le même nombre de protons, mais différent par leur nombre 

de neutrons plus généralement les noyaux  𝑋𝑍
𝐴  𝑒𝑡 𝑋𝑍′

𝐴′  sont des noyaux isotopes de 

l’élément   𝑋 .  

L’abondance naturelle est le pourcentage en masse de chacun des isotopes dans le mélange 

naturel d’un élément. 

Exemple d’abondance isotopique naturelle pour les éléments oxygène et chlore. 

 

 

 08
16  

 

99,76% 

 

  𝑐𝑙17
35  

 

75,4% 

 

 08
17  

 

0,04% 

 

  𝑐𝑙17
37  

 

24,6% 

 

 08
18  

 

0,2% 
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2. La Radioactivité  

Un noyau radioactif est un noyau instable qui se désintègre spontanément en donnant un 

noyau différent et en émettant des particules 𝛼 𝑜𝑢 𝛽  et, souvent, un rayonnement. Le noyau 

qui se désintègre est appelé noyau-père et le noyau obtenu est appelé noyau-fils. 

3. Lois de conservation et équation d’une désintégration nucléaire  

Une désintégration nucléaire peut être modélisée par une équation qui obéit aux deux lois 

suivantes. 

 Loi de conservation du nombre de charge  

La somme des nombres de charge du noyau-fils et de la particule qui sont formés est égale au 

nombre de charge du noyau désintégré (noyau-père) 𝑍 = 𝑧1 + 𝑧2  

 Loi de conservation du nombre de nucléons  

La somme des nombres de nucléons du noyau-fils et de la particule qui sont formés est égale 

aux nombres de nucléons du noyau désintégré (noyau-père)   𝐴 = 𝐴1 + 𝐴2 

Exemple :  

o Radioactivité 𝜶                   𝑋𝑍
𝐴 ⟶ 𝑋𝑍−2

𝐴−4 + 𝐻𝑒2
4   

Exemple :   𝑈92
238  ⟶  𝑇ℎ90

234 + 𝐻𝑒2
4    

On constate que cette équation de désintégration vérifie les  deux lois énoncées ci-dessus. 

 Conservation du nombre de nucléons : 
 𝐴=𝐴1+𝐴2
238=234+4

 

 Conservation du nombre de charges  
𝑍=𝑧1+𝑧2 
92=90+2

 

Les particules 𝛼  sont émises avec des vitesses de l’ordre de 20.000𝑘𝑚/𝑠. Ce sont des 

noyaux d’hélium 𝐻𝑒2
4     

o Radioactivité 𝜷− : Ce sont des électrons, notés   𝑒−1
0 . Ils sont émis à très grandes 

vitesse de l’ordre de 280.000𝑘𝑚/𝑠. et possèdent une grande énergie. L’équation 

s’écrit : 𝑋 ⟶𝑍
𝐴   𝑋𝑍−1

𝐴  +  𝑒−1
0  

Exemple :  𝐶0 ⟶27
60  𝑁𝑖28

60 +  𝑒−1
0     

Dans la classification périodique, le noyau-fils est placé dans la case suivante de celle du 

noyau-père 

32𝑃⟶
15         

32
16
𝑆 +  𝑒−1

0   

𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑒 ⟶ 𝑆𝑜𝑢𝑓𝑟𝑒  

14 𝑆⟶
6      

14
7
𝑁 +  𝑒−1

0   
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𝐶𝑎𝑟𝑏𝑜𝑛𝑒 ⟶ 𝑎𝑧𝑜𝑡𝑒  

o Radioactivité 𝜷+ : 

Dans la radioactivité 𝛽1
+ il y’a émission de position (  𝑒+1

0 ). Le bilan s’écrit donc : 

𝑋 ⟶𝑍
𝐴   𝑋𝑍−1

𝐴  +  𝛽 +1
0  

Dans la classification périodique, le noyau-fils est placé dans la case précédant  de celle 

du noyau-père. 

Cette fois «  le fils précède le père ». La position est l’antiparticule de l’électron. 

Exemple : 

13
7
𝑁 ⟶ 13

6
𝐶 +  𝑒+1

0   

30
15
𝑃 ⟶ 30

14
𝑆𝑖 +  𝑒+1

0   

19
10
𝑁𝑖 ⟶

19
9
𝐹 +  𝑒+1

0   

o Désintégration  𝜕 

Le rayonnement  𝜕 est un rayonnement électromagnétique de très courte longueur d’onde ; il 

est donc visible. Ce rayonnement se propage à la vitesse de la lumière.  

