
 
 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Mathématiques 

Terminale D 
 

 

 

 

 

 

 

s 

 

 

 

 

 

 

 

 

 

 



 
 

Chapitre 1 : LIMITES ET CONTINUITE ...................................................................................................... 1 

I. Limite d’une fonction ...................................................................................................................... 1 

II. Etude d’une branche infinie ............................................................................................................ 9 

III. Continuité d’une fonction ......................................................................................................... 11 

Chapitre 2 : DERIVATIONS ET ETUDE DE FONCTIONS ........................................................................... 15 

I. Dérivations .................................................................................................................................... 15 

II. Etude de fonctions ........................................................................................................................ 22 

Chapitre 3 : PRIMITIVES ET FONCTIONS LOGARITHME NEPERIEN ........................................................ 24 

I. Primitive d’une fonction : .............................................................................................................. 24 

II. Fonction  logarithme népérien ...................................................................................................... 26 

III. Fonction comportant ln ............................................................................................................ 35 

IV. Logarithme décimal ................................................................................................................... 50 

V. Fonction logarithme de base a ...................................................................................................... 50 

VI. Points et tangentes remarquables ............................................................................................ 50 

Chapitre 4 : FONCTIONS EXPONENTIELLES ET FONCTIONS PUISSANCES.............................................. 52 

I. Fonction, exponentielle. ................................................................................................................ 52 

II. Fonction comportant exponentielle .............................................................................................. 55 

III. Fonctions puissances : ............................................................................................................... 63 

Chapitre 5 : SUITES NUMERIQUES ......................................................................................................... 67 

I. Etude globale d’une suite numérique ........................................................................................... 67 

II. Limite d’une suite numérique : ..................................................................................................... 70 

Chapitre 6 : LES INTEGRALES ................................................................................................................. 73 

I. Intégrale d’une fonction continue ................................................................................................. 73 

II. Technique de calcul d’intégrale : ................................................................................................... 74 

Chapitre 7 : Nombres complexes .......................................................................................................... 76 

I. Etudes algébriques ........................................................................................................................ 76 

II. Etude trigonométrique .................................................................................................................. 82 

Chapitre 8 : SIMILITUDES ..................................................................................................................... 101 

I. Similitudes directes du plan : ...................................................................................................... 101 

II. Similitudes indirectes. ................................................................................................................. 108 

Chapitre 9 : DENOMBREMENT ET PROBABILITES ............................................................................... 110 

I. Analyse combinatoire .................................................................................................................. 110 

II. Calcul de probabilité : .................................................................................................................. 112 

III. Variables aléatoires : ............................................................................................................... 115 

Bibliographie........................................................................................................................................ 118 



1 
 

 

 

Chapitre 1 : LIMITES ET CONTINUITE 

I. Limite d’une fonction 

𝐼1 − Limites de références 

Soit a, b et c des nombres réels et 𝑛 un entier naturel non nul. On a :  

lim
𝑥→𝑎

𝑐 = lim
𝑥→+∞

𝑐 = lim
𝑥→−∞

𝑐 = 𝑐 lim
𝑥→𝑎

(𝑥 − 𝑎)𝑛 = 0 

lim
𝑥→+∞

𝑥𝑛 = +∞ 
lim
𝑥→−∞

𝑥𝑛 = {
−∞;   𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟       
+∞;   𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑖𝑚𝑝𝑎𝑖𝑟

 

lim
𝑥→0

√𝑥 = 0 lim
𝑥→+∞

√𝑥 = +∞ 

lim
𝑥→0

𝑥𝑛 = 0 
lim
𝑥→𝑎

1

(𝑥 − 𝑎)𝑛
= +∞ ; 𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 

lim
𝑥→+∞

1

𝑥𝑛
= 0 lim

𝑥→0

1

𝑥𝑛
= +∞; 𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 

lim
𝑥→𝑂+

1

𝑥2𝑛−1
= +∞ 

lim
𝑥→−∞

𝑥2𝑛 = +∞ 

lim
𝑥→𝑂−

1

𝑥2𝑛−1
= −∞ 

lim
𝑥→−∞

𝑥2𝑛−1 = −∞ 

lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥
= 1 lim

𝑥→+∞

1

𝑥𝑛
= 0 

lim
𝑥→0

𝑐𝑜𝑠𝑠 − 1

𝑥
= 0 lim

𝑥→−∞

1

𝑥𝑛
= 0 

lim
𝑥→0+

1

𝑥𝑛
= +∞ ;  𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 lim

𝑥→0−

1

𝑥𝑛
= −∞ ; 𝑠𝑖 𝑛 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟 

NB : Les fonctions cosinus et sinus n’ont pas de limite en l’infini. 

1.2−Les limites et opérations sur les fonctions 

Dans le tableau suivant, 𝑥0, 𝑙 𝑒𝑡 𝑙’ désignent des nombres réels. 

Les résultats essentiels ci-dessous concernent les limites de la somme, du produit et du 

quotient de deux fonctions. 
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(+∞) + 𝑙 = +∞  

 

𝑆𝑖 :  𝑙 > 0 

𝑙 × (+∞) = +∞ 𝑙

+∞
= 0 

+∞

𝑙
= +∞ 

(−∞) + 𝑙 = −∞ 𝑙 × (−∞) = −∞ 𝑙

−∞
= 0 

−∞

𝑙
= −∞ 

(+∞) + (+∞) = +∞  

 

𝑆𝑖 : 𝑙 < 0 

𝑙 × (+∞) = −∞ 𝑙

+∞
= 0 

+∞

𝑙
= −∞ 

(−∞) + (−∞) = −∞ 𝑙 × (−∞) = +∞ 𝑙

+∞
= 0 

−∞

𝑙
= +∞ 

1.3−Les Les formes indéterminées 

Les symboles (+∞) désigne un élément non réel et supérieur à tout réel et (−∞) désigne 

un élément non réel et inferieur à tout réel. Il existe donc quatre (4) types de formes 

indéterminées énumérées ci-dessous. 

 

(1) + ∞ −∞ 
Forme indéterminée : On ne 

peut conclure directement 
  (3)         

𝟎

𝟎
 

Forme indéterminée : On ne 

peut conclure directement 

(2)       
∞

∞
 

Forme indéterminée : On ne 

peut conclure directement 
 (4)   0× (+∞) Forme indéterminée : On ne 

peut conclure directement 

 

Attention: L’obtention d’une forme indéterminée ne permet pas de conclure directement. Il 

faut donc lever cette indétermination: 

- Soit en factorisant la fonction ou en séparant une fraction en plusieurs parties; 

- Soit en faisant l’expression conjuguée de la fonction. 

1.3−Limite en l’infini des fonctions polynômes et rationnelle 

Propriétés 

Soient 𝑎 𝑒𝑡 𝑏 (𝑏 ≠ 0) des nombres réels et 𝑛,  𝑚 des entiers naturels non nuls, on a: 

 lim𝑥→∞ 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛−2𝑥
𝑛−2 +⋯+ 𝑎0 = lim

𝑥→∞
𝑎𝑛𝑥

𝑛  

On dit que la limite d’une fonction polynôme en l’infini est égale à la limite en l’infini de son 

monôme de plus haut degré. 

  
    𝑙𝑖𝑚

      𝑥→∞

𝑎𝑛𝑥
𝑛+𝑎𝑛−1𝑥

𝑛−1+𝑎𝑛−2𝑥
𝑛−2+⋯+𝑎0

𝑏𝑚𝑥𝑚+𝑏𝑚−1𝑥𝑚−1+𝑏𝑚−2𝑥𝑚−2+⋯+𝑏0
= 𝑙𝑖𝑚

𝑥→∞

𝑎𝑛𝑥
𝑛

𝑏𝑚𝑥𝑚
        

On dit que la limite d’une fonction rationnelle en l’infini est égale à la limite en l’infini de son 

monôme de plus haut degré du numérateur et du dénominateur. 

Exemple : 

Calculons les limites suivantes: 

 lim
𝑥→+∞

(5𝑥3 − 𝑥 + 1) = lim
𝑥→+∞

5𝑥3 = +∞ 

 ⟹ lim
𝑥→+∞

(5𝑥3 − 𝑥 + 1) = +∞  

 lim 
𝑥→−∞

(5𝑥3 − 𝑥 + 1) = lim
𝑥→−∞

5𝑥3 = −∞  
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 ⟹ lim 
𝑥→−∞

5𝑥3 − 𝑥 + 1 = −∞ 

 lim
𝑥→+∞

7𝑥5−2𝑥3+1

3𝑥2−𝑥+1
= lim

𝑥→+∞

7𝑥5

3𝑥2
= lim

𝑥→+∞

7

3
𝑥 = +∞ 

  ⟹ lim
𝑥→+∞

7𝑥5−2𝑥3+1

3𝑥2−𝑥+1
= +∞    

 lim
𝑥→−∞

2𝑥2−1

𝑥2+2𝑥+1
= lim

𝑥→−∞

2𝑥2

𝑥2
= 2 

 ⟹ lim
𝑥→−∞

2𝑥2−1

𝑥2+2𝑥+1
= 2  

1.4−Propriétés de comparaison 

1) Soit 𝑓 et 𝑔 deux fonctions et 𝐼 = ]𝐴;  + ∞[,  un intervalle donné: 

 Si 𝑓 ≥ 𝑔 sur 𝐼 et si lim
𝑥→+∞

𝑔(𝑥) = +∞, alors lim
𝑥→+∞

𝑔(𝑥) = +∞ 

 Si 𝑓 ≤ 𝑔 sur 𝐼 et si lim
𝑥→+∞

𝑔(𝑥) = −∞, alors lim
𝑥→+∞

𝑔(𝑥) = −∞ 

 Si 𝑓 ≤ 𝑔 sur 𝐼 et si lim
𝑥→+∞

𝑔(𝑥) = 𝑙 et lim
𝑥→+∞

𝑔(𝑥) = 𝑙′,  alors 𝑙 ≤ 𝑙′ 

2) Soit 𝑓,  g et 𝑔 trois fonctions. J = ]𝐴;  + ∞[,  un intervalle donné: 

 Si 𝑔 ≤ 𝑓 ≤ ℎ sur 𝐽 et si lim
𝑥→+∞

𝑔(𝑥) = lim
𝑥→+∞

ℎ(𝑥) = 𝑙, alors lim
𝑥→+∞

𝑓(𝑥) = 𝑙 

 S’il existe un nombre réel 𝑙 tel que: lim
𝑥→+∞

𝑔(𝑥) = 0 et  pour tout 𝑥 de 𝐼 = ]𝐴;+∞[, 

|𝑓(𝑥) − 𝑙| ≤ 𝑔(𝑥), alors lim
𝑥→+∞

𝑓(𝑥) = 𝑙 

Exemple 

On considère la fonction 𝑓 définie par: 𝑓(𝑥) = 2𝑥 + 1 − 3𝑠𝑖𝑛𝑥 

Déterminer la limite de 𝑓 en −∞ et en +∞. 

Solution: 

𝑓(𝑥) = 2𝑥 + 1 − 3𝑠𝑖𝑛𝑥, la fonction 𝑓 est définie sur ℝ.  

∀𝑥 ∈ ℝ, −1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 ⟺ −1 ≤ −𝑠𝑖𝑛𝑥 ≤ 1 

   ⟺−3 ≤ −3𝑠𝑖𝑛𝑥 ≤ 3  

   ⟺ 2𝑥 + 1 − 3 ≤ 2𝑥 + 1 − 3𝑠𝑖𝑛𝑥 ≤ 2𝑥 + 1 + 3  

   ⟺ 2𝑥 − 2 ≤ 𝑓(𝑥) ≤ 2𝑥 + 4  

On a:  

1) 𝑓(𝑥) ≥ 2𝑥 − 2 et lim
𝑥→−∞

2𝑥 − 2 = −∞, alors lim
𝑥→−∞

𝑓(𝑥) = −∞ 

2) 𝑓(𝑥) ≤ 2𝑥 + 4 et lim
𝑥→+∞

2𝑥 + 4 = +∞, alors lim +
𝑥→+∞

𝑓(𝑥) = +∞ 

3) 2𝑥 − 2 ≤ 𝑓(𝑥) ≤ 2𝑥 + 4: 

 lim
𝑥→−∞

2𝑥 − 2 = lim
𝑥→−∞

2𝑥 + 4 = −∞, alors lim
𝑥→−∞

𝑓(𝑥) = −∞ 

 lim
𝑥→+∞

2𝑥 − 2 = lim
𝑥→+∞

2𝑥 + 4 = +∞, alors lim
𝑥→+∞

𝑓(𝑥) = +∞ 

Application : 

Montrons que : ∀ 𝑥 ∈ ℝ ,
𝑥−1

𝑥
≤

𝑥+𝑠𝑖𝑛𝑥

𝑥
≤

𝑥+1

𝑥
 

On a: ∀  𝑥 ∈  ℝ ,−1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 

⟹ 𝑥 − 1 ≤ 𝑥 + 𝑠𝑖𝑛𝑥 ≤ 𝑥 + 1  

⟹
𝑥−1

𝑥
≤

𝑥=𝑠𝑖𝑛𝑥

𝑥
≤

𝑥+1

𝑥
  

D’où   
𝑥−1

𝑥
≤

𝑥+𝑠𝑖𝑛𝑥

𝑥
≤

𝑥+1

𝑥
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 Calculons lim
𝑥→+∞

(
𝑥−1

𝑥
)  𝑒𝑡  lim

𝑥→+∞
(
𝑥+1

𝑥
) 

On a: lim
𝑥→+∞

(
𝑥−1

𝑥
) = lim

𝑥→+∞
(
𝑥

𝑥
) = 1 et lim

𝑥→+∞
(
𝑥+1

𝑥
) = lim

𝑥→+∞
(
𝑥

𝑥
) = 1 

Déduisons-en   lim
𝑥→+∞

𝑥+𝑠𝑖𝑛𝑥

𝑥
 

On a :  
𝑥−1

𝑥
≤

𝑥+𝑠𝑖𝑛𝑥

𝑥
≤

𝑥+1

𝑥
 et comme lim

𝑥→+∞
(
𝑥−1

𝑥
) = lim

𝑥→+∞
(
𝑥+1

𝑥
) = 1 

Alors d’après le théorème de gendarme (théorème  de comparaison) : 

 lim
𝑥→+∞

𝑥+𝑠𝑖𝑛𝑥

𝑥
= 1  

1.5 −Limites de la composée de deux fonctions : 

Propriété : 

Soit 𝑔 ∘ 𝑓, la composée de deux fonctions et 𝑎 un élément ou une borne de d’un intervalle 

sur lequel 𝑔 ∘ 𝑓 est définie.  

Si lim
𝑥→𝑎

𝑓(𝑥) = 𝑏 et  lim
𝑦→𝑏

𝑔(𝑦) = 𝑙, alors lim
𝑥→𝑎

𝑔 ∘ 𝑓(𝑥) = 𝑙 

NB : cette propriété reste valable pour les limites en l’infini. 

Exemple :  

Calculer les limites suivantes : 

1) lim
𝑥→1

(𝑠𝑖𝑛
𝜋𝑥2

𝑥+1
) 

2) lim
𝑥→+∞

(√
2𝑥−1

𝑥+1
) 

3) lim
𝑥→+∞

𝑥𝑠𝑖𝑛
1

𝑥
 

Solution : 

Calculons les limites suivantes : 

1) lim
𝑥→1

(𝑠𝑖𝑛
𝜋𝑥2

𝑥+1
) 

On pose : 𝑢(𝑥) =
𝜋𝑥2

𝑥+1
 telle que 𝑠𝑖𝑛

𝜋𝑥2

𝑥+1
= 𝑠𝑖𝑛(𝑢).  

On a : lim
𝑥→1

𝑢(𝑥) = lim
𝑥→1

(
𝜋𝑥2

𝑥+1
) =

𝜋

2
 

  ⟹ lim
𝑥→1

(𝑠𝑖𝑛
𝜋𝑥2

𝑥+1
) = lim

𝑢→
𝜋

2

𝑠𝑖𝑛(𝑢)  

          = 𝑠𝑖𝑛
𝜋

2
= 1  

   ⟹ 𝐥𝐢𝐦
𝒙→𝟏

(𝒔𝒊𝒏
𝝅𝒙𝟐

𝒙+𝟏
) = 𝟏  

2) lim
𝑥→+∞

(√
2𝑥−1

𝑥+1
) 

Soit 𝑓(𝑥) =
2𝑥−1

𝑥+1
 et 𝑔(𝑥) = √𝑥   

On a : lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

(
2𝑥−1

𝑥+1
) = 2 

  ⟹ lim
𝑦→2

√𝑦   = √2 

⟹ lim
𝑥→+∞

(√
2𝑥−1

𝑥+1
) = √2  
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3) lim
𝑥→+∞

𝑥𝑠𝑖𝑛
1

𝑥
.  