 L’énergie  𝐸 du photon est liée à la fréquence  𝜗 ou  à la longueur d’onde 𝜆 de l’onde par les 

formules : 

𝐸 = ℎ𝜗 = ℎ
𝐶

𝜆
  

Le photon 𝜕 emporte la quasi-totalité de l’énergie de désexcitation du noyau. 

Une radioactivité 𝜕 pour un noyau excite issu d’une désintégration 𝛼, 𝛽−, 𝛽+  peut se 

schématiser comme suit : 

 

 𝑍′
𝐴′ 𝑋∗                    ⟶         𝑋 + 𝜕 𝑍′

𝐴′   

𝑁𝑜𝑦𝑎𝑢 𝑒𝑥𝑐𝑖𝑡é              𝑁𝑜𝑦𝑎𝑢 𝑑𝑎𝑛𝑠 𝑠𝑜𝑛 é𝑡𝑎𝑡 𝑓𝑜𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙   

4. Décroissance radioactive  

Le nombre de noyau (ou d’atome) d’une source radioactive diminue constamment au cours du 

temps par transformation en d’autres noyaux. La loi de décroissance radioactive permet le 

calcul du nombre de  noyaux (atomes) restant à un instant 𝑡 quelconque. 

4.1. Etablissement de la loi  

Lors de la désintégration, notons 𝑁0  le nombre initial des noyaux radioactifs  𝑋(𝑡 = 0);𝑁 

leur nombre à l’instant  𝑡 𝑒𝑡 𝑁 + 𝑑𝑁  leur nombre à l’instant infiniment  voisin  𝑡 + 𝑑𝑡:  
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𝑋   ⟶    𝑌 + 𝑃  

𝑡 = 𝑜           𝑁0  

𝑡                   𝑁  

𝑡 + 𝑑𝑡        𝑁 + 𝑑𝑁  

𝑁 diminue au cours du temps, donc  𝑑𝑁 est négatif. 

𝑁 − (𝑁 + 𝑑𝑁) = −𝑑𝑁  

Le nombre de noyaux désintégrés entre les instants  𝑡 𝑒𝑡 𝑡 + 𝑑𝑡  est égal à −𝑑𝑁  

Notons : −𝑑𝑁 = 𝜆𝑁𝑑𝑡 

𝜆 est une constante de proportionnalité qui dépend de la nature du noyau 𝑋 et porte le nom de 

constante radioactive du nucléide. 

Par intégration, on obtient : 

𝑑𝑁

𝑁
= −𝜆𝑑𝑡  

𝑙𝑛𝑁 = −𝜆𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  

𝐴𝑡 = 0     𝑜𝑛 𝑎:  𝑁 = 𝑁0; 𝑑𝑜𝑛𝑐 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 = 𝑙𝑛𝑁0  

𝑙𝑛𝑁 = −𝜆𝑡 + 𝑙𝑛𝑁0   

𝑙𝑛𝑁 − 𝑙𝑛𝑁0 = −𝜆𝑡 ⇒ 𝑙𝑛
𝑁

𝑁0
= −𝜆𝑡  

Et en prenant l’exponentielle de chaque membre : 

𝑁

𝑁0
= 𝑒−𝜆𝑡        ⇒               𝑁(𝑡) = 𝑁0𝑒

−𝜆𝑡  

La fonction  𝑁(𝑡)  est une exponentielle décroissante. C’est pourquoi on utilise l’expression 

décroissance radioactive  

Le nombre des noyaux radioactifs diminue exponentiellement en fonction du temps. 