On a : 𝑥𝑠𝑖𝑛
1

𝑥
=

𝑠𝑖𝑛
1

𝑥
1

𝑥

  

On pose 𝑋 =
1

𝑥
, lorsque 𝑥 → +∞;  𝑋 → 0.  

Alors : lim
𝑥→+∞

𝑥𝑠𝑖𝑛
1

𝑥
= lim

𝑋→0

𝑠𝑖𝑛𝑋

𝑋
= 1 

  ⟹ 𝐥𝐢𝐦
𝒙→+∞

𝒙𝒔𝒊𝒏
𝟏

𝒙
= 𝟏  

1.6 −Limites d’une fonction monotone sur un intervalle ouvert : 

Propriété 1 : 

1) Soit 𝑓 une fonction croissante sur un intervalle ouvert ]𝑎; 𝑏[ ; (𝑎 < 𝑏). 

 Si 𝑓 est majorée sur ]𝑎; 𝑏[, alors 𝑓 admet une limite finie à gauche en 𝑏 et on note :                          

lim
𝑥→b−

𝑓(𝑥) = 𝑙 ; (𝑙 est une limite finie en 𝑏 à gauche). 

 Si 𝑓 est minorée sur ]𝑎; 𝑏[, alors 𝑓 admet une limite finie à droite en 𝑎 et on note :  

lim
𝑥→a+

𝑓(𝑥) = 𝑙 ; (𝑙 est une limite finie en 𝑎 à droite). 

 

 

 

 

 

 

 

 

 

2) D’une manière analogue ; pour  une fonction 𝑓 décroissante sur un intervalle ouvert 

]𝑎; 𝑏[ ; (𝑎 < 𝑏). On a :  

 Si 𝑓 est majorée sur ]𝑎; 𝑏[, alors 𝑓 admet une limite finie à droite en 𝑎 et on note :                          

lim
𝑥→a+

𝑓(𝑥) = 𝑙 ;  

 Si 𝑓 est minorée sur ]𝑎; 𝑏[, alors 𝑓 admet une limite finie à gauche en 𝑏 et on note :  

lim
𝑥→b−

𝑓(𝑥) = 𝑙.  

 

 

 

 

 

 

 

 

 

Propriété 2 : 
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Soit f une fonction croissante sur un intervalle ouvert ]𝑎; 𝑏[ ;  

 Si 𝑓 est non majorée sur ]𝑎; 𝑏[, alors 𝑓 a pour limite +∞ à gauche en 𝑏 ; c'est-à-dire : 

lim
𝑥→b−

𝑓(𝑥) = +∞.  

 Si 𝑓 est non minorée sur ]𝑎; 𝑏[, alors 𝑓 a pour limite −∞ à droite en 𝑎 ; c'est-à-dire : 

lim
𝑥→a+

𝑓(𝑥) = −∞. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7 − Calculs de limites des formes indéterminées : 

Pour procéder au calcul d’une limite dans le cas où  les opérations nous conduisent à une 

forme indéterminée, on peut effectuer : 

𝒂 − Une factorisation : 

Exemple : 

Calculons les limites suivantes : 

a) lim
𝑥→+∞

(𝑥 − √𝑥)  

On a : lim
𝑥→+∞

(𝑥 − √𝑥) = +∞−∞ ? ? ?;  (on ne peut conclure directement) ; 

En effet, 𝑥 − √𝑥 = √𝑥(√𝑥 − 1) 

  ⟹ lim
𝑥→+∞

(𝑥 − √𝑥) = lim
𝑥→+∞

√𝑥(√𝑥 − 1)  

     = +∞(+∞) = +∞  

       ⟹ lim
𝑥→+∞

(𝑥 − √𝑥) = +∞  

b) lim
𝑥→+∞

3𝑥−1

√𝑥3+𝑥2+8
  

On a : lim
𝑥→+∞

3𝑥−1

√𝑥3+𝑥2+8
=

+∞

+∞
 ??? ; (on ne peut conclure directement) ; 

En effet, 
3𝑥−1

√𝑥3+𝑥2+8
=

x(3−
1

x
)

√x2(x+1+
8

x2
)

 =
x(3−

1

x
)

|x|√x+1+
8

x2

  

  ⟹ lim
x→+∞

3x−1

√x3+x2+8
= lim

x→+∞

x(3−
1

x
)

x√x+1+
8

x2

 ; car |𝑥| = 𝑥 lorsque 𝑥 → +∞ ; 
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     = lim
x→+∞

3−
1

x

√x+1+
8

x2

  

     =
3

+∞
= 0  

       ⟹ lim
𝑥→+∞

3𝑥−1

√𝑥3+𝑥2+8
= 0 

𝒃 − Expression conjuguée : 

Exemple :  

Calculons les limites suivantes : 

a) lim
𝑥→+∞

√𝑥 + 1 − √𝑥 − 1  

On a : lim
𝑥→+∞

√𝑥 + 1 − √𝑥 − 1 = +∞−∞ ? ? ?;  (on ne peut conclure directement) ; 

En effet, √𝑥 + 1 − √𝑥 − 1  =
(√𝑥+1−√𝑥−1)(√𝑥+1+√𝑥−1 ) 

√𝑥+1+√𝑥−1 
 

             =
𝑥+1−(𝑥−1) 

√𝑥+1+√𝑥−1 
  

    √𝑥 + 1 − √𝑥 − 1  =
2 

√𝑥+1+√𝑥−1 
  

 ⟹ lim
𝑥→+∞

√𝑥 + 1 − √𝑥 − 1  = lim
𝑥→+∞

2 

√𝑥+1+√𝑥−1 
 

               =
2 

+∞ 
   

      ⟹ lim
𝑥→+∞

√𝑥 + 1 − √𝑥 − 1  = 0  

b) lim
𝑥→−∞

√9𝑥2 + 7 + 3𝑥  

On a : lim
𝑥→−∞

√9𝑥2 + 7 + 3𝑥 = +∞−∞ ??? ; (on ne peut conclure directement) ; 

En effet, √9𝑥2 + 7 + 3𝑥 =
(√9𝑥2+7+3𝑥)(√9𝑥2+7−3𝑥 ) 

√9𝑥2+7−3𝑥 
 

             =
9𝑥2+7−9𝑥2 

√9𝑥2+7−3𝑥 
  

    √9𝑥2 + 7 + 3𝑥 =
7 

√9𝑥2+7−3𝑥 
  

 ⟹ lim
𝑥→−∞

√9𝑥2 + 7 + 3𝑥 = lim
𝑥→−∞

7 

√9𝑥2+7−3𝑥 
 

            =
7 

+∞ 
  car lim√9𝑥2 + 7 − 3𝑥 = +∞

𝑥→−∞
 

 ⟹ lim
𝑥→+∞

√9𝑥2 + 7 + 3𝑥 = 0  

𝒄 − Combinaison de l’expression conjuguée et d’une factorisation : 

Exemple :  

Calculons : lim
x→−∞

√𝑥2 + 3𝑥 − 2 + 𝑥  

On a : lim
x→−∞

√𝑥2 + 3𝑥 − 2 + 𝑥 = +∞−∞ ??? ; (on ne peut conclure directement) ; 

En effet, √𝑥2 + 3𝑥 − 2 + 𝑥 =
(√𝑥2+3𝑥−2+𝑥 )(√𝑥2+3𝑥−2−𝑥  ) 

√𝑥2+3𝑥−2−𝑥 
 

   =
𝑥2+3𝑥−2−𝑥2 

√𝑥2+3𝑥−2−𝑥 
  

   =
3𝑥−2 

√𝑥2+3𝑥−2−𝑥  
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            =
𝑥(3−

2

𝑥
)

√𝑥2(1+
3

𝑥
−
2

𝑥2
)−𝑥

  

       √𝑥2 + 3𝑥 − 2 + 𝑥 =
𝑥(3−

2

𝑥
)

|𝑥|√1+
3

𝑥
−
2

𝑥2
−𝑥

   

 ⟹ lim
𝑥→−∞

√𝑥2 + 3x − 2 + 𝑥 = lim
𝑥→−∞

𝑥(3−
2

𝑥
)

−𝑥(√1+
3

𝑥
−
2

𝑥2
+1)

 ; car |𝑥| = −𝑥 lorsque 𝑥 → −∞ ; 

     = lim
𝑥→−∞

−3+
2

𝑥

√1+
3

𝑥
−
2

𝑥2
+1
=

−3+0

1+1
= −

3

2
 

      ⟹ lim
𝑥→−∞

√𝑥2 + 3x − 2 + 𝑥 = −
3

2
  

𝒅 − Utilisation du taux de variation 

Exemple : 

Calculons : lim
𝑥→

𝜋

3

𝑐𝑜𝑠2𝑥−
1

4

𝑥−
𝜋

3

 

On a : lim
𝑥→

𝜋

3

𝑐𝑜𝑠2𝑥−
1

4

𝑥−
𝜋

3

=
0

0
 ??? ; (on ne peut conclure directement) ; 

En effet, 
𝑐𝑜𝑠2𝑥−

1

4

𝑥−
𝜋

3

=
(𝑐𝑜𝑠𝑥−

1

2
)(𝑐𝑜𝑠𝑥+

1

2
  ) 

𝑥−
𝜋

3

 

  =
𝑐𝑜𝑠𝑥−

1

2
 

𝑥−
𝜋

3

(𝑐𝑜𝑠𝑥 +
1

2
  )   

  = [
𝑐𝑜𝑠𝑥−𝑐𝑜𝑠

𝜋

3
 

𝑥−
𝜋

3

] (𝑐𝑜𝑠𝑥 +
1

2
  )  

    = [𝑐𝑜𝑠𝑥]′ (𝑐𝑜𝑠𝑥 +
1

2
  ) 

              
𝑐𝑜𝑠2𝑥−

1

4

𝑥−
𝜋

3

= −𝑠𝑖𝑛𝑥 (𝑐𝑜𝑠𝑥 +
1

2
  ) 

 ⟹ lim
𝑥→

𝜋

3

𝑐𝑜𝑠2𝑥−
1

4

𝑥−
𝜋

3

 = lim
𝑥→

𝜋

3

[−𝑠𝑖𝑛𝑥 (𝑐𝑜𝑠𝑥 +
1

2
  )]  ;  

    = −sin
𝜋

3
(𝑐𝑜𝑠

𝜋

3
+
1

2
  ) 

    = −
√3

2
(
1

2
+
1

2
  )  

             ⟹ lim
𝑥→

𝜋

3

𝑐𝑜𝑠2𝑥−
1

4

𝑥−
𝜋

3

= −
√3

2
 

𝒆 − Un changement d’écriture : 

Exemple : 

Calculons : 

a)  lim
𝑥→0

𝑠𝑖𝑛𝑥

√𝑥
 

On a : lim
𝑥→0

𝑠𝑖𝑛𝑥

√𝑥
=

0

0
 ??? ; (on ne peut 

conclure directement) ; 

En effet, 
𝑠𝑖𝑛𝑥

√𝑥
=

√𝑥×𝑠𝑖𝑛𝑥

𝑥
 

    
𝑠𝑖𝑛𝑥

√𝑥
= √𝑥 (

𝑠𝑖𝑛𝑥

𝑥
 )  

⟹ lim
𝑥→0

𝑠𝑖𝑛𝑥

√𝑥
= lim

𝑥→0
√𝑥 (

𝑠𝑖𝑛𝑥

𝑥
 ) = 0 × 1 = 0 
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⟹ lim
𝑥→0

𝑠𝑖𝑛𝑥

√𝑥
= 0  

b) lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥3
 

On a : lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥3
=

0

0
 ??? ; (on ne peut 

conclure directement) ; 

En effet, 
𝑠𝑖𝑛𝑥

𝑥3
=

1

𝑥2
×
𝑠𝑖𝑛𝑥

𝑥
 

    
𝑠𝑖𝑛𝑥

𝑥3
=

1

𝑥2
× (

𝑠𝑖𝑛𝑥

𝑥
 )  

⟹ lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥3
= lim

𝑥→0

1

𝑥2
× (

𝑠𝑖𝑛𝑥

𝑥
 ) =

1

0
× 1 

⟹ lim
𝑥→0

𝑠𝑖𝑛𝑥

𝑥3
= {

−∞;     𝑥 < 0
+∞;   𝑠𝑖 𝑥 > 0

II. Etude d’une branche infinie  

De façon générale, on parle d’une branche infinie d’une fonction de domaine de définition 

𝐷𝑓 et de courbe représentative (𝐶𝑓) dans les cas suivants : 

 lim
𝑥→+∞

𝑓(𝑥) = ∞ ou lim
𝑥→+∞

𝑓(𝑥) = 𝑙 ;  

 lim
𝑥→−∞

𝑓(𝑥) = ∞ ou lim
𝑥→−∞

𝑓(𝑥) = 𝑙; 

 lim
𝑥→𝑥0+

𝑓(𝑥) = ∞ ou lim
𝑥→𝑥0−

𝑓(𝑥) = ∞  

NB : ∞ = ±∞ et (𝑙 ∈ ℝ) 

𝐈𝐈𝟏 −Les asymptotes : 

𝒂 − Asymptote parallèle à l’un des axes 

Définition : 

Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

 Lorsque 𝑓 admet une limite finie 𝑙 en +∞ ou en −∞, c'est-à-dire : 𝐥𝐢𝐦
𝒙→+∞

𝒇(𝒙) = 𝒍 ou 

𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = 𝒍, alors la droite d’équation 𝒚 = 𝒍 est dite asymptote horizontale à 

(𝐶𝑓) ; 

 Lorsque 𝑓 admet une limite infinie à droite ou à gauche en 𝑥0, c'est-à-dire :    

𝐥𝐢𝐦
𝒙→𝒙𝟎+

𝒇(𝒙) = ∞ ou 𝐥𝐢𝐦
𝒙→𝒙𝟎−

𝒇(𝒙) = ∞, alors la droite d’équation 𝒙 = 𝒙𝟎 est dite 

asymptote verticale à (𝐶𝑓). 

Exemple : 

a) Soit 𝑓(𝑥) =
2𝑥

√𝑥+1
 

  𝑥 ∈ 𝐷𝑓 ⟺ 𝑥 + 1 > 0  

   ⟺ 𝑥 > −1  

   ⟺ 𝑥 ∈ ]−1; +∞[  

Donc 𝐷𝑓 = ]−1; +∞[ 

𝑥 ∈ 𝐷𝑓 ;  on a :  

lim
𝑥→−1+

𝑓(𝑥) = lim
𝑥→−1+

2𝑥

√𝑥+1
=

−2

0+
= −∞  

 ⟹ lim
𝑥→−1+

𝑓(𝑥) = −∞ 

Alors, on n’en déduit que la droite d’équation  𝒙 = −𝟏 est asymptote verticale à (𝐶𝑓). 

b) Soit 𝑓(𝑥) =
𝑥2−2𝑥+5

2𝑥2+1
 

𝑓 est définie sur ℝ. Calculons les limites de 𝑓 aux bornes de son 𝐷𝑓. 
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 lim
𝑥→−∞

𝑓(𝑥) = lim
𝑥→−∞

𝑥2−2𝑥+5

2𝑥2+1
= lim

𝑥→−∞

𝑥2

2𝑥2
=

1

2
  

  ⟹ lim
𝑥→−∞

𝑓(𝑥) =
1

2
  

 lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

𝑥2−2𝑥+5

2𝑥2+1
= lim

𝑥→+∞

𝑥2

2𝑥2
=

1

2
  

  ⟹ lim
𝑥→+∞

𝑓(𝑥) =
1

2
  

⟹ lim
𝑥→−∞

𝑓(𝑥) = lim
𝑥→+∞

𝑓(𝑥) =
1

2
, alors la droite d’équation 𝒚 =

1

2
  est asymptote horizontale 

à (𝐶𝑓) en −∞ et en +∞. 

𝒃 − Asymptote oblique 

Définition : 

Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

On dit que la droite d’équation 𝒚 = 𝒂𝒙 + 𝒃 est une asymptote oblique à (𝐶𝑓) lorsque : 

𝐥𝐢𝐦
𝒙→+∞

[𝒇(𝒙) − (𝒂𝒙 + 𝒃)] = 𝟎 ou 𝐥𝐢𝐦
𝒙→−∞

[𝒇(𝒙) − (𝒂𝒙 + 𝒃)] = 𝟎 

Méthode : 

Pour étudier les branches infinies de la courbe représentative d’une fonction rationnelle 

ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
 où (𝑑°𝑓 ≥ 𝑑°𝑔) en −∞ et en +∞, on peut effectuer la division euclidienne de 𝑓 

par 𝑔. 

Exemple : 

Soit 𝑓(𝑥) = 𝑥 − 2 +
2

𝑥2+1
.  

Démontrons que la droite d’équation :  𝑦 = 𝑥 − 2 est asymptote oblique à (𝐶𝑓) en en −∞ et 

en +∞.  

En effet, 𝑓(𝑥) − 𝑦 = 𝑥 − 2 +
2

𝑥2+1
− (𝑥 − 2) 

 𝑓(𝑥) − 𝑦 =
2

𝑥2+1
  

 lim
𝑥→−∞

[𝑓(𝑥) − (𝑥 − 2)] = lim
𝑥→−∞

(
2

𝑥2+1
) =

2

+∞
= 0  

 lim
𝑥→+∞

[𝑓(𝑥) − (𝑥 − 2)] = lim
𝑥→+∞

(
2

𝑥2+1
) =

2

+∞
= 0  

D’où la droite d’équation :  𝑦 = 𝑥 − 2 est asymptote oblique à (𝐶𝑓) en en −∞ et en +∞.  

Propriété : 

Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

la droite d’équation 𝒚 = 𝒂𝒙 + 𝒃 est une asymptote à (𝐶𝑓) si et seulement si : 𝐥𝐢𝐦
𝒙→±∞

𝒇(𝒙)

𝒙
= 𝒂 

et 𝐥𝐢𝐦
𝒙→±∞

(𝒇(𝒙) − 𝒂𝒙) =. 

Remarque : 

Les courbes représentatives de deux fonctions 𝑓 et 𝑔 sont asymptotes lorsque :  

lim
𝑥→+∞

(𝑓(𝑥) − 𝑔(𝑥)) = 0 ou lim
𝑥→−∞

(𝑓(𝑥) − 𝑔(𝑥)) = 0. 

𝐈𝐈𝟏 − Directions asymptotiques  

Soit 𝑓 une fonction de courbe représentative  (𝐶𝑓) dans le plan muni d’un repère 

orthonormé (0; 𝑖; 𝑗).  
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Supposons que lim
𝑥→±∞

𝑓(𝑥) = ±∞ ; ce qui confirmerait l’existence des branches infinies. 

Lorsqu’on étudie la limite en +∞ ou en −∞ de 
𝑓(𝑥)

𝑥
,  on distingue trois cas : 

1er Cas : 

Si lim
𝑥→+∞

𝑓(𝑥)

𝑥
= ±∞ ou lim

𝑥→−∞

𝑓(𝑥)

𝑥
= ±∞,  alors on dit que (𝐶𝑓) admet une branche 

parabolique de direction celle de l’axe (𝑂𝐽). 

2e Cas : 

Si lim
𝑥→+∞

𝑓(𝑥)

𝑥
= 𝑎 ou lim

𝑥→−∞

𝑓(𝑥)

𝑥
= 𝑎, alors on a : 

 Si 𝑎 = 0, lim
𝑥→+∞

𝑓(𝑥)

𝑥
= 0 ou lim

𝑥→−∞

𝑓(𝑥)

𝑥
= 0, alors (𝐶𝑓) admet une branche parabolique 

de direction celle de l’axe (𝑂𝐼) ; 

 Si ≠ 0 , dans ce cas, on calcule lim
𝑥→+∞

[𝑓(𝑥) − 𝑎𝑥] ou lim
𝑥→−∞

[𝑓(𝑥) − 𝑎𝑥] et on distingue 

trois possibilités : 

- Si lim
𝑥→+∞

[𝑓(𝑥) − 𝑎𝑥] = 𝑏 ou lim
𝑥→−∞

[𝑓(𝑥) − 𝑎𝑥] = 𝑏, alors la droite (𝐷) 

d’équation 𝑦 = 𝑎𝑥 + 𝑏 est appelée asymptote oblique à (𝐶𝑓) ; 

- Si lim
𝑥→+∞

[𝑓(𝑥) − 𝑎𝑥] = ±∞ ou lim
𝑥→−∞

[𝑓(𝑥) − 𝑎𝑥] = ±∞, alors (𝐶𝑓) admet une 

branche parabolique de direction celle de la droite d’équation 𝑦 = 𝑎𝑥 ; 

- Si lim
𝑥→+∞

[𝑓(𝑥) − 𝑎𝑥] n’existe pas ou lim
𝑥→−∞

[𝑓(𝑥) − 𝑎𝑥] n’existe pas, alors 

(𝐶𝑓) n’a ni asymptote, ni branche parabolique mais elle admet une direction 

asymptotique celle de la droite d’équation 𝑦 = 𝑎𝑥. 

3e Cas :  

Si lim
𝑥→+∞

𝑓(𝑥)

𝑥
 n’existe pas ou lim

𝑥→−∞

𝑓(𝑥)

𝑥
 n’existe pas,  alors (𝐶𝑓) n’a ni asymptote, ni branche 

parabolique, ni direction asymptotique, on ne peut conclure. 

III. Continuité d’une fonction 

𝐈𝐈𝐈𝟏 − Continuité sur un intervalle 

𝟏. 𝟏 − Définition : 

Soit K un intervalle de ℝ. Une fonction 𝑓 est continue sur K si elle est continue sur en tout 

élément de K. 

Exemple : 

 Toute fonction monôme est continue sur ℝ ; 

 Les fonctions sinus et cosinus sont continues sur ℝ. 

Propriété : 

Soit 𝑓 et 𝑔 deux fonctions continues sur un intervalle K. 

 Les fonctions 𝑓 + 𝑔, 𝑓 × 𝑔, 𝑘𝑓 ; (𝑘 ∈ ℝ) et |𝑓| sont continues sur K ; 

 Si 𝑔 ne s’annule pas sur K, alors 
1

𝑔
 et 

𝑓

𝑔
 sont continues sur K ; 

 Si 𝑓 est positive sur K, alors √𝑓 est continue sur K ; 

 La composée de deux fonction continues sur leur ensemble de définition est continue 

sur son ensemble de définition ; 

𝐈𝐈𝐈𝟐 − Image d’un intervalle par une fonction continue 

Propriété : 
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Soit 𝑓 une fonction continue. 

 L’image par 𝑓 d’un intervalle est un intervalle ou un singleton ; 

 L’image par 𝑓 d’un intervalle  fermé est un intervalle fermé ou un singleton  

Remarque : 

 ∀𝑥 ∈ [𝑎; 𝑏], 𝑚 ≤ (𝑥) ≤ 𝑀, alors 𝑓 est bornée sur [𝑎; 𝑏], 

 𝑚 𝑒𝑡 𝑀 ont un antécédent dans [𝑎; 𝑏] par 𝑓, on dit que 𝑓 atteint ses bornes ; 

 Les valeurs de 𝑚 et 𝑀 ne sont pas forcement celle de 𝑓(𝑎) et 𝑓(𝑏). 𝑚 et 𝑀 sont le 

minimum et le maximum de 𝑓 sur [𝑎; 𝑏] 

 

𝟐. 𝟏 − Théorème des valeurs intermédiaires 

Soit 𝑓 une fonction continue sur un intervalle K et 𝑎 et 𝑏 deux éléments de K. 

Tout nombre compris entre 𝑓(𝑎) et 𝑓(𝑏) a au moins un antécédent compris entre 𝑎 et 𝑏. 

Remarque : 

Pour qu’un nombre réel compris entre 𝑓(𝑎) et 𝑓(𝑏) ait un antécédent par 𝑓 dans [𝑎; 𝑏], il 

faut nécessairement que 𝑓 soit continue sur [𝑎; 𝑏]. 

Conséquence : 

Soit 𝑓 une fonction continue sur un intervalle K.  

S’ils existent deux éléments 𝑎 et 𝑏 (𝑎 < 𝑏) de K tels que 𝑓(𝑎) et 𝑓(𝑏) soient de signe 

contraires, alors l’équation 𝑓(𝑥) = 0 admet une solution unique dans l’intervalle [𝑎; 𝑏]. 

NB : Si 𝑓 ne s’annule pas sur K, alors 𝑓 garde un signe constant sur K. 

Exemple : 

Démontrer que l’équation 𝑐𝑜𝑠
𝜋𝑥

2
= 𝑥 admet au moins une solution dans [0; 1]. 

La fonction 𝑥 ⟼ 𝑐𝑜𝑠
𝜋𝑥

2
 est définie et continue sur ℝ, or [0; 1] ⊂ ℝ, d’où 𝑐𝑜𝑠

𝜋𝑥

2
 est continue 

sur [0; 1]. 

Alors la fonction 𝑓(𝑥) = 𝑐𝑜𝑠
𝜋𝑥

2
− 𝑥 est continue sur [0; 1]. 

On a : 𝑓(0) = 1 et 𝑓(1) = −1, alors 𝑓(0) × 𝑓(1) < 0 et l’équation 𝑓(𝑥) = 0 admet une 

solution dans [0; 1] et on en déduit que  l’équation 𝑐𝑜𝑠
𝜋𝑥

2
= 𝑥 admet au moins une solution 

dans [0; 1]. 

𝐈𝐈𝐈𝟑 −Fonction continue et monotone 

𝟑. 𝟏 − Bijection réciproque d’une fonction continue et monotone 

Toute fonction 𝑓 continue et strictement monotone sur un intervalle K détermine 

une bijection sur un intervalle 𝑓(𝐾). 

La bijection réciproque 𝑓−1 est continue sur l’intervalle 𝑓(𝐾). Elle est strictement 

monotone et a le même sens de variation que 𝑓. 

Exemple : 

Soit 𝑓: 
[1; +∞[⟼ℝ

𝑥⟼𝑓(𝑥)=𝑥2−2𝑥
 

1) Montrer que 𝑓 est continue et strictement monotone de [1; +∞[ sur ℝ. 

2) Démontrer que 𝑓 réalise une bijection de [1; +∞[ vers un intervalle que l’on 

déterminera. 

Solution : 

Soit 𝑓(𝑥) = 𝑥2 − 2𝑥 

𝐷𝑓 = ℝ, or [1; +∞[ ⊂ ℝ, d’où 𝑓 est définie et continue sur [1; +∞[. 
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On a : lim
𝑥→1

𝑓(𝑥) = −1 et lim
𝑥→+∞

𝑓(𝑥) = +∞ 

𝑓 est dérivable sur ℝ et on a : 𝑓′(𝑥) = 2𝑥 − 2 

    𝑓′(𝑥) = 0 ⟺ 2𝑥 − 2 = 0  

           ⟺ 𝑥 = 1  
 

 

 

 

 

 

 

 

1) 𝑓 est continue et strictement croissante de [1; +∞[ ⟼ ℝ. 

2) 𝑓 réalise une bijection réciproque de [1; +∞[ vers [−1; +∞[. 

𝟑. 𝟐 − Image d’un intervalle par une fonction continue et monotone 

Lorsque 𝑓 est strictement monotone et continue un intervalle K, alors 𝑓(𝐾) est un intervalle 

de même nature. 

Intervalles K  𝑓(𝐾) 
𝑓 est strictement croissante 𝑓 est strictement décroissante 

[𝑎; 𝑏] [𝑓(𝑎); 𝑓(𝑏)] [𝑓(𝑏); 𝑓(𝑎)] 
[𝑎; 𝑏[ [𝑓(𝑎); lim

𝑥→b−
𝑓(𝑥)[ [ lim

𝑥→b−
𝑓(𝑥);  𝑓(𝑎)[ 

]𝑎; 𝑏[ ] lim
𝑥→a+

𝑓(𝑥); lim
𝑥→b−

𝑓(𝑥)[ ] lim
𝑥→b−

𝑓(𝑥);  lim
𝑥→a+

𝑓(𝑥)[ 

]𝑎; +∞[ ] lim
𝑥→a+

𝑓(𝑥); lim
𝑥→±∞

𝑓(𝑥)[ ] lim
𝑥→+∞

𝑓(𝑥); lim
𝑥→a+

𝑓(𝑥)[ 

ℝ ] lim
𝑥→−∞

𝑓(𝑥); lim
𝑥→±∞

𝑓(𝑥)[ ] lim
𝑥→+∞

𝑓(𝑥); lim
𝑥→−∞

𝑓(𝑥)[ 

 

Exemple : 

Soit 
𝑔: ℝ⟼ℝ

𝑥⟼𝑔(𝑥)=
𝑥+1

𝑥−1

 

1) Montrer que 𝑔 admet une bijection de ]1; +∞[vers un intervalle que l’on précisera. 

2)  En déduire que 𝑔 admet une application bijective réciproque . 

3) Donner la forme explicite de 𝑔−1. 

Solution : 

Soit 𝑔(𝑥) =
𝑥+1

𝑥−1
 

𝐷𝑔 = ]−∞;1[ ∪ ]1; +∞[, or [1; +∞[ ⊂ ℝ, d’où 𝑓 est définie et continue sur ]1; +∞[ 

On a : lim
𝑥→1+

𝑔(𝑥) = +∞ et lim
𝑥→+∞

𝑔(𝑥) = 1 

𝑔 est dérivable sur ℝ et on a : 𝑔′(𝑥) =
−2

(𝑥−1)2
, alors 𝑔′(𝑥) < 0. 

1) 𝑔 est continue et strictement décroissante sur ]1; +∞[, donc 𝑔 réalise une bijection 

de ]1; +∞[ vers 𝑔(]1; +∞[) = ]1; +∞[ . 

2) 𝑔 réalise une bijection de ]1; +∞[ vers ]1; +∞[, alors elle admet une bijection 

réciproque ; 

3) La forme explicite de 𝑔−1. 
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On a : 𝑔(𝑥) = 𝑦 ⟺
𝑥+1

𝑥−1
= 𝑦 

   ⟺ 𝑥 + 1 = 𝑦(𝑥 − 1)  

   ⟺ 𝑥 + 1 = 𝑥𝑦 − 𝑦   

   ⟺ 𝑥 − 𝑥𝑦 = −1 − 𝑦       

   ⟺ 𝑥𝑦 − 𝑥 = 1 + 𝑦  

   ⟺ 𝑥(𝑦 − 1) = 1 + 𝑦   

   ⟺ 𝑥 =
1+𝑦

𝑦−1
  

Donc 𝑔−1(𝑥) =
1+𝑥

𝑥−1
 

𝟑. 𝟐 − Fonction racine n-ième 

Définition : 

Soit n un entier naturel supérieur ou égal à 2. On appelle fonction racine n-ième, la bijection 

réciproque de la fonction 𝑥𝑛 et on a : 𝑓: ℝ+⟼ℝ+
𝑥⟼𝑦=𝑥𝑛

  

Notation : 

𝑦 est un nombre réel, l’antécédent de 𝑦 par 𝑓 est noté √𝑦
𝑛  et se lit « racine n-ième de 𝑦 ou 

encore 𝑦
1

𝑛. 

Propriété de la racine n-ième : 

Soit 𝑥 et 𝑦 deux réels strictement positifs et 𝑛 un entier naturel supérieur ou égal à 2. 

 𝑥𝑛 = 𝑦 ⟺ 𝑥 = √𝑦
𝑛  ou 𝑥 = 𝑦

1

𝑛 

 √𝑦
𝑛 ≥ 0  

 (√𝑦
𝑛 )

𝑛
= √𝑦𝑛

𝑛 = (𝑦
1

𝑛)
𝑛

= 𝑦  

Exemple : 

Démontrons que : √8
3

= 2. 

On a : √8
3

= √23
3

= (2
1

3)
3

= 2  

Calcul avec les racines  n-ièmes : 

∀𝑎; 𝑏 ∈ ℝ+ et 𝑚 𝑒𝑡 𝑛 deux entiers naturels avec 𝑛 ≥ 2. 