La loi de décroissance radioactive peut aussi s’exprimer en fonction de la masse sous la 

forme : 𝑚 = 𝑚0𝑒
−𝜆𝑡 

4.2. Période radioactive  

a) Définition : La période radioactive  𝑇  d’un nucléide est le temps nécessaire pour que 

la moitié des noyaux de ce nucléide subisse la désintégration. Elle porte aussi le nom 

de demi-vie. 
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b) Relation entre  𝝀 𝒆𝒕 𝑻  

Utilisons la loi de décroissance radioactive sous la forme  𝑙𝑛
𝑁

𝑁0
= −𝜆𝑡  

𝐴𝑡 = 0      le nombre est   𝑁0 et à 𝑇, il vaut  
𝑁0

2
  donc   

𝑁0
2

𝑁0
= −𝜆𝑡 ; 𝑙𝑛

1

2
− 𝜆𝑡  

−𝑙𝑛 = −𝜆𝑡   

𝑇 =
𝑙𝑛2

𝜆
≃

0,69

𝜆
  

La période  𝑇  est inversement proportionnelle à la constante radioactive  𝜆 . Par conséquent, 

la loi de décroissance radioactive s’écrit :  

: 𝑁 = 𝑁0𝑒
−𝜆𝑡 𝑜𝑢  𝑁 = 𝑁0𝑒

−0,693
𝑡

𝑇 

Dans le système international, 𝜆 s’exprime en  𝑆−1 

4.3. Activité d’une source radioactive 

a) Définition : l’activité d’une source radioactive est le nombre de désintégration qui s’y 

produisent pendant l’unité de temps (1S). 

Dans le système international, l’activité d’une source radioactive s’exprime en désintégration 

par seconde, soit   𝑆−1 . Pour éviter une confusion avec l’unité de fréquence ou de constante 

radioactive,  , on a donné un nom à l’unité , 𝑆𝐼 d’activité : le becquerel , (𝐵𝑞). 

 Le becquerel (𝐵𝑞) est l’unité  𝑆𝐼 d’activité, il représente 1 désintégration par seconde. 

Remarque : L’ancienne unité d’activité : le curie (𝐶𝑖)  est encore utilisée ; c’est l’activité de 

1𝑔 de radium et 1 𝐶𝑖 = 3,7. 1010𝐵𝑞 

b) L’expression  de l’activité d’une source  

Soit  𝐴  l’activité d’une source à l’instant 𝑡 . Avec −𝑑𝑁 le nombre de désintégration pendant 

le temps 𝑑𝑡, en 1𝑠, le nombre de désintégration vaut donc  
−𝑑𝑁

𝑑𝑡
 .Ainsi :  𝐴 =

−𝑑𝑁

𝑑𝑡
  

La relation différentielle : −𝑑𝑁 = 𝜆𝑁𝑑𝑡 nous conduit à l’expression                                             

𝐴 =
−𝑑𝑁

𝑑𝑡
= 𝜆𝑁 𝑜𝑢   𝐴 = 𝜆𝑁 

Utilisons la loi de décroissance radioactive : 𝑁 = 𝑁0𝑒
−𝜆𝑡  ;   𝐴 = 𝜆𝑁 = 𝜆𝑁0𝑒

−𝜆𝑡 

𝜆𝑁0  est l’activité de la source  à l’instant  𝑡 = 0 , on peut donc écrire :  𝐴 = 𝐴0𝑒
−𝜆𝑡 

Exemple : Le Thorium 
227
90
𝑇ℎ est la radioactif. 

a) Ecrire l’équation bilan de sa désintégration radioactive sachant qu’elle conduit au 

radium  𝑅𝑎  
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b) La période (ou demi-vie) du thorium 227 vaut : 𝑇 = 18,3 𝑗𝑜𝑢𝑟𝑠 . Calculer l’activité  

𝐴0 d’un échantillon de masse  1𝑚𝑔 de thorium 
227
90
𝑇ℎ.  𝑁 = 6,02. 1023𝑚𝑜𝑙−1 

c) Quelle masse de thorium 227 de l’échantillon. Considéré a-t-elle disparu au bout de 

36h ? Quelle est alors l’activité de l’échantillon ? 

Solution : 

a) Ecrivons l’équation bilan de la désintégration radioactive. 

 
227
90
𝑇ℎ ⟶ 𝐻𝑒2

4 + 𝑋𝑍
𝐴  

La courbe conduit à : 

{
227 = 4 + 𝐴
90 = 2 + 𝑍

 ⇒ {
𝐴 = 223
𝑍 = 88

   

D’où finalement  on a : 
227
90
𝑇ℎ ⟶ 𝐻𝑒2

4 + 𝑅𝑎88
223  

b) L’activité de la source  radioactive est égale au nombre de désintégration  par seconde  

𝐴0
−𝑑𝑁

𝑑𝑡
= 𝜆𝑁0  

𝜆 =
𝑙𝑛2

𝑇
=

0,693

18,3  ×  24 ×3600
= 4,38. 10−7𝑆−1  

𝑁0 =
10−3

227
 × 6,02. 1023 = 2,65. 1018  𝑛𝑜𝑦𝑎𝑢𝑥   

𝐴0 = 𝜆𝑁0 = 4,38. 10−7  × 2,65. 1018 = 1,16. . 1012𝐵𝑞   

𝐴0 = 1,16. . 1012𝐵𝑞    

c) La masse de thorium présente au temps. 