 √𝑎
𝑛

× √𝑏
𝑛

= √𝑎𝑏
𝑛

= (𝑎𝑏)
1

𝑛  

 
√𝑎
𝑛

√𝑏
𝑛 = √

𝑎

𝑏

𝑛
= (

𝑎

𝑏
)

1

𝑛
  

 √√𝑎
𝑛𝑚

= √𝑎
𝑚𝑛

= (𝑎)
1

𝑚𝑛  

 (√𝑎
𝑛
)
𝑚
= (𝑎

1

𝑛)
𝑚

= 𝑎
𝑚

𝑛   

 √𝑎
𝑚

× √𝑎
𝑛

= √𝑎𝑚𝑛
𝑚𝑛

= 𝑎
1

𝑚
+
1

𝑛 = 𝑎
𝑛+𝑚

𝑚𝑛   
 

 

 

 

 

 

FIN 
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Chapitre 2 : DERIVATIONS ET ETUDE DE FONCTIONS 

I. Dérivations 

𝐈𝟏 − Dérivabilité en un point 𝒙𝟎. 

Soit 𝑓 une fonction définie sur un intervalle I et 𝑥0 un élément de I. 

On dit que 𝑓 est dérivable en 𝑥0 si et seulement si : lim𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓′(𝑥0). Le nombre 

réel 𝑓′(𝑥0) est appelé nombre dérivé de 𝑓 en 𝑥0. 

Lorsque 𝑓 est dérivable en 𝑥0, alors la courbe (𝐶𝑓) admet une tangente au point 𝑀0 de 

coordonnées (𝑥0; 𝑓(𝑥0) ).  

L’équation de cette tangente est de la forme : (𝑇): 𝑦 = 𝑓′(𝑥0)(𝑥 − 𝑥0) + 𝑓(𝑥0).  

𝑓′(𝑥0) est le coefficient directeur de cette tangente. 

Exemple : 

Soit 𝑓(𝑥) = (𝑥 − 3)√𝑥 + 1 

𝑓 est-elle dérivable en 3 ? Déterminer une équation de la tangente au point d’abscisse 3. 

Solution : 

 lim𝑥→3
𝑓(𝑥)−𝑓(3)

𝑥−3
= lim

𝑥→3

(𝑥−3)√𝑥+1

𝑥−3
  

= lim
𝑥→3

√𝑥 + 1 = 2. 

  ⟹ lim
𝑥→3

𝑓(𝑥)−𝑓(3)

𝑥−3
= 2  

Don 𝑓 est dérivable en 3. 

L’équation de la tangente est  (𝑇): 𝑦 = 𝑓′(3)(𝑥 − 3) + 𝑓(3) 

  𝑦 = 𝑓′(3)(𝑥 − 3) + 𝑓(3)  

⟹ 𝑦 = 2(𝑥 − 3) + 0   

⟹ (𝑇): 𝑦 = 2𝑥 − 6  

𝐈𝟐 − Dérivabilité sur un intervalle 

Une fonction 𝑓 définie sur [𝑎; 𝑏] est dérivable sur [𝑎; 𝑏] si est dérivable sur ]𝑎; 𝑏[, dérivable 

à droite en 𝑎 et à gauche en 𝑏. 

On écrit :  

 lim𝑥→𝑎>
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
= 𝑓′(𝑎) ; (𝑓′(𝑎) est le nombre dérivé à droite) 

 lim𝑥→𝑏<
𝑓(𝑥)−𝑓(𝑏)

𝑥−𝑏
= 𝑓′(𝑏); (𝑓′(𝑏) est le nombre dérivé à gauche)  

Exemple : 
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Soit 𝑓(𝑥) = (𝑥 − 1)√𝑥 − 1 et ℎ(𝑥) = √3 − 𝑥 + 1 

Etudier la dérivabilité de 𝑓 sur [1; +∞[ ; puis celle de ℎ sur ]−∞; 3]. 

Solution : 

 𝑓 est dérivable sur [1; +∞[ et on a :  

 lim𝑥→1>
𝑓(𝑥)−𝑓(1)

𝑥−1
= lim

𝑥→1>

(𝑥−1)√𝑥−1

𝑥−1
  

= lim
𝑥→1>

√𝑥 − 1 = 0.   

  ⟹ lim𝑥→1>
𝑓(𝑥)−𝑓(1)

𝑥−1
= 0  

Donc 𝑓 est dérivable sur [1; +∞[. 

 ℎ est dérivable sur ]−∞; 3] et on a :  

 lim𝑥→3<
ℎ(𝑥)−ℎ(3)

𝑥−3
= lim

𝑥→3<

√3−𝑥+1−1

𝑥−3
  

= lim
𝑥→3<

√3−𝑥

𝑥−3
   

= lim
𝑥→3<

3−𝑥

(𝑥−3)√3−𝑥
  

= lim
→3<

−(𝑥−3)

(𝑥−3)√3−𝑥
  

= lim
𝑥→3<

−1

√3−𝑥
  

=
−1

0−
= +∞  

   ⟹ lim𝑥→3<
ℎ(𝑥)−ℎ(3)

𝑥−3
= +∞ 

Donc ℎ n’est pas dérivable sur ]−∞; 3]. 

Remarque : 

Une fonction est dérivable sur un ensemble E lorsqu’elle est dérivable en tout élément de E.  

Une fonction dérivable sur un ensemble E est continue sur cet ensemble. 

 𝐈𝟑 − Dérivées usuelles 

𝟑. 𝟏 − Dérivées des fonctions usuelles 

Tableau récapitulatif des dérivées des fonctions élémentaires 

Fonction  Fonction dérivée  Ensemble de dérivabilité 

𝑓(𝑥) = 𝑘; (𝑘 ∈ ℝ) 𝑓′(𝑥) = 0 ℝ 

𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1 ℝ 

𝑓(𝑥) = 𝑥𝑛; (𝑛 ∈ ℤ∗) 𝑓′(𝑥) = 𝑛. 𝑥𝑛−1 ℝ∗, si 𝑛 < 0 
ℝ, si 𝑛 > 0 

𝑓(𝑥) = 𝑐𝑜𝑠𝑥 𝑓′(𝑥) = −𝑠𝑖𝑛𝑥 ℝ 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 ℝ 

𝑓(𝑥) =
1

𝑥
 𝑓′(𝑥) = −

1

𝑥2
 

ℝ∗ 

𝑓(𝑥) = √𝑥 
𝑓′(𝑥) =

1

2√𝑥
 

ℝ+
∗  

𝑓(𝑥) = 𝑡𝑎𝑛𝑥 𝑓′(𝑥) = 1 + 𝑡𝑎𝑛2𝑥 ℝ− {
𝜋

2
+ 𝑘𝜋; 𝑘 ∈ ℤ} 

 

𝟑. 𝟐 −Derivée et opérations sur les fonctions 

Tableau récapitulatif 
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Dans ce tableau  𝑢 et 𝑣 sont des fonctions dérivables sur un intervalle ouvert 𝐾. 

 

Operations sur les fonctions Fonctions Dérivées des fonctions 

Dérivée de la somme de deux fonctions 𝑢 + 𝑣 𝑢′ + 𝑣′ 

Dérivée du produit de deux fonctions 𝑢. 𝑣 𝑢′𝑣 + 𝑣′𝑢 

Dérivée de la puissance d’une fonction 𝑢𝑛;  (𝑛 ∈ ℕ), 𝑛 ≥ 2 𝑛. 𝑢′. 𝑢𝑛−1 

Dérivée de l’inverse d’une fonction 1

𝑣
 −

𝑣′

𝑣2
 

Dérivée du quotient de deux fonctions 𝑢

𝑣
 𝑢′𝑣 − 𝑣′𝑢

𝑣2
 

Dérivée de la racine carrée d’une fonction √𝑢 𝑢′

2√𝑢
 

Dérivée de la fonction : 𝑥 → 𝑢(𝑎𝑥 + 𝑏) 𝑢(𝑎𝑥 + 𝑏) 𝑎𝑢′(𝑎𝑥 + 𝑏) 

Dérivée de 𝑐𝑜𝑠 ∘ (𝑢) 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) −𝑎. 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 

Dérivée de 𝑠𝑖𝑛 ∘ (𝑢) 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 𝑎. 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) 

Dérivée du produit d’une fonction par un 

scalaire 

𝑘𝑣; (𝑘 ∈ ℝ) 𝑘𝑣′ 

 

Exercice d’application : 

Dans chacun des cas suivants, étudions la dérivabilité de 𝑓 sur son ensemble de définition, 

puis calculons sa fonction dérivée. 

a) 𝑓(𝑥) = 𝑥2|𝑥|  

𝑓 est définie et dérivable sur ℝ et on a :  

𝑓(𝑥) = {
𝑥3, 𝑠𝑖 𝑥 > 0

−𝑥3, 𝑠𝑖 𝑥 < 0
⟹ 𝑓′(𝑥) = {

3𝑥2, 𝑠𝑖 𝑥 > 0

−3𝑥2, 𝑠𝑖 𝑥 < 0
  

 

b) 𝑓(𝑥) = (𝑥 − 2)√2 − 𝑥  
𝑓 est définie sur ]−∞; 2] et dérivable sur ]−∞; 2[ et on a :  

lim𝑥→2<
𝑓(𝑥)−𝑓(2)

𝑥−2
= lim

𝑥→2<

(𝑥−2)√2−𝑥

𝑥−2
  

= lim
𝑥→2<

√2 − 𝑥 = 0.   

  ⟹ lim𝑥→2<
𝑓(𝑥)−𝑓(2)

𝑥−2
= 0  

Donc 𝑓 est dérivable sur son domaine de définition 𝐷𝑓 = ]−∞; 2]. 

 ∀𝑥 ∈ ]−∞; 2],  𝑓′(𝑥) = √2 − 𝑥 −
1

2√2−𝑥
× (𝑥 − 2)   

=
2(2−𝑥)−𝑥+2

2√2−𝑥
  

⟹ 𝑓′(𝑥) =
6−3𝑥

2√2−𝑥
  

c) 𝑓(𝑥) = √2𝑥 + 5  

𝑓 est définie sur [−
5

2
;  +∞[et dérivable sur ]−

5

2
;  +∞[ et on a :  

lim
𝑥→−

5

2

>

𝑓(𝑥)−𝑓(−
5

2
)

𝑥+
5

2

= lim
𝑥→−

5

2

>

√2𝑥+5

𝑥+
5

2
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= lim
𝑥→−

5

2

>

2√2𝑥+5

2𝑥+5
  

= lim
𝑥→−

5

2

>

2

√2𝑥+5
 =

2

0+
= +∞  

  ⟹ lim
𝑥→−

5

2

>

𝑓(𝑥)−𝑓(−
5

2
)

𝑥+
5

2

= +∞ 

Donc 𝑓 n’est pas dérivable sur son domaine de définition 𝐷𝑓 = [−
5

2
;  +∞[ 

∀𝑥 ∈ [−
5

2
;  +∞[,  𝑓′(𝑥) =

2

2√2𝑥+5
 =

1

√2𝑥+5
 

⟹ 𝑓′(𝑥) =
1

√2𝑥+5
  

d) 𝑓(𝑥) = (𝑥 + 1)√𝑥2 − 3𝑥 − 4  

𝑓(𝑥) ∃ ⟺ 𝑥2 − 3𝑥 − 4 ≥ 0  
⟺ (𝑥 + 1)(𝑥 − 4) ≥ 0  

 
 
 
 
 
 
 

 

𝐷𝑓 = ]−∞,−1] ∪ [4; +∞[  

𝑓 est dérivable sur ]−∞,−1[ et on a : 

lim𝑥→−1<
𝑓(𝑥)−𝑓(−1)

𝑥+1
= lim

𝑥→−1<

(𝑥+1)√𝑥2−3𝑥−4 

𝑥+1
  

    = lim
𝑥→−1<

√𝑥2 − 3𝑥 − 4  = 0.   

  ⟹ lim𝑥→−1<
𝑓(𝑥)−𝑓(−1)

𝑥+1
= 0  

Donc 𝑓 est dérivable à gauche en −1, alors elle est dérivable sur ]−∞;−1]. 

𝑓 est dérivable sur [4; +∞[ et on a : 

lim𝑥→4>
𝑓(𝑥)−𝑓(4)

𝑥−4
= lim

𝑥→4>

(𝑥+1)√𝑥2−3𝑥−4 

𝑥−4
  

= lim
𝑥→4>

(𝑥 + 1)√(𝑥 + 1)(𝑥 − 4) 

𝑥 − 4
 

= lim
𝑥→4>

(𝑥 + 1)(𝑥 + 1)(𝑥 − 4)

(𝑥 − 4)√(𝑥 + 1)(𝑥 − 4)
 

           = lim
𝑥→4>

(𝑥+1)(𝑥+1)

√(𝑥+1)(𝑥−4)
 

    =
25

+∞
= −∞ 

  ⟹ lim𝑥→4>
𝑓(𝑥)−𝑓(4)

𝑥−4
= −∞ 

Donc 𝑓 n’est pas dérivable à droite en 4, alors elle n’est pas dérivable sur [4; +∞[ . 

On en déduit que 𝑓 n’est pas dérivable sur son  𝐷𝑓 = ]−∞,−1] ∪ [4; +∞[ . 

∀𝑥 ∈ ]−∞,−1] ∪ [4; +∞[ , on a : 

 𝑓′(𝑥) = √𝑥2 − 3𝑥 − 4 +
2𝑥−3

2√𝑥2−3𝑥−4
× (𝑥 + 1)  
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=
2(𝑥2−3𝑥−4)+(2𝑥−3)(𝑥+1)

2√𝑥2−3𝑥−4
  

=
2(𝑥+1)(𝑥−4)+(2𝑥−3)(𝑥+1)

2√𝑥2−3𝑥−4
  

=
(𝑥+1)[2(𝑥−4)+(2𝑥−3)]

2√𝑥2−3𝑥−4
  

𝑓′(𝑥) =
(𝑥+1)(4𝑥−11)

2√𝑥2−3𝑥−4
  

Exemple : 

Déterminons la dérivée de 𝑓 dans les cas suivants : 

a) 𝑓(𝑥) =
1

(𝑥2+1)3
  

On a : 𝑓′(𝑥) = −
[(𝑥2+1)

3
]
′

(𝑥2+1)3
  

= −
3(2𝑥)(𝑥2+1)

2

(𝑥2+1)6
  

⟹ 𝑓′(𝑥) = −
6𝑥

(𝑥2+1)3
  

b) 𝑓(𝑥) = √(𝑥2 + 1)3  

On a : 𝑓′(𝑥) =
[(𝑥2+1)

3
]
′

2√(𝑥2+1)3
  

=
3(2𝑥)(𝑥2+1)

2

2√(𝑥2+1)3
     

         ⟹ 𝑓′(𝑥) =
3𝑥(𝑥2+1)

√𝑥2+1
   

c) 𝑓(𝑥) = √𝑥2 + 1
3

= (𝑥2 + 1)
1

3  

On a : 𝑓′(𝑥) =
1

3
× 2𝑥(𝑥2 + 1)

1

3
−1 

=
2

3
𝑥(𝑥2 + 1)−

2

3     

                  =
2

3
𝑥

(𝑥2+1)
2
3 

   

       ⟹ 𝑓′(𝑥) =
2𝑥

3( √𝑥2+1
3

)
2
 
  

𝟑. 𝟑 −Derivée de la fonction composée 

Soit 𝑓 une fonction dérivable sur un intervalle K et 𝑔 une fonction définie sur 𝑓(𝐾). 

 La fonction 𝑔 ∘ 𝑓 est dérivable sur K et on a : 

(𝑔 ∘ 𝑓 )′(𝑥) = 𝑓′(𝑥). 𝑔′(𝑓(𝑥)) 

Exemple : 

Déterminons la dérivée de la fonction 𝑓 définie par 𝑓(𝑥) = 𝑐𝑜𝑠(𝑥2 + 1). 