𝑡 = 36ℎ = 36 × 3600 = 1,30. 105𝑆  

𝑚 = 𝑚0𝑒
−𝜆𝑡 = 1 × 𝑒−4,38. 10−7 × 1,30. 105 = 0,945𝑚𝑔  

𝑚 = 0,945𝑚𝑔   

La masse de thorium disparu  

𝑚′ = 1 − 0,945 = 0,055𝑚𝑔  

5. Réaction nucléaire provoquée  

Il y’a réaction provoquée lorsque le choc d’un noyau projectile sur un noyau cible engendre 

de noyaux nouveaux 

5.1. La Fission  

Il y’a fission ‘un noyau lorsque le choc avec un neutron le brise en deux noyaux plus légers. 
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Exemple : 𝑛 +0
1  𝑢 ⟶              92

𝑈𝑟𝑎𝑛𝑖𝑢𝑚

235 𝑆𝑟                   38
𝑆𝑡𝑟𝑜𝑛𝑡𝑖𝑢𝑚

94 + 𝑋𝑒      54
𝑋é𝑛𝑜𝑛

140 + 2 𝑛0
1  

𝑛 +0
1  𝑢 ⟶              92

𝑈𝑟𝑎𝑛𝑖𝑢𝑚

235 𝐾𝑟                   36
𝐾𝑟𝑖𝑝𝑡𝑜𝑛

91 + 𝐵𝑎      56
𝑏𝑎𝑟𝑦𝑢𝑚

140 + 3 𝑛0
1   

La fission de l’Uranium s’effectue en chaine, car elle produit d’avantage de neutrons qu’elle 

consomme. Les réactions de fission de l’uranium sont provoquées par des neutrons 

thermiques. 

5.2. Les nucléides fissiles  

 Un nucléide est fissile si le noyau correspondant est capable de subir la réaction de 

fission. 

 Un nucléide est fertile si le noyau correspondant peut par réaction nucléaire, engendrer 

un nucléide fissile. 

5.3. La Fusion 

Il y’a fusion lorsque deux noyaux légers s’unissent et constituent un noyau plus lourd. 

𝐻1
2 + 𝐻1

2

𝐷𝑒𝑢𝑡é𝑟𝑖𝑢𝑛
  ⟶    𝐻1

3 + 𝐻1
1

         𝑇𝑟𝑖𝑡𝑜𝑛
  

Exercice d’application  

1) L’activité A d’une  substance radioactive représente le nombre de désintégration par 

seconde et peut s’exprimer par la relation   𝐴 =
−𝑑𝑁

𝑑𝑡
 . D’autre part la loi de 

décroissance radioactive se traduit par la relation (𝑁𝑡) = 𝑁0𝑒
−𝜆𝑡 𝑜𝑢 𝑁0  représente le 

nombre de particules radioactive à  𝑡 = 0 

a) Quelle est l’unité légale d’activité et comment nommé –t-on 𝜆 ? 

b) Etablir la relation donnant 𝐴(𝑡) en fonction de 𝑁 𝑒𝑡 𝜆  𝑜𝑢 𝐴(𝑡) est l’activité de la 

substance radioactive à l’instant  𝑡. En déduire l’expression donnant  

𝐴0(𝑎𝑡𝑖𝑣𝑖𝑡é à 𝑡 = 0) et exprimer le rapport  
𝐴(𝑡)

𝐴0
 que vous pouvez utiliser à la dernière 

question du 2) 

c) Qu’appelle-t-on  période radioactive 𝑇 ? Etablir la relation entre  𝜆 𝑒𝑡 𝑇 

2) L’isotope 14 du carbone est radioactif. Sa formation est provoquée par le choc des 

neutrons présents à haute altitude, son azote  𝑁7
14 . On obtient ainsi un atome 𝐶6

14  et 

une particule de type 𝑋𝑍
𝐴  que l’on identifiera en appliquant les lois de conservation. 

a) Ecrire l’équation de cette réaction nucléaire  

b) L’Isotope 14 du carbone est émetteur 𝛽−. Ecrire l’équation de cette désintégration. 

c) La période ou demi-vie du carbone 14 à pour valeur  𝑇 = 5590 𝑎𝑛𝑛é𝑒𝑠 . Pour dater 

un échantillon de bois ancien, on mesure son activité 𝐴 et on la compare à celle d’un 

bois récent. On rappelle que le carbone de l’atmosphère contient en proportion 

constante les différents isotopes de carbone. Les plantes vivantes assimilent le carbone 

dans l’atmosphère. A leur mort, le processus d’assimilation s’arrête. Un échantillon de 

bois ancien donne 325 désintégrations par minute. Un échantillon de même masse de 

bois récent donne 1350 désintégrations par minute. Quel est l’âge du bois ancien ? 
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Solution : 

1) a-  L’unité légale d’activité d’un corps radioactif est le becquerel (𝐵𝑞). La constante 𝜆    

est la constante radioactive. 

b-  L’activité d’une source est par définition 

𝐴(𝑡) = −
𝑑𝑁

𝑑𝑡
 𝑜𝑟 𝑁 = 𝑁0𝑒

−𝜆𝑡  𝑑′𝑜ù 𝐴(𝑡) = 𝜆𝑁0𝑒
−𝜆𝑡. On a alors 𝐴(𝑡) = 𝜆𝑁 

𝐴𝑡 = 0, 𝑜𝑛 𝑎  𝑁 = 𝑁0 𝑑
′𝑜ù 𝐴0 = 𝜆𝑁0 . Il convient  𝐴(𝑡) = 𝐴0𝑒

−𝜆𝑡 𝑑′𝑜ù  
𝐴(𝑡)

𝐴0
= 𝑒−𝜆𝑡 

c- La période radioactive est la durée 𝑇 au bout de laquelle la moitié des noyaux initialement 

présents dans l’échantillon a disparu.  

𝑁 =
𝑁0

2
 𝑝𝑜𝑢𝑟 𝑡 = 𝑇 𝑑𝑎𝑛𝑠 𝑙𝑎 𝑓𝑜𝑟𝑚𝑢𝑙𝑒 𝑁 = 𝑁0𝑒

−𝜆𝑡  𝑜ù 𝑜𝑛 𝑜𝑏𝑡𝑖𝑒𝑛𝑡 𝑒−𝜆𝑡 =
1

2
  

𝑇 =
𝑙𝑛2

𝜆
  

2) a-  L’équation  

𝑁7
14 + 𝑛0

1  ⟶ 𝐶6
14 + 𝐻1

1   

b-  𝐶  ⟶6
14 𝑁7

14 + 𝑒−1
0  

c- Calcul de l’âge du bois ancien  

𝐴

𝐴0
= 𝑒−𝜆𝑡 𝑑′𝑜ù  𝑙𝑛

𝐴0

𝐴
= 𝜆𝑡 =

𝑙𝑛2

𝑇
𝑡  

𝑡 =
𝑇

𝑙𝑛2
𝑙𝑛

𝐴0

𝐴
  

AN : 𝑡 =
5590

𝑙𝑛2
𝑙𝑛

1350

325
= 11484 𝑎𝑛𝑛é𝑒𝑠 𝑒𝑛𝑣𝑖𝑟𝑜𝑛 

6. Noyaux, masse et énergie 

6.1. Aspect énergétique des réactions nucléaires  

6.1.1. Energie libérée par une désintégration radioactive  

Considérons  la désintégration spontanée du radium : 𝑅𝑎
226  

 𝑅𝑎88
226  ⟶ 𝑅𝑛86

222 + 𝐻𝑒2
4 + 𝜕 

Cette réaction nucléaire libère de l’énergie sous deux formes : l’énergie cinétique et de 

l’énergie rayonnante. 