En effet, 𝑓 est la composée des fonctions 𝑔(𝑥) = 𝑐𝑜𝑠𝑥 et ℎ(𝑥) = 𝑥2 + 1 

 𝑓(𝑥) = 𝑔 ∘ ℎ(𝑥) ⟹  𝑓′(𝑥) = ℎ′(𝑥). 𝑔′(ℎ(𝑥)) 

= 2𝑥[−𝑠𝑖𝑛(𝑥2 + 1)]   

        ⟹ 𝑓′(𝑥) = −2𝑥𝑠𝑖𝑛(𝑥2 + 1)  

𝟑. 𝟒 −Derivée de la réciproque d’une fonction 

Soit 𝑓 une fonction dérivable et strictement monotone sur un intervalle K telle que pour tout 

élément 𝑥 de K, 𝑓′(𝑥) ≠ 0. 

La fonction 𝑓 réalise une bijection de réciproque de K vers 𝑓(𝐾). 

La bijection réciproque 𝑓−1 est dérivable sur 𝑓(𝐾) et sa dérivée est : 
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  (𝑓−1)′ =
1

𝑓′∘𝑓−1
 

Exemple : 

Soit      
𝑓: [0; +∞[ ⟶ [0; +∞[

              𝑥 ⟼ 𝑓(𝑥) = 𝑥𝑛
 ; avec 𝑛 ∈ ℕ. 

a) Montrer que 𝑓 est une bijection et déterminer l’ensemble de dérivabilité 𝐽 de 𝑓−1. 

b) Définir 𝑓−1 et sa fonction dérivée. 

Solution : 

𝑓(𝑥) = 𝑥𝑛  

a) Montrons que 𝑓 est une bijection et déterminons l’ensemble de dérivabilité 𝐽 de 𝑓−1. 

𝐷𝑓 = [0; +∞[  

lim
𝑥→0

𝑓(𝑥) = 0 et lim
𝑥→+∞

𝑓(𝑥) = +∞  

𝑥 ∈ [0; +∞[ ; 𝑓 est dérivable et 𝑓(𝑥) = 𝑛. 𝑥𝑛−1. 

Donc 𝑓 est continue et strictement croissante  sur [0; +∞[, alors elle réalise une bijection de 

réciproque de 𝐽 = [0; +∞[. 

b) Définissons 𝑓−1 et sa fonction dérivée. 

La bijection réciproque 𝑓−1 est :  𝑓−1(𝑥) = √𝑥
𝑛

= 𝑥
1

𝑛 

La dérivée de 𝑓−1 est :  

(𝑓−1(𝑥))
′
=

1

(𝑓′∘𝑓−1)(𝑥)
=

1

𝑛.( √𝑥
𝑛

)
𝑛−1   

(𝑓−1(𝑥))
′
=

1

𝑛.𝑥
𝑛−1
𝑛

  

𝟑. 𝟓 − Inégalité des accroissements finis 

Soit K un intervalle et 𝑎 et 𝑏 deux éléments de K tels que : 𝑎 < 𝑏.  

 S’il existe deux réels 𝑚 et 𝑀 tels que pour tout 𝑥 ∈ [𝑎; 𝑏] ; 𝑚 ≤ 𝑓′(𝑥) ≤ 𝑀, alors on  

l’inégalité :  𝒎(𝒃 − 𝒂) ≤ 𝒇′(𝒙) ≤ 𝑴(𝒃 − 𝒂). 

 S’il existe un nombre réel 𝑀 positif tel que pour tout 𝑥 ∈ [𝑎; 𝑏] ; |𝑓′(𝑥)| ≤ 𝑀, alors 

on a :    |𝒇(𝒃) = 𝒇(𝒂)| ≤ 𝑴|𝒃 − 𝒂|.  

Cette dernière inégalité est dite inégalité des accroissements finis. 

𝐈𝟒 − Application de la dérivée 

𝟒. 𝟏 − Sens de variation d’une fonction 

Soit 𝑓 une fonction dérivable sur un intervalle I.  

 Si 𝑓′ est strictement positive sur I, alors 𝑓 est strictement croissante sur I. 

 Si 𝑓′ est strictement négative sur I, alors 𝑓 est strictement décroissante sur I. 

 Si 𝑓′ est nulle sur I, alors 𝑓 est constante sur I. 

𝟒. 𝟐 − Extremum 

On dit que 𝑓 admet un extremum en 𝑥0 si 𝑓′ s’annule en 𝑥0 et change de signe. 

 

Tableaux de variations 
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 𝑓 admet un maximum 𝑀 relatif en 𝑥0 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓 admet un minimum 𝑚 relatif en 𝑥0 

𝟒. 𝟑 − Dérivées successives et applications 

Soit 𝑓 une fonction définie et dérivable sur I. 

Si 𝑓′ est dérivable sur I, on dit que 𝑓 est deux fois dérivables sur I.  

On appelle 𝑓′′ou 𝑓(2) la dérivée seconde ou dérivée d’ordre 2. 

Par itération, si 𝑛 ∈ ℕ∗ tel que 𝑛 ≥ 2, alors la fonction dérivée n-ième  ou dérivée d’ordre n 

est  :  𝑓(𝑛) = (𝑓(𝑛−1))′. 

Exemple :  

Soient 𝑓(𝑥) = 𝑥5 + 2𝑥3 + 3𝑥 + 7 et 𝑔(𝑥) = 𝑐𝑜𝑠𝑥 

Déterminons les dérivées successives de 𝑓 et 𝑔. 

1) 𝑓(𝑥) = 𝑥5 + 2𝑥3 + 3𝑥 + 7, alors on a :  

- 𝑓′(𝑥) = 5𝑥4 + 6𝑥2 + 3 

- 𝑓′′(𝑥) = 20𝑥3 + 12𝑥 

- 𝑓(3)(𝑥) = 60𝑥2 + 12 

- 𝑓(4)(𝑥) = 120𝑥 

- 𝑓(5)(𝑥) = 120 

- 𝑓(6)(𝑥) = 0 

2) 𝑔(𝑥) = 𝑐𝑜𝑠𝑥, alors on a :  

- 𝑔′(𝑥) = −𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠 (𝑥 +
𝜋

2
) 

- 𝑔′′(𝑥) = −𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠 (𝑥 + 2 ×
𝜋

2
) 

- 𝑔(3)(𝑥) = 𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠 (𝑥 + 3 ×
𝜋

2
) 

- 𝑔(4)(𝑥) = 𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠 (𝑥 + 4 ×
𝜋

2
) 

- 𝑔(5)(𝑥) = −𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠 (𝑥 + 5 ×
𝜋

2
) 

D’une manière générale ; on a : 𝑔(𝑛)(𝑥) = 𝑐𝑜𝑠 (𝑥 +
𝑛𝜋

2
). 

𝟒. 𝟑 − Dérivées successives et applications 
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Méthode : 

Pour déterminer la position relative d’une courbe par rapport à ses tangentes, il suffit 

d’étudier le signe de la dérivée d’ordre 2. 

Si 𝑓′′(𝑥) > 0, alors (𝐶) est au-dessus de la tangente. On dit que la fonction est convexe. 

Si 𝑓′′(𝑥) < 0, alors (𝐶) est en dessous de la tangente. On dit que la fonction est concave. 

Si 𝑓′′(𝑥) s’annule en changeant de signe en 𝑥0 alors (𝐶) traverse sa tangente en un point 

𝑀0 appelé point d’inflexion. 

 

II. Etude de fonctions 

𝐈𝐈𝟏 − Fonctions polynômes, fonctions rationnelles 

Plan d’étude d’une fonction 

Pour étudier une fonction dans le cas général, on adopte le plan suivant : 

1) Déterminer l’ensemble de définition ; 

2) Déterminer les limites aux bornes du domaine de définition ; 

3) Déterminer la dérivée et le sens de variations ; 

4) Points et droites remarquables : asymptotes et tangentes; 

5)  Construire la courbe. 

 

Exemple d’étude de fonctions 

Exemple 1 : 

Soit 𝑓 la fonction définie par : 𝑓(𝑥) = 𝑥3 − 3𝑥 + 2, (𝐶𝑓) sa représentation graphique 

1) a) Déterminer l’ensemble de définition de f  

       b) Calculer les limites de 𝑓 aux bornes de son 𝐷𝑓 

2)   a) Déterminer la fonction dérivée 𝑓’ de 𝑓 en déduire le sens de variation de 𝑓 

      b) dresser le tableau de variation de 𝑓 

3)   a) Déterminer une équation de la tangente (T) au point A d’abscisse 𝑥0 = 0 

      b) Etudier la position de (𝐶𝑓) par rapport à (T) ; 

4) Construire(𝐶𝑓). 

 5) Démontrer que le point A (0
𝑦
) est un centre de symétrie de (𝐶𝑓). 

Exemple 2 : 

I- Soit la fonction 𝑓 définie par 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐 où 𝑎, 𝑏 𝑒𝑡 𝑐 sont des nombres réels. 

1) Calculer 𝑓’(𝑥) ; 

2) Déterminer les réels 𝑎, 𝑏 𝑒𝑡 𝑐 sachant que 𝑓 admet 1 pour extremum en 𝑥 = 0 et −3 pour 

extremum en 𝑥 = 2. 

3) Etudier la fonction 𝑓. Montrer que l’équation 𝑓(𝑥) = 0 admet une solution unique 𝛼 dans 

[−1; 0], une solution unique 𝛽 dans [0; 1] et une solution unique 𝛾 dans [2; 3]. 

4) Tracer la courbe (𝐶𝑓) de 𝑓. 

II- Soit la fonction 𝑓  définie par 𝑓(𝑥) = 𝑥3 − 4𝑥2 + 𝑥 − 5 

1) Montrer que 𝑓 est continue sur ℝ. 

2) Démontrer que l’équation 𝑓(𝑥) = 0 admet une solution unique 𝛼 ∈ [4; 5]. 

Déterminer un encadrement de 𝛼 à 10−2 près 
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Exemple 3 : 

A) Soit 𝑓 la fonction définie par : 𝑓(𝑥) =
𝑎𝑥2+𝑏𝑥+𝑐

𝑥−2
 où 𝑎, 𝑏 𝑒𝑡 𝑐 sont des réels et (𝐶𝑓) sa 

courbe représentative. Déterminer les réels 𝑎, 𝑏 𝑒𝑡 𝑐 pour que (𝐶𝑓) passe par les points 

𝐴(−2; 0), 𝐵(3; 10) et admette au point 𝐸 d’abscisse 𝑥 = −2 une tangente parallèle à 

l’axe (0; 𝑖).  

B) Dans la suite du problème, on prendra 𝑎 = 1, 𝑏 = 1 𝑒𝑡 𝑐 = −2 

1) Déterminer trois réels 𝛼, 𝛽 𝑒𝑡 𝛾 tels que 𝑓(𝑥) = 𝛼𝑥 + 𝛽 +
𝛾

𝑥−2
 .En déduire que (𝐶𝑓) 

admet une asymptote oblique (∆) dont on déterminera une équation. 

2) Etudier les variations de f. 

3) Montrer que le point d’intersection des asymptotes est centre de symétrie de (𝐶𝑓). 

4) Déterminer une équation de la tangente (𝑇) à (𝐶𝑓) au point d’abscisse 𝑥0 = 3. 

5) Tracer (𝐶𝑓) 

6) Soit h la restriction de f à l’intervalle [4 ; +∞[ 

a) Montrer que ℎréalise une bijection de [4 ;  +∞[ sur un intervalle 𝐽 à préciser. 

b) Calculer ℎ(5), (ℎ−1)′(10) pour 𝑥 ∈ [4 ; +∞[ 

c) Tracer (𝐶ℎ−1) dans le même repère que (𝐶𝑓). 

7) Discuter graphiquement, suivant les valeurs du paramètre réel 𝑚, le nombre et le signe 

des solutions de l’équation : 𝑥2 + (1 −𝑚)𝑥 + 2𝑚 − 2 = 0 

Exemple 4 : 

1) Soit 𝑔 la fonction definie par : 𝑔(𝑥) = 𝑥√1 + 𝑥2 − 1 

a) Étudier les variations de la fonction 𝑔. 

b) Montrer qu’il existe un réel unique 𝛼 à 10−1 près tel que 𝑔(𝛼) = 0 

c) En déduire le signe de 𝑔 sur son ensemble de définition. 

2) Soit 𝑓(𝑥) =
𝑥3

3
− √1 + 𝑥2 et (𝐶𝑓) sa courbe représentative. 

a) Étudier les limites de 𝑓 sur son domaine de définition. 

b) Montrer que ∀∈ 𝐷𝑓 , 𝑓′(𝑥) =
𝑥𝑔(𝑥)

√1+𝑥2
. 

c) En déduire le tableau de variation de 𝑓. 

3) Représenter (𝐶𝑓). 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

 

FIN 

 

 

 

 

 

 

Chapitre 3 : PRIMITIVES ET FONCTIONS LOGARITHME NEPERIEN 

I. Primitive d’une fonction : 

𝐈𝟏 − Définition : 

Soit 𝑓 une fonction  continue sur un l’intervalle  𝐾, 

On appelle primitive de 𝑓 sur 𝐾, toute fonction F dérivable sur 𝐾 telle que : 𝐹 ′(𝑥) = 𝑓(𝑥), 

∀ 𝑥 𝜖 𝐾. 

Exemple : 

La fonction 𝐹(𝑥) = 𝑥2 est une primitive la fonction 𝑓(𝑥) = 2𝑥 ; 

La fonction 𝐺(𝑥) = 3𝑥 + √𝑥 est une primitive la fonction 𝑔(𝑥) = 3 +
1

2√𝑥
 ; 

La fonction 𝐻(𝑥) = 1 − 𝑐𝑜𝑠𝑥 est une primitive la fonction ℎ(𝑥) = 𝑠𝑖𝑛𝑥. 

Propriété : 

Si est une 𝑓 une fonction  continue sur un l’intervalle  𝐾, alors 𝑓 admet une primitive sur 𝐾. 

La continuité est suffisante mais n’est pas nécessaire. C'est-à-dire qu’une fonction peut 

admettre une primitive sur 𝐾 sans être continue sur 𝐾. 

𝟏. 𝟏 − Ensemble des primitives d’une fonction:   

Soit 𝑓 une fonction admettant  une primitive F sur  un intervalle  𝐾. La fonction  𝑓 a au moins 

une primitive F sur K. L’ensemble des primitives  de la  fonction 𝑓 sur K est l’ensemble des 

fonctions définies sur  K par : u → 𝐹(𝑥) + 𝐶, où 𝑐 ∈ ℝ. 

Réciproquement, toute primitive de 𝑓 sur K est sous la 𝐹(𝑥) + 𝐶 où c ne dépend pas de 𝑥. 

Exemple : 

Soit 𝑓(𝑥) = 2𝑥 et  𝑔(𝑥) = 1 + 𝑥2 

Déterminer les primitives de 𝑓 et 𝑔. 

Solution :  

𝑓(𝑥) = 2𝑥 et  𝑔(𝑥) = 1 + 𝑥2 

Déterminons les primitives de 𝑓 et 𝑔. 

𝑓 et 𝑔 Sont définie et continue sur ℝ. 

On a : 𝐹(𝑥) = 𝑥2 + 𝑐 et  𝐺(𝑥) = 𝑥 +
1

3
𝑥3 + 𝑐 ; (𝑐 ∈ ℝ). 

NB : La constante c peut être déterminée si des conditions supplémentaires figurent sur 

l’existence de F. 

𝟏. 𝟐 − Propriété : 

Soit 𝑓 une fonction admettant  une primitive sur un intervalle K, 𝑦0 est  un nombre  réel  et 

𝑥0 un élément de K. Il existe une primitive de 𝑓 sur et une seule qui prend la  valeur 𝑦0 en 𝑥0. 
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La constante c a pour valeur 𝑐 = −𝐹′(𝑥0) + 𝑦0 

Exemple :  

Déterminons la primitive F sur ℝ de la fonction 𝑓  défini par : 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 qui prend la 

valeur  −1 en 
𝜋

2
.  

Une primitive F de 𝑓 est 𝐹(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑐; (𝑐 ∈ ℝ). 

De plus, 𝐹 (
𝜋

2
) = −1⟺ 𝑠𝑖𝑛

𝜋

2
+𝐶 = −1  

 ⟺ 1+𝐶 = −1  ⟺ 𝐶 = −2  

Donc 𝐹(𝑥) = 𝑠𝑖𝑛𝑥 − 2 est la primitive recherchée. 

𝐈𝟐 − Calculs de primitives 

𝟐. 𝟏 − Primitives de fonctions élémentaires : 

Fonction 𝑓 Primitives de  𝑓 Sur l’intervalle 

𝑥 ⟼ 𝑎 ; 𝑎 ∈ ℝ 𝑥 ⟼ 𝑎𝑥 + 𝑐 ℝ 

𝑥 ⟼ 𝑥𝑛 ; 𝑛 ∈ ℕ 
𝑥 ⟼

𝑥𝑛+1

𝑛 + 1
+ 𝑐 

ℝ 

𝑥 ⟼
1

𝑥𝑛
 ; (𝑛 ∈ ℕ − {1} 𝑥 ⟼ −

1

(𝑛 − 1)𝑥𝑛−1
+ 𝑐 

ℝ∗ 

𝑥 ⟼ 𝑥𝑟; 𝑟 ∈ ℚ − {1} 
𝑥 ⟼

𝑥𝑟+1

𝑟 + 1
 

ℝ+, 𝑠𝑖 𝑟 ≥ 0; 
ℝ+
∗  𝑠𝑖 𝑟 < 0 

𝑥 ⟼
1

√𝑥
 

𝑥 ⟼ 2√𝑥 + 𝑐 ℝ+
∗  

𝑥 ⟼ 𝑠𝑖𝑛𝑥 𝑥 ⟼ −𝑐𝑜𝑛𝑥 + 𝑐 ℝ 
𝑥 ⟼ 𝑐𝑜𝑛𝑥 𝑥 ⟼ 𝑠𝑖𝑛𝑥 + 𝑐 ℝ 

 

𝑥 ⟼ 1+ 𝑡𝑎𝑛2𝑥 =
1

𝑐𝑜𝑠2𝑥
 

𝑥 ⟼ 𝑡𝑎𝑛𝑥 + 𝑐 ](2𝑘 − 1)
𝜋

2 
;  (2𝑘+1)

𝜋

2
[ ; 𝑘 ∈ ℤ 

 

Exemple : 

Dans chacun des cas suivants, déterminons une primitive de 𝑓. 

a) 𝑓(𝑥) = 𝑥6, alors 𝐹(𝑥) =
1

7
𝑥7 + 𝑐 

b) 𝑓(𝑥) = 5, alors 𝐹(𝑥) = 5𝑥 + 𝑐 

c) 𝑓(𝑥) =
1

𝑥3
 , alors 𝐹(𝑥) = −

1

2𝑥2
+ 𝑐 

𝟐. 𝟐 − Recherche pratique de la primitives d’une fonction  

𝒂 − Somme et produit par un réel de deux fonctions : 

Soit 𝑓 et 𝑔 deux fonctions admettant pour primitives respectives F et G sur un intervalle K.  

- La fonction 𝑓 + 𝑔 admet pour primitive sur K la fonction 𝐹 + 𝐺 ; 

- Pour tout nombre réel 𝑘, la fonction 𝑘. 𝑓 admet pour primitive la fonction 𝑘. 𝐹. 

Exemple : 

Dans chacun des cas suivants, déterminons une primitive de 𝑓. 

a) 𝑓(𝑥) = 1 + 𝑥, alors 𝐹(𝑥) = 𝑥 +
1

2
𝑥2 + 𝑐 

b) 𝑓(𝑥) = 3𝑥 + 1, alors 𝐹(𝑥) =
3

2
𝑥2 + 𝑥 + 𝑐 

c) 𝑓(𝑥) = 1 + 𝑠𝑖𝑛𝑥 , alors 𝐹(𝑥) = 𝑥 − 𝑐𝑜𝑠𝑥 + 𝑐 

d) 𝑓(𝑥) = 2𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥, alors 𝐹(𝑥) = 2𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥 + 𝑐 
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 𝒃 − Primitive de 𝒖′(𝒗′ ∘ 𝒖)  

Si 𝑢 est une fonction dérivable sur un intervalle K et 𝑣 une fonction dérivable  sur un 

intervalle  

contenant  𝑢(𝐾). La fonction 𝒗 ∘ 𝒖 est une primitive sur K de la fonction  𝒖′(𝒗′ ∘ 𝒖). 

Exemple : 

Déterminons une primitive de des fonctions suivantes : 

a) 𝑔(𝑥) = 3𝑠𝑖𝑛(3𝑥 − 2), alors 𝐺(𝑥) = −𝑐𝑜𝑠(3𝑥 − 2) + 𝑐 , 

b) ℎ(𝑥) = 𝑥𝑐𝑜𝑠 (3𝑥2 −
𝜋

4
), alors 𝐻(𝑥) =

1

6
𝑠𝑖𝑛 (3𝑥2 −

𝜋

4
) + 𝑐 , 

 

𝒃 − Primitives et opérations sur les fonctions 

Fonction 𝑓 Une primitive de 𝑓 commentaire 

𝑢′𝑢𝑛;  (𝑛 ∈ ℕ) 𝑢𝑛+1

𝑛 + 1
 

Sur tout intervalle où 𝑢 est dérivable  

𝑢′

𝑢𝑛
;  (𝑛 ∈ ℕ − {1} −

1

(𝑛 − 1)𝑢𝑛−1
 

Sur tout intervalle où 𝑢 est dérivable et 

ne s’annule 

𝑢′

√𝑢
 

 

2√𝑢 

Sur tout intervalle où 𝑢 est dérivable et 

strictement positive 

 

𝑢′𝑢𝑟;  (𝑟 ∈ ℚ − {1}) 

 

𝑢𝑟+1

𝑟 + 1
 

Sur tout intervalle où 𝑢 est dérivable et 

positive (strictement positive si 𝑟 < 0)  

𝑢′𝑐𝑜𝑠𝑢 𝑠𝑖𝑛𝑢 Sur tout intervalle où 𝑢 dérivable 

𝑢′𝑠𝑖𝑛𝑢 −𝑐𝑜𝑠𝑢 Pour tout intervalle où 𝑢 est dérivable 

 

Exemple : 

1) Dans chacun des cas suivants, déterminons une primitive de 𝑓. 

a) 𝑓(𝑥) = 𝑐𝑜𝑛𝑥𝑠𝑖𝑛3𝑥, alors 𝐹(𝑥) =
𝑠𝑖𝑛4𝑥

4
+ 𝑐 , 

b) 𝑔(𝑥) =
𝑥+1

(𝑥2+2𝑥)4
 

La fonction 𝑔 a pour primitive sur chacun des intervalles ]−∞ ;  −2[, ]−2 ; 0 [  et 

sur ]0 ;  +∞[, la fonction 𝑔(𝑥) = −
1

6(𝑥2+2𝑥)3
+ 𝑐  

En effet, g est sous la forme : 
1

2  

𝑈′

𝑈4
 ; avec 𝑢 ∶→  𝑥2 + 2𝑥 

2) Dans chacun des cas suivants, déterminer une primitive de la fonction 𝑓 sur 𝐼 

a) 𝑓(𝑥) =
1

𝑥2
+

1

𝑥3
 , 𝐼 = ]−∞ ; 0 [ 

b) 𝑓(𝑥) = 5𝑥(5𝑥2 − 7)4 ; 𝐼 = ℝ 

c) 𝑓(𝑥) =
2𝑥−3

(2𝑥2−6𝑥+11)3 
; 𝐼 = ℝ  

𝟐. 𝟑 − Primitives et continuité 

Application : 

Soit F et G deux fonctions définies par :  

II. Fonction  logarithme népérien 
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𝐈𝐈𝟏 −Définition et propriété 

1 .1- Définition :  

On appelle fonction logarithme népérien, notée ln, c’est la primitive  de la fonction  𝑥 →
1

𝑥
  

sur ]0 ; +∞[ qui s’annule en 1.  

Le logarithme népérien de 𝑥 est noté : 𝑙𝑛𝑥 

∀𝑥 ∈ ]0; +∞[ , (𝑙𝑛𝑥)′ =
1

𝑥
  et 𝑙𝑛1 = 0. 

𝑙𝑛𝑥 est définie sur ]0 ; +∞[ 

1.2 – Propriétés fondamentales 

∀ 𝑎 , 𝑏 ∈ ℝ+
∗  , on a :  

- ln(𝑎𝑏) = 𝑙𝑛𝑎 + 𝑙𝑛𝑏  

∀ 𝑎 , 𝑏 ∈ ℝ+  
∗ 𝑒𝑡 ∀ 𝑟 ∈ ℚ,  on a:  

- 𝑙𝑛
1

𝑎
= −𝑙𝑛𝑎  

- 𝑙𝑛
𝑎

𝑏
= 𝑙𝑛𝑎 − 𝑙𝑛𝑏 

- 𝑙𝑛𝑎𝑟 = 𝑟𝑙𝑛𝑎  

- 𝑙𝑛√𝑎 =
1

2
𝑙𝑛𝑎  

1.3- Domaine de définition  de fonctions  composes ln 

Exemple : 

𝑓 = ℝ → ℝ  

Déterminer l’ensemble de définition de 𝑓 dans chacun cas suivant : 

a) 𝑓(𝑥) = ln (−2𝑥 − 1)  

b) 𝑓(𝑥) = ln (3𝑥2 + 5𝑥 − 2)  

c) 𝑓(𝑥) = ln (
−𝑥+1

7𝑥−3
)  

d) 𝑓(𝑥) = 𝑙𝑛 |
−𝑥+1

7𝑥−3
|  

Résolution 

a) 𝑓(𝑥) = ln (−2𝑥 − 1)  

Soit 𝑥 ∈ ℝ 

𝑥 ∈ 𝐷𝑓 ⟺ −2𝑥 + 1 > 0 ,   

  ⟺ 𝑥 <
1

2
 

Donc :  𝐷𝑓 = ]−∞ ;
1

2
[,  

b) 𝑓(𝑥) = ln(3𝑥2 + 5𝑥 − 2) 

𝑥 ∈ 𝐷𝑓 ⟺ 3𝑥2 + 5𝑥 − 2 > 0   

 ⟺ 3(𝑥 + 2) (𝑥 −
1

3
) > 0  

 

 

 

 

Donc : 𝐷𝑓 = ]−∞ ; −2[ ∪ ]
1

3
 ;  +∞[  
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c) 𝑓(𝑥) = ln (
−𝑥+1

7𝑥−3
) 

𝑥 ∈ 𝐷𝑓 ⟺
−𝑥+1

7𝑥−3
> 0  

 

 

 

 

Donc :  𝐷𝑓 = ]
3

7
 ;  1[ 

d) 𝑓(𝑥) = 𝑙𝑛 |
−𝑥+1

7𝑥−3
| 

𝑥 ∈ 𝐷𝑓 ⟺
−𝑥+1

7𝑥−3
≠ 0 ⟺ −𝑥 + 1 ≠ 0 𝑒𝑡 7𝑥 − 3 ≠ 0   

Donc : 𝐷𝑓 = ]−∞ ; 
3

7
[ ∪ ]

3

7
 ;  1[ ∪ ]1 ;  +∞[ 

Remarque : 

La fonction 𝑙𝑛𝑥 est définie et dérivable sur ]0 ;  +∞[ et sa derivee est :(𝑙𝑛𝑥)′ =
1

𝑥
 

1 .4- Propriété 

∀ 𝑎 , 𝑏 ∈ ℝ+
∗ , on a  

- 𝑙𝑛𝑎 = 𝑙𝑛𝑏 ⟺ 𝑎 = 𝑏  

- 𝑙𝑛𝑎 < 𝑙𝑛𝑏 ⟺ 𝑎 < 𝑏  

Cas particulier : on a  

- 𝑙𝑛𝑥 = 0 ⟺ 𝑥 = 1 

- 𝑙𝑛𝑥 < 0 ⟺ 0 < 𝑥 < 1  

- 𝑙𝑛𝑥 > 0 ⟺ 𝑥 > 1  

1.4.1- Limite de référence 

Nous devons mémoriser les limites fondamentales suivantes : 

1) lim𝑥→1
𝑙𝑛𝑥

𝑥−1
= 1  

2) lim𝑥→+∞
ln(1+𝑥)

𝑥
= 1 

3) lim
𝑥→+∞

𝑙𝑛𝑥 = +∞ 

4) lim
𝑥→0+

𝑥𝑙𝑛𝑥 = 0 

5) limx = −∞ 
𝑛→0+

 

6) lim
𝑛→+∞

𝑙𝑛𝑥

𝑥
= 0 

1.4.2- Preuve : 

Nous allons démontrer ces limites selon l’ordre suivante :  ; ; ; ;et 

(1):  lim𝑥→1
𝑙𝑛𝑥

𝑥−1
= 1    

En effet, 
𝑙𝑛𝑥

𝑛−1
=

𝑙𝑛𝑥−𝑙𝑛1

𝑥−1
= (lnx)′ =

1

𝑥
 

Donc :  lim𝑥→1
𝑙𝑛𝑥

𝑥−1
=  lim𝑛→1

1

𝑥
= 1 , 

D’où : lim𝑛→1
𝑙𝑛𝑢

𝑥−1
= 1  

(2) : lim𝑥→+∞
ln(1+𝑥)

𝑥
= 1             
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En effet, 
ln(1+𝑥)

𝑥
=

ln(1+𝑥)−ln(1+0)

𝑥−0
 

 = (ln(1 + 𝑥))′ =
1

1+𝑥
  

 lim
𝑥→+0

ln(1+𝑥)

𝑥
= lim

𝑥→+∞

1

1+𝑥
= 1 ,  

D’où :  lim𝑥→+∞
ln(1+𝑥)

𝑥
= 1             

 

 

(3): lim
𝑥→+∞

𝑙𝑛𝑥 = +∞ 

En effet, la fonction ln est une fonction croissante sur]0 ; +∞[ .  

D’après la propriété de la limite d’une fonction  monotone  sur un intervalle ouverte K, si 

𝑙𝑛𝑥 est majorée, alors  lim
𝑥→+∞

𝑙𝑛𝑥 = 𝑙 

Cependant, si on pose  𝑢 = 2𝑥, on aura : 

lim
𝑥→+∞

𝑙𝑛𝑢 = 𝑙 (1) 

Or lim
𝑥→+∞

𝑙𝑛𝑢 = lim
𝑥→+∞

𝑙𝑛2𝑥 = lim
𝑥→+∞

(𝑙𝑛2 + 𝑙𝑛𝑥) = 𝑙𝑛2 + 𝑙 (2)  

(1) = (2) ⟺ 𝑙 = 𝑙𝑛2 + 𝑙 ⟹ 𝑙𝑛2 = 0, contradiction car ln2 > 0, donc on en déduit que la 

fonction 𝑙𝑛𝑥 est croissante et non majorée sur  ]0 ;  +∞[ , par conséquent ; lim
𝑥→+∞

𝑙𝑛𝑥 = +∞  

(5): limx = −∞ 
𝑛→0+

  

 On a : 𝑙𝑛𝑥 = −(𝑙𝑛
1

𝑥
) , en posant 𝑢 =

1

𝑥
;  (𝑞𝑑 𝑥→0,

𝑢→+∞ 
) 

On obtient : limlnx =
𝑥→0+

limlnx =  
𝑢→+∞

− (𝑙𝑛𝑢) = −(+∞  ) = −∞   

D’où :  lim
𝑥→0+

𝑙𝑛𝑥 = −∞ 

(6): lim
𝑛→+∞

𝑙𝑛𝑥

𝑥
= 0  

Nous remarquons que : lim
𝑛→−∞

𝑙𝑛𝑥

𝑥
=

+∞

+∞
 ? ?, donc nous allons lever l’indétermination en 

encadrant  
𝑙𝑛𝑥

𝑥
 sur ]0 ;  +∞[; 

On a : 0 < 𝑙𝑛𝑥 < 𝑥 

⟹ 0 < 𝑙𝑛√𝑥 < √𝑥 

⟹ 0 <
1

2
 𝑙𝑛𝑥 < √𝑥 

⟹ 𝑂 <
1

2
[
2

𝑥
𝑙𝑛𝑥] <

2√𝑥

𝑥
 

⟹ 0 <
𝑙𝑛𝑥

𝑥
<

2

√𝑥
 ,  en passant à la limite, on a :  

lim
𝑛→+∞

0 = lim
𝑛→+∞

2

√𝑥
= 0 ,   

D’où lim
𝑛→+∞

𝑙𝑛𝑥

𝑥
= 0 

(4) : lim
𝑥→0+

𝑥𝑙𝑛𝑥 = 0 
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En effet, lim
𝑥→0

𝑥𝑙𝑛𝑢 = (0 × ∞) ? ?, alors on a :  

𝑥𝑙𝑛𝑥 =
−𝑙𝑛𝑢
1

𝑥

=
−𝑙𝑛

1

𝑥
1

𝑥

 et en posant 𝑢 =
1

𝑥
;  (𝑞𝑑 𝑥→0

+

𝑥→∞
) 

𝑥𝑙𝑛𝑥 =
−𝑙𝑛𝑢

𝑢
⟹ limx

𝑥→0
𝑙𝑛𝑥 = lim

𝑢→+∞

−𝑙𝑖𝑛𝑢

𝑢
= 0.  