6.1.2. Perte de masse  

 Avant la réaction :  𝑚𝑎𝑉 = 𝑚( 𝑅𝑎
226 ) = 225,9770 𝑁 
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 Après la réaction : 𝑚𝑎𝑝 = 𝑚( 𝑅𝑛
226 ) + 𝑚( 𝐻𝑒

4 ) 

𝑚𝑎𝑝 = 221,970 + 4,0015 = 225,9718 𝜇  

On constate que   𝑚𝑎𝑝 < 𝑚𝑎𝑉 

Conclusion : Dans toute réaction nucléaire spontanée, la masse des noyaux après la réaction 

est inférieure à la masse des noyaux avant la réaction 

On appelle perte de masse la différence entre la masse totale  𝑚𝑎𝑉 avant la réaction et la 

masse totale  𝑚𝑎𝑝 après la réaction : perte de masse masse = 𝑚𝑎𝑉 −𝑚𝑎𝑝 > 0 

Calculons la perte de masse dans l’exemple précédent : 

 𝑚𝑎𝑉 −𝑚𝑎𝑝 = 225,9770 − 225,9718 = 0,0052 

C’est la perte de masse qui est à l’origine de l’énergie libérée par une réaction nucléaire. 

6.1.3. Relation d’Einstein  

Toute particule de masse 𝑚  possède au repos, une énergie  𝜀0 donnée par la relation : 

𝜀0 = 𝑚𝑐
2  𝑎𝑣𝑒𝑐 𝑐 = 3. 108 𝑚/𝑠   

6.2. Unité de masse et énergie  

 Les Chimistes expriment parfois les énergies des liaisons chimiques en 𝑒𝑉 

 Les physiciens utilisent couramment le méga  . 

 1𝑀𝑒𝑉 = 106𝑒𝑉  

1𝑒𝑉 = 1,6. 10−19 𝑗  𝑒𝑡   1𝑀𝑒𝑉 = 1,6. 10−13 𝑗  

D’après la relation d’Einstein, à une masse  𝑚 = 1𝑈 = 1,66055. 1027𝑘𝑔 . Correspond une 

énergie d’environ 931,5 𝑀𝑒𝑉 

6.3. Défaut de masse d’un noyau 

On appelle défaut de masse d’un noyau, la différence entre la masse des nucléons séparés et 

au repos, et la masse du noyau au repos  

Pour un nucléide  𝑋𝑍
𝐴  , le défaut de masse est : [𝑍𝑚𝑃 + (𝐴 − 𝑍)𝑚𝑛] − 𝑚( 𝑋𝑍

𝐴 ) 𝑜ù 𝑚𝑃 𝑒𝑡 𝑚𝑛  

sont respectivement la masse du proton et du neutron. 

6.3.1. Energie de liaison 

L’énergie de liaison  𝐸𝑒  d’un noyau du nucléide 𝑋𝑍
𝐴   est l’énergie libérée, lois de sa formation 

à partir des nucléons sépares et au repos : 𝐸𝑒 = [𝑍𝑚𝑃 + (𝐴 − 𝑍)𝑚𝑛]. 𝑐
2 −𝑚 × 𝑐2   

L’énergie de liaison  𝐸𝑒 d’un noyau est l’énergie qu’il faut lui  fournir lorsqu’il est au repos, 

pour le dissocier en ses nucléons isolés et séparés. 
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6.3.2. Fission et fusion  

 La fission est une réaction nucléaire  provoquée au cours de laquelle un noyau lourd 

éclate généralement  en deux fragments sous l’impact de neutron. La fission de 

certains noyaux libère de l’énergie. 

 La fusion est une réaction nucléaire provoquée au cours de laquelle deux noyaux 

légers fusionnent pour former des noyaux plus lourds.  

La fusion des noyaux légers libère  de l’énergie  

6.3.3. Bilan énergétique  

Les réactions de fusion et de fission vérifient  les équations de conservation : conservation de 

la charge électrique, conservation du nombre de nucléon et conservation de l’énergie. 

L’énergie 𝑄 libérée sous la forme d’énergie cinétique et de rayonnement lors d’une réaction 

nucléaire est égale au produit de la perte de masse par : 𝑐2   

𝑄 = (𝑚𝑎𝑉 −𝑚𝑎𝑃)𝑐
2  

Exemple : Le combustible des réactions de fusion dans les futures centrales est un mélange de 

deutérium (𝑑) et de tritium (𝑡). La réaction de fusion est la suivante :   

𝐻 + 𝐻1
3

1
2 ⟶ 𝐻𝑒2

4 + 𝑛0
1   

1) Calculer la quantité d’énergie libérée au cours de cette réaction nucléaire. 