D’où lim
𝑥→0+

𝑥𝑙𝑛𝑥 = 0 

 

 

1.1- Le nombre « e » : 

- La fonction ln est continue et strictement croissante sur ]0 ; +∞[, de plus 

lim 𝑙𝑛𝑥
𝑥→0+

= −∞ et lim ln x
𝑥→+∞

= +∞ . Donc la fonction ln est une bijection de 

]0 ; +∞[, 𝑣𝑒𝑟𝑠 ℝ  

- On note 𝑒 l’unique nombre réel tel que 𝑙𝑛𝑒 = 1. e est appelé base du 

logarithme népérien et 𝑒 = 2,718 281… 

- Pour tout nombre réel  , on a :𝑙𝑛𝑒𝑟 = 𝑟𝑙𝑛𝑒 = 𝑟 ; 

1.2- Courbe de représentation de la fonction  ln  

Soit 𝑓(𝑥) = 𝑙𝑛𝑥 définie sur ]0 ; +∞[, 

D’après le paragraphe ci-dessous, on a : lim ln x
𝑥→0

= −∞  𝑒𝑡 lim ln x
𝑥→+∞

= +∞  

La fonction dérivée de f est  𝑓′(𝑥) = (𝑙𝑛𝑥)′ =
1

𝑥
 

𝑓′(𝑥) =
1

𝑥
, donc 𝑓′(𝑥) > 0 𝑠𝑢𝑟 ]0 ;  +∞[, 

Tableau de variation 

 
Au point A et B d’abscisse 1et e, on obtient les tangentes suivantes : 

(𝑇1) ∶ 𝑦 = 𝑥 − 1  et  (𝑇𝑒): 𝑦 =
1

𝑒
𝑥 

(𝑇𝑒) passe  donc par l’origine du repère   

Construction de ∁𝑙𝑛 .  

𝑓(𝑥) = 0 ⟺ 𝑙𝑛𝑥 = 𝑙𝑛1 ⟺ 𝑥 = 1 

Donc (∁𝑙𝑛 ) coupe (O I) 𝑒𝑛 𝑥 = 1 
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1.7- Equations et inéquations 

1.7.1- Résolution d’équation du type :𝐥𝐧(𝒖(𝒙)) = 𝐥𝐧(𝒗(𝒙)) 

Application :  

Résoudre dans ,ℝ les équations suivantes  

a) ln(−2𝑥 + 1) = ln (𝑥 + 4) 

b) ln(2𝑥 − 3) + 2 ln(𝑥 + 1) = ln(6𝑥 − 3) 

c) ln(𝑥 + 2) = 1 + ln(𝑥 − 3) 

d)  (𝑙𝑛𝑥)2 − 6𝑙𝑛𝑥 + 5 = 0 

e) (𝑙𝑛𝑢)3 − 7𝑙𝑛𝑢 − 6 = 0 

f)  𝑙𝑛 (
𝑥+1

𝑥−1
) = 1 

Résolution: 

Résolvons  dans ℝ les équations suivantes: 

a) ln(−2𝑥 + 1) = ln(𝑥 + 4)  

Contraintes sur l’inconnue : 

On a : {
−2𝑥 + 1 > 0

𝑒𝑡
𝑥 + 4 > 0

⟹ {
𝑥 <

1

2

𝑒𝑡
𝑥 > −4

⟺ 𝑥 ∈ ]−4 ; 
1

2
[, 

Donc ∀𝑥 ∈ ]−4 ; 
1

2
[, on a : ln(−2𝑥 + 1) = ln(𝑥 + 4) 

⟺−2𝑥 + 1 = 𝑥 + 4  

⟺−3𝑥 = 3  

⟺ 𝑥 = −1 ∈ ]−4 ; 
1

2
[,  

Donc 𝑆 = {1} 

b) ln(2𝑥 − 3) + 2 ln(𝑥 + 1) = ln(6𝑥 − 3) 

Contraintes sur l’inconnue :  

On a : 2𝑥 − 3 > 0 ; 𝑥 + 1 > 0 ; 𝑒𝑡 6𝑥 − 3 > 0 

⟺ 𝑥 >
3

2
 ; 𝑥 > −1  et 𝑥 >

1

2
⟺ 𝑥 ∈ ]

3

2
 ;  +∞ [, 

∀𝑥 ∈ ]
3

2
 ;  +∞ [, on a: ln(2𝑥 − 3) + 2 ln(𝑥 + 1) = ln(6𝑥 − 3) 

⟺ ln(2𝑥 − 3) + ln (𝑥 − 1)2 = ln(6𝑥 − 3))  

⟺ ln [(2𝑥 − 3)(𝑥 + 1)2] = ln(6𝑥 − 3))  

⟺  (2𝑥 − 3)(𝑥 + 1)2 = 6𝑥 − 3  

⟺ (2𝑥 − 3)(𝑥2 + 2𝑥 + 1) = 6𝑥 − 3  

⟺ 2𝑥3 + 𝑥2 − 4𝑥 − 3 − 6𝑥 + 3 = 0  
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⟺ 2𝑥3 + 𝑥2 − 10𝑥 = 0  

⟺ 𝑥(2𝑥2 + 𝑥 − 10) = 0  ⟺ 𝑥1 = 0 ou 2𝑥2 + 𝑥 − 10 = 0 

2𝑥2 + 𝑥 − 10 = 0 : 

∆= 𝑏2 − 4𝑎𝑐 

∆= 81 > 0  

𝑥2=
−1−9

4
= −

5

2
  𝑒𝑡 𝑥3 =

−1+9

4
= 2   

On a :  𝑥1 = 0 ;  𝑥2= −
5

2
   𝑒𝑡 𝑥3 = 2 mais seule 𝑥3 =  2 ∈ ]

3

2
 ;  +∞ [ 

Donc  𝑆 = {2} 

c) ln(𝑥 + 2) = 1 + ln(𝑥 − 3) 

ln(𝑥 + 2) = 1 + ln(𝑥 − 3) 𝑒𝑥𝑖𝑠𝑡𝑒 ⇔ 𝑥 + 2 > 0 𝑒𝑡 𝑥 − 3 > 0 

⇔ 𝑥 > −2 𝑒𝑡 𝑥 > 3  

⇔ 𝑥 ∈ ]3 ;  +∞ [   

Donc: ∀𝑥 ∈ ]3 ;  +∞ [, on a : ln(𝑥 + 2) = 1 + ln(𝑥 − 3) 

⇔ ln(𝑥 + 2) − ln(𝑥 − 3) = 1 

⇔ 𝑙𝑛 (
𝑥 + 2

𝑥 − 3
) = 𝑙𝑛𝑒 

⇔
𝑥+2

𝑥−3
= 𝑒  

⇔ 𝑥 + 2 = 𝑥𝑒 − 3𝑒  

⇔ 𝑥(1 − 𝑒) = −(2 + 3𝑒)  

⇔ 𝑥(𝑒 − 1) = 2 + 3𝑒)  

⇔ 𝑥 =
2+3𝑒

𝑒−1
∈ ]3 ;  +∞ [  

Donc 𝑆 = {
2+3𝑒

𝑒−1
}  

d) (𝑙𝑛𝑥)2 − 6𝑙𝑛𝑥 + 5 = 0 

Contraintes sur l’inconnue : 𝑥 ∈ ]0 ;  +∞ [ 

∀𝑥 ∈ ]0 ;  +∞ [,  on a : (𝑙𝑛𝑥)2 − 6𝑙𝑛𝑥 + 5 = 0  

Posons : 𝑋 = 𝑙𝑛𝑥 ⇔ 𝑋2 − 6𝑋 + 5 

∆′= 9 − 1 × 5 = 4 > 0 

𝑋1 = 3 − 2 = 1 𝑒𝑡 𝑋2 = 3 + 2 = 5  

Or 𝑋 = 𝑙𝑛𝑥 ⇔ {
𝑙𝑛𝑥 = 1
𝑒𝑡

𝑙𝑛𝑥 = 5
⇔ {

𝑥 = 𝑒
𝑜𝑢

𝑥 = 𝑒5
       

Donc : 𝑆 = {𝑒 ;  𝑒5} 

e) (𝑙𝑛𝑥)3 − 7𝑙𝑛𝑥 − 6 = 0 

(𝑙𝑛𝑥)3 − 7𝑙𝑛𝑥 − 6  ∃⇔ 𝑥 > 0 ⇔ 𝑥 ∈ ]0 ;  +∞ [, 

∀𝑥 ∈ ]0 ;  +∞ [, on pose : 𝑋 = 𝑙𝑛𝑥 ⇔ 𝑋3 − 7𝑋 − 6 = 𝑂 

Cette équation a pur racines : −1 ; −2 𝑒𝑡 3   

⟹ 𝑋3 − 7𝑋 − 6 = (𝑋 + 1)(𝑋 + 2)(𝑋 − 3) 

⟹ (𝑙𝑛𝑥 + 1)(𝑙𝑛𝑥 + 2)(𝑙𝑛𝑥 − 3) = 0 

⟹ 𝑙𝑛𝑥 = −1  𝑜𝑢 𝑙𝑛𝑥 = −2 𝑜𝑢 ln 𝑥 = 3  

⟹ 𝑥 =
1

𝑒
 𝑜𝑢  𝑥 =

1

𝑒2
 𝑜𝑢 𝑥 = 𝑒3  
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Donc :  𝑆 = {
1

𝑒2
;
1

𝑒
; 𝑒3} 

f) 𝑙𝑛 (
𝑥+1

𝑥−1
) = 1 

𝑙𝑛 (
𝑥+1

𝑥−1
) = 1 ∃ ⟺ 

𝑥+1

𝑥−1
> 0;  

On a : ∀𝑥 ∈ ]− ∞ ; −1[ ∪ ]1 ;  +∞ [ 

∀𝑥 ∈ ]− ∞ ;−1[ ∪ ]1 ; +∞ [, on a:  

𝑙𝑛 (
𝑥+1

𝑥−1
) = 1 ⟺  𝑙𝑛 (

𝑥+1

𝑥−1
) = 𝑙𝑛𝑒  

⟺
𝑥+1

𝑥−1
= 𝑒  

⟺ 𝑥 + 1 − 𝑥𝑒 = −𝑒  

⟺ 𝑥(1 − 𝑒) = −𝑒 − 1  

⟺ 𝑥(𝑒 − 1) = 𝑒 + 1  

⟺ 𝑥 =
𝑒+1

𝑒−1
∈ ]− ∞ ;−1[ ∪ ]1 ;  +∞ [  

D’où  𝑆 = {
𝑒+1

𝑒−1
}  

 

1.7 .2- Inéquation du type : 𝐥𝐧(𝒖(𝒙)) < 𝐥𝐧 (𝒗(𝒏) 

Application : 

Résoudre dans ℝ les inéquations suivantes :  

a) ln(𝑥 + 2) + ln(𝑥 + 4) < ln(𝑥 + 8) 

b) (𝑙𝑛𝑥)2 + 2𝑙𝑛 − 15 ≤ 0 

Résolution:  

Résolvons dans ℝ les inéquations suivantes : 

a) ln(𝑥 + 2) + ln(𝑥 + 4) < ln(𝑥 + 8) 

Contraintes sur l’inconnue :  

ln(𝑥 + 2) + ln(𝑥 + 4) < ln(𝑥 + 8) ∃ ⟺ 𝑥 + 2 > 0, 𝑥 + 4 > 0 𝑒𝑡 𝑥 + 8 > 0 

⟺ 𝑥 > −2 ; 𝑥 > −4 , 𝑒𝑡 𝑥 > −8 

⟺ 𝑥 ∈ ]−2 ;  +∞ [ 

⟹ 𝑆1 = ]−2 ; +∞ [ 

Donc : ∀𝑥 ∈ ]−2 ; +∞ [ , on a : ln(𝑥 + 2) + ln(𝑥 + 4) < ln(𝑛 + 8) 

⟺ 𝑙𝑛[(𝑥 + 2)(𝑥 + 4)] < ln(𝑥 + 8) 

⟺ (𝑥 + 2)(𝑥 + 4) < 𝑥 + 8  

⟺ 𝑥2 + 6𝑥 + 8 − 𝑥 − 8 < 0  

⟺ 𝑥2 + 5𝑥 < 0   

⟺ 𝑥(𝑥 + 5) < 0  

⟺ 𝑥 < 0 𝑜𝑢 𝑥 < −5   

⟺−5 < 𝑥 < 0  

⟹ 𝑆2 = ]−5 ;  0 [  

⟹ 𝑆 = 𝑆1 ∩ 𝑆2 =] − 2; 0 [ 

b) (𝑙𝑛𝑥)2 + 2𝑙𝑛 − 15 ≤ 0 

Contraintes sur l’inconnue : 𝑥 ∈ ]0 ; +∞ [ 
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∀𝑥 ∈ ]0 ;  +∞ [,  on a : (𝑙𝑛𝑥)2 + 2𝑙𝑛𝑥 − 15 ≤ 0  

On pose : 𝑋 = 𝑙𝑛𝑥 ⟺ 𝑋2 + 2𝑋 − 15 ≤ 0. 

Le polynôme :  𝑋2 + 2𝑋 − 15 a pour racines −5 et 3, donc on a :  

𝑋2 + 2𝑋 − 15 = (𝑋 + 5)(𝑋 − 3) ≤ 0 

⟺ (𝑙𝑛𝑥 + 5)(𝑙𝑛𝑥 − 3) ≤ 0 

⟺ 𝑙𝑛𝑥 ≤ −5 𝑜𝑢 𝑙𝑛𝑥 ≤ 3 

⟺ 𝑥 ≤ 𝑒−5 𝑜𝑢 𝑥 ≤ 𝑒3 

⟺ 𝑒−5 ≤  𝑥 ≤ 𝑒3 

Donc : 𝑆 = [𝑒−5; 𝑒3] 

𝟏.8- Autres limites 

1)  lim
𝑥→0+

𝑥(𝑙𝑛𝑥)2 = 0 

2) lim x
𝑥→+∞

ln (
𝑥+1

𝑥
) = 1 

3) lim
𝑥→+2

𝑥

𝑥−2
ln(𝑥 − 1) = 2 

4) lim x
𝑥→+∞

ln
𝑙𝑛𝑥

𝑥−1
= 0 

5) lim x
𝑥→+∞

ln (1 +
2

𝑥
) = 2 

6) lim
𝑥→0

√𝑥 𝑙𝑛𝑥 = 0 

Preuve : 

1) lim
𝑥→0+

𝑥(𝑙𝑛𝑥)2 = 0 

𝑥 ∈ ℝ+ ;𝑥(𝑙𝑛𝑥)2 = (√𝑥 𝑙𝑛𝑥)2 

                   = (2√𝑥 𝑙𝑛√𝑥)2 

     = 4(√𝑥 𝑙𝑛√𝑥)2 , 

En posant : 𝑢 = √𝑢 , on a : 

lim
𝑥→0+

 𝑥(𝑙𝑛𝑥)2 = lim
𝑢→0+  

4(𝑢 ln 𝑢)2 = 4 × 0 = 0. 

D’où lim
𝑥→0+

𝑥(𝑙𝑛𝑥)2 = 0 

2) lim x
𝑥→+∞

ln (
𝑥+1

𝑥
) = 1 

Soit ∈ ]0 ;  +∞ [ ,  

On a:   lim x
𝑥→+∞

ln (
𝑥+1

𝑥
) =

ln(1+
1

𝑥
)

1

𝑥

 ,  

On pose : 𝑣 =
1

𝑥
;  (𝑞𝑑 𝑥→+∞

𝑣→0+
) 

On a: lim x
𝑛→+∞

ln (
𝑥+1

𝑥
) = lim

𝑣→0+

ln(1+𝑣)

𝑣
= 1. 

D’ou: lim x
𝑥→+∞

ln (
𝑥+1

𝑥
) = 1 

3) lim
𝑥→+2

𝑥

𝑥−2
ln(𝑥 − 1) = 2 

En effet,  
𝑥

𝑥−2
ln(𝑥 − 1) =

𝑥

𝑥−1+1
ln(𝑥 − 1). 

On pose :𝑢 = 𝑥 − 1; (𝑞𝑑 𝑥→2
𝑢→1

) 

Alors lim
𝑥→2

𝑥

𝑥−2
ln(𝑥 − 1) = lim

𝑢→1

𝑢+1

𝑢−1
ln 𝑢 
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= lim
𝑢→1

(𝑢 + 1) ×
lnu

𝑢−1
  

= 2 × 1 = 2  

D’où : lim
𝑥→+2

𝑥

𝑥−2
ln(𝑥 − 1) = 2 

 

4) lim x
𝑥→+∞

ln
𝑙𝑛𝑥

𝑥−1
= lim x

𝑥→+∞

𝑙𝑛𝑢

𝑥
×
𝑢

1
= 0 × 1 = 0 

D’où :  lim x
𝑥→+∞

ln
𝑙𝑛𝑥

𝑥−1
= 0  

5) lim x
𝑥→+∞

ln (1 +
2

𝑥
) = (∞ × 0) ? ? 

∀𝑥 ∈ ℝ+
∗ , 𝑥𝑙𝑛 (1 +

2

𝑥
) = 2 ×

ln(1+
2

𝑥
)

2

𝑥

 ,  

On pose : 𝑢 =
2

𝑥
 ; quand 𝑥 → +∞ , 𝑎𝑙𝑜𝑟𝑠: 𝑢 → 0 

Donc : lim x
𝑥→+∞

ln (1 +
2

𝑥
) = 2 × lim

𝑢→0

ln(1+𝑢)

𝑢
= 2 × 1 = 2 

D’où :  lim x
𝑥→+∞

ln (1 +
2

𝑥
) = 2 

6) lim
𝑥→0

√𝑥 𝑙𝑛𝑥 = 0 × (−∞) ? ? 

En effet ,∀𝑥 ∈ ℝ+
∗ ,  √𝑥 𝑙𝑛𝑥 = 2√𝑥 𝑙𝑛√𝑥 , 

On pose : 𝑋 = √𝑥 

On a: lim
𝑥→0

√𝑥𝑙𝑛𝑥 = lim
𝑋→0

𝑋𝑙𝑛𝑋 = 0 

D’où : lim
𝑥→0

√𝑥 𝑙𝑛𝑥 = 0 

III. Fonction comportant 𝑙𝒏 

𝐈𝐈𝐈𝟏 −Fonction 𝒍𝒏 ∘ 𝒖 

1) La fonction 𝑙𝑛: 𝑥 ⟶ 𝑙𝑛𝑥 est définie, dérivable et strictement croissante sur 

]0 ;  +∞ [.   

∀𝑥 ∈ ]0 ;  +∞ [ , (𝑙𝑛𝑥)′ =
1

2
 . 

2) La fonction 𝑙𝑛 ∘ 𝑢 ∶  𝑥 → 𝑙𝑛 ∘ 𝑢(𝑥) est définie pour tout 𝑥  de ℝ tel que 𝑢(𝑥) > 0. 

- Si 𝑢 est une fonction strictement positive et dérivable sur un intervalle I, alors 

𝑙𝑛 ∘ 𝑢 est dérivable sur 𝐼 𝑒𝑡 (𝑙𝑛 ∘ 𝑢)′ =
𝑢′

𝑢
. 

- Si 𝑢 est une fonction dérivable sur un intervalle 𝐼 sur lequel elle ne s’annule pas, 

alors 𝑙𝑛 ∘ |𝑢| est dérivable sur 𝐼 et (𝑙𝑛 ∘ |𝑢|)′ =
𝑢′

𝑢
. 

- Si 𝑢 est une fonction dérivable et qui ne s’annule pas sur un intervalle 𝐼 et si 
𝑢′

𝑢
 

est continue sur 𝐼, alors la fonction 
𝑢′

𝑢
 admet pour primitive sur I, la fonction 

𝑙𝑛 ∘ |𝑢|. 

𝐈𝐈𝐈𝟐 −Exemple d’étude de fonctions  

Application 1 : 
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On considère la fonction 𝑓 definie par par 𝑓(𝑥) = −
𝑥

2
+ 𝑙𝑛 (

𝑥−1

𝑥
)  𝑒𝑡 (∁𝑓) sa  representation 

graphique  

1) a) Déterminer les limites de 𝑓 aux borne de son ensemble de définition ; 

b) Justifier que (𝐶𝑓) admet une asymptote verticale à préciser ; 

2) Etudier les variations de 𝑓 ; 

3) a) Montrer que la droite (𝐷) d’équation𝑦 = −
1

2
𝑥 est asymptote, oblique  a la courbe 

(𝐶𝑓) ; 

b) Etudier la position de (𝐶𝑓) par rapport a (𝐷) ; 

4) Tracer(𝐶𝑓) et ses asymptotes dans un même repère ; 

5) Démontrer que 𝐹  est la primitive de la fonction 𝑓 definie sur ]1 ; +∞[ par :                               

𝐹(𝑥) = −
𝑥2

4
+ (𝑥 − 1) ln(𝑥 − 1) − 𝑥𝑙𝑛 + 1 prenant la valeur−𝑙𝑛2 𝑒𝑛 2. 

Résolution 

𝑓(𝑥) = −
𝑥

2
+ 𝑙𝑛 (

𝑥 − 1

𝑥
) 

1) Domaine de définition 

𝑓(𝑥)∃⇔
𝑥 − 1

𝑥
> 0 

 

 

 

 

 

 

 

   a) Limites de 𝑓aux bornes de son 𝐷𝑓 

lim 𝑓
𝑥→−∞

(x) = (−
𝑥

2
+ ln (

𝑥 − 1

𝑥
)) 

= +∞+ lim
𝑥→−∞

ln (1 −
1

𝑥
) 

= +∞+ ln(1 − 0) = +∞ 

𝐥𝐢𝐦𝒇
𝒙→−∞

(𝐱) =+∞ 

lim
𝑥→0−

𝑓(𝑥) = lim
𝑥→0−

(−
𝑥

2
+ ln (

𝑥 − 1

𝑥
)) 

= 0 + lim
𝑥→0−

ln (1 −
1

𝑥
) 

= ln(1 + ∞) 

= +∞ 

𝐥𝐢𝐦
𝒙→𝟎−

𝒇(𝒙) = +∞  

Donc  la droite d’équation 𝑥 = 0 est asymptote verticale à (𝐶𝑓) 

lim 𝑓
𝑥→1+

(x) = lim
𝑥→1+

(−
𝑥

2
+ ln (

𝑥 − 1

𝑥
)) 
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 = −
1

2
+ ln(0+)  

= −
1

2
−∞ = −∞  

Donc :  𝐥𝐢𝐦𝒇
𝒙→𝟏+

(𝒙) = −∞ 

 

lim𝑓
𝑥→+∞

(x) = lim
𝑥→+∞

(−
𝑥

2
+ ln (

𝑥 − 1

𝑥
)) 

= −∞+ 0 = −∞  

Donc : 𝐥𝐢𝐦𝒇
𝒙→+∞

(𝐱) =−∞  

b) Justifions que (𝐶𝑓) admet une asymptote verticale àpréciser. 

𝑙𝑖𝑚
𝑥→1+

𝑓(𝑥) = −∞, donc la droite d’équation 𝑥 = 1 est une asymptote  verticale à  (𝐶𝑓) 

2) Etudions les variations de 𝑓 

𝑓(𝑥) = −
𝑥

2
+ ln (

𝑥 − 1

𝑥
) 

∀𝑥 ∈  𝐷𝑓 , 𝑓′(𝑥) = −
1

2
+

(
𝑥−1

𝑥
)′

𝑥−1

𝑥

  

= −
1

2
+

𝑥−(𝑥−1)

𝑥2
′

𝑥−1

𝑥

= −
1

2
+

1

𝑥2
×

𝑥

𝑥−1
  

= −
1

2
+

1

𝑥(𝑥−1)
  

           = −
1

2
+

1

𝑥(𝑥−1)
   

                     ⟹ 𝑓′(𝑥) =
−𝑥(𝑥−1)+2

2𝑥(𝑥−1)
  

𝑓′(𝑥) = 0 ⟺
−𝑥(𝑥 − 1) + 2

2𝑥(𝑥 − 1)
= 0 

⟺ −𝑥2 + 𝑥 + 2 = 0 

Δ = 1 − 4(−1) × 2 

Δ = 9 > 0  

𝑥1 =
−1 − 3

−2
= 2 𝑒𝑡 𝑥2 =

−1 + 3

−2
=  −1 

Tableau de signe de 𝑓′ 

 

 

 

 

 

 

 

 

 

∀𝑥 ∈ ] − ∞ ; −1[∪] 2 ;  + ∞ [; 𝑓′(𝑥) < 0, donc 𝑓 est strictement décroissante sur cet 

intervalle. 
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∀𝑥 ∈ ] − 1 ;  0 [∪] 0 ; 1[ ∪] 1 ; 2 [ ;  𝑓′(𝑥) > 0; donc 𝑓 est strictement croissante sur cet 

intervalle. 

 

 

 

 

 

 

Tableau de variation 

Tableau de signe de 𝑓′ 

 

 

 

 

 

 

 

 

 

 

 

 

3) a) Montrons que la droite (𝐷):  d’équation 𝑦 = −
1

2
𝑥 est asymptote, oblique  à (𝐶𝑓) 

En effet ;   𝑓(𝑥) − 𝑦 = −
𝑥

2
+ ln (

𝑥−1

𝑥
) +

𝑥

2
 

𝑓(𝑥) − 𝑦 = ln (
𝑥−1

𝑥
)  

Alors: lim
𝑥→±∞

[𝑓(𝑥) − 𝑦] = lim
𝑥→±∞

[ln (
𝑥−1

𝑥
)] 

= lim
𝑥→±∞

ln (1 −
1

𝑥
)  

= ln(1 − 0) = 0  

 

lim
𝑥→±∞

[𝑓(𝑥) − 𝑦] = 0 𝑑𝑜𝑛𝑐 (𝐷):  d’equation  = −
1

2
𝑥 est asymptote oblique à  (𝐶𝑓). 

b) Position de (𝐶𝑓) par rapport à (𝐷) : 𝑓(𝑥) − 𝑦 = ln (1 −
1

𝑥
) 

𝑓(𝑥) − 𝑦 ∃⇔   
𝑥−1

𝑥
> 0   

⟹ ∀𝑥 ∈  ] − ∞ ;  0[∪] 1 ;  + ∞ [  , 𝑓(𝑥) − 𝑦 > 0;  donc (𝐶𝑓) est au dessus de (𝐷). 

∀𝑥 ∈ ]0 ; 1[, 𝑓(𝑥) − 𝑦 < 0 ; donc (𝐶𝑓) est en dessous de (𝐷).   

4)  Traçons (𝐶𝑓) et ses asymptotes dans un mêmerepère 

 

Voir ci-dessous (𝐶𝑓). 
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5) Démontrons que  𝐹(𝑥) = −
𝑥2

4
+ (𝑥 − 1) ln(𝑥 − 1) − 𝑥𝑙𝑛 + 1  est une primitive 

de 𝑓  𝑒𝑡   𝐹(2) = −2𝑙𝑛2  

𝐹(𝑥) = −
𝑥2

4
+ (𝑥 − 1) ln(𝑥 − 1) − 𝑥𝑙𝑛𝑥 + 1  

⟹ 𝐹′(𝑥) = −
2𝑥

4
+ ln(𝑥 − 1) + (𝑥 − 1) ×

1

𝑥−1
− 𝑙𝑛𝑥 − 𝑥 ×

1

𝑥
  

= −
𝑥

2
+ ln(𝑥 − 1) + 1 − 𝑙𝑛𝑥 − 1  

  = −
𝑥

2
+ 𝑙𝑛 (

𝑥−1

𝑥
) = 𝑓(𝑥) 

   𝐹′(𝑥) = 𝑓(𝑥), 𝑑′𝑜𝑢 𝐹 𝑒𝑠𝑡 𝑢𝑛𝑒 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑑𝑒 𝑓 𝑒𝑡  

    𝐹(2) =
−2

2
+ (2 − 1) ln(2 − 1) − 2𝑙𝑛2 + 1 

= −1 + 𝑙𝑛1 − 2𝑙𝑛2 + 1  

Donc : 𝐹(2) =  −2𝑙𝑛2 

 

Application 2 : 

𝐼 −Soite 𝑔 la fonction defrinie sur ] 0 ;  +∞ [ par : 

𝑔(𝑥) =
2𝑥2 + 3 − 6𝑙𝑛𝑥

𝑥3
 

1) Déterminer les limites de 𝑔 en 0 𝑒𝑡 𝑒𝑛 + ∞ 

2) Etudier les variation de 𝑔 et dresser son tableau de variation  et en déduire pour tout                        

𝑥 > 0 , 𝑔(𝑥) > 0 . 
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𝐼𝐼 − Soit 𝑓 la fonction de la variable reelle definie sur ] 0 ;  +∞ [ par  

𝑓(𝑥) =  
2𝑥3+3𝑙𝑛𝑥

𝑥2
 𝑒𝑡 (Γ) sa représentation graphique dans un repère orthonormé   (0; 𝑖 ⃗⃗ ; 𝑗  ⃗⃗⃗⃗ ) 

1)  a)calculer la dérivée de 𝑓 et préciser son sens de variation (on remarque  que 𝑓′(𝑥) =

𝑔(𝑥) 

b) Calculer les limites de 𝑓 en  0 𝑒𝑡 𝑒𝑛 +∞ 

      c) En déduire le tableau de variation de 𝑓 

2)  a) Démontrer que la droite (𝐷) d’équation𝑦 = 2𝑥 est asymptote a la courbe de  𝑓 et 

préciser sa  position par rapport a cette courbe  

b) préciser  les  coordonnées  des points d’abscisses 
1 

2
 ; 1 ; 2 ; 𝑒𝑡 3 

     c)Démontrer que l’équation𝑓(𝑥) = 0 admet une unique racine 𝛼 = [
1

2
 ; 1]. 

3) traçons  (Γ) et les  droite  d’équation𝑥 = 1 𝑒𝑡 𝑥 = 𝑒 

Résolution 

I)  𝑔(𝑥) =
2𝑥3+3−6𝑙𝑛𝑥

𝑥3
 

  𝐷𝑓 =] 0 ;  +∞ [  

1) Déterminons les limites de 𝑔 𝑒𝑛 0 𝑒𝑡 𝑒𝑛 + ∞ 

lim
𝑥→0+

𝑔(𝑥) = lim
𝑥→0+

2𝑥2+3−6𝑙𝑛𝑥

𝑥3
  

= lim
𝑥→0+

(2 +
3

𝑥3
−
6𝑙𝑛𝑥

𝑥3
) = 2 +∞+∞  

Donc : 𝐥𝐢𝐦
𝒙→𝟎+

𝒈(𝒙) = +∞ 

lim
𝑥→+∞

𝑔(𝑥) = lim
𝑥→+∞

(2 +
3

𝑥3
−
6𝑙𝑛𝑥

𝑥3
) = 2 + 0 − 0 = 2  

Donc : 𝐥𝐢𝐦
𝒙→+∞

𝒈(𝒙) = 𝟐 

2) Etudions les variations de 𝑔 est dérivable comme somme des fonctions dérivables et 

𝑔′(𝑥) = 3 (
−3𝑥2

𝑥6
) − 6 [

1

𝑥
×𝑥3−3𝑥2𝑙𝑛𝑥

𝑥6
] 

=
−9

𝑥4
− 6(

1−3𝑙𝑛𝑥 

𝑥4
)  

𝒈′(𝒙) =
𝟏𝟖𝒍𝒏𝒙 − 𝟏𝟓

𝒙𝟒
 

𝑔′(𝑥) = 0 ⇔ 18𝑙𝑛𝑥 − 15 = 0 

⇔ 𝑙𝑛𝑥 =
15

18
  

⇔  𝑙𝑛𝑥 =
5

6
⇔ 𝑥 = 𝑒5/6 = 1,8  

∀𝑥 ∈ ]−∞ ; 𝑒5/6[𝑔′(𝑥) < 