2) Calculer la quantité d’énergie en joule libérée lors de la formation d’une mole 

d’hélium soit environ  4𝑔 

Données : 

 𝑚(𝑑) = 2,01355 𝑈 ;  

𝑚(𝑡) = 3,01550 𝑈;   

 𝑚(𝑛) = 1,00866 𝑈 ;  

𝑚( 𝐻𝑒2
4 ) = 4,00150 𝑈  

Solution : 

1) Calculons la perte de masse  

𝑚𝑎𝑉 −𝑚𝑎𝑃 = (2,01355 + 3,01550) − (1,00866 + 4,00150)  

 = 1,889. 10−2𝑈 

𝑄 = (𝑚𝑎𝑉 −𝑚𝑎𝑃)𝑐
2   

𝑄 = 1? 889. 10−2  × 931? 5 = 17,6 𝑀𝑒𝑉  
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2) L’énergie libérée lors de la formation d’une mole d’hélium vaut :  

𝐸 = 𝑁𝐴  × 𝑄  

𝐸 = 6,02. 1023  × 17; 6 × 1,6. 10−13 = 1,70. 1012 𝐽  

Exemple : Dans un « pile atomique » ; une des réactions est le suivante :  

𝑈92
235 + 𝑛0

1 ⟶ 𝑆𝑟38
94 +  𝑋𝑒𝑍

140 + 𝑥 𝑛0
1   

1) Déterminer en les justifiant, les valeurs de  𝑍 et de 𝑥 

2) a- Calculer la perte de masse  

b- calculer en joule et en  𝑀𝑒𝑉 l’énergie libérée par la fission  d’un noyau d’uranium 

235 

3) a- Calculer l’ordre de grandeur de l’énergie libérée par la fission de 5,00g d’uranium 

235 

b- Calculer la masse de pétrole  libérant, par combustion, la même énergie  

Données : 𝑈235 : 234,99332 𝑈 ;  𝑆𝑟
94 ∶ 93,89446 𝑈 ;  𝑋𝑒 = 139,89194 𝑈 . ; 

140  

𝑛0
1 = 1,00866 𝑈  

Pouvoir calorifique du pétrole 𝑈2𝑀𝐽. 𝑘𝑔−1 

𝑁𝐴 = 6,02. 10
23𝑚𝑜𝑙−1 .  𝑈 = 1,66054. 10−27𝑘𝑔  

Solution  

1) Les valeurs de 𝑥 𝑒𝑡 𝑧 doivent vérifier la conservation des nombres de nucléons et de 

charge. 

235 + 1 = 94 + 140 + 𝑥 ⇒      𝑥 = 2  

92 ≠ 38 + 𝑧   

⇒ 𝑍 = 54  

L’équation est  𝑈92
235 + 𝑛0

1  ⟶  𝑆𝑟38
94 +  𝑋𝑒 + 254

140 𝑛0
1  

2) a- La perte de masse  

𝑚𝑎𝑉 −𝑚𝑎𝑃 = 𝑚( 𝑈235 ) +  𝑚𝑛 −𝑚( 𝑆𝑟
94 ) − 𝑚(  𝑋𝑒) −  𝑚𝑛 

140   

𝑚𝑎𝑉 −𝑚𝑎𝑃 = 0,19826 𝑈  

   b- Energie  

𝜀 = (𝑚𝑎𝑉 −𝑚𝑎𝑃)𝐶
2  

AN : 𝜀 = 0,19826 × 1,6605410−27 × (3.108)2 = 2,9588. 10−11 𝐽 
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𝜀 = 2,9588. 10−11 𝐽  

 𝑒𝐴 −𝑀𝑒𝑉 

𝜀 =
2,9588.10−11

1,6022.10−13
= 184,67𝑀𝑒𝑉  

3) a- L’énergie libérée par  5𝑔 d’uranium  

𝑛 =
5

235
= 2,13. 10−2  𝑚𝑜𝑙  

Nombre d’atome 𝑁 = 𝑛 × Ɲ𝐴 

𝑁 = 2,13. 10−2  × 6,02. 1023 = 1,28. 1022  𝑎𝑡𝑜𝑚𝑒𝑠  

𝜀 = 2,9588. 10−11  × 1,28. 1022 = 3,79. 1011𝐽  

b- La masse du pétrole  

𝑚𝑧 =
3,79.1011

42.106
= 9. 103 𝑘𝑔  
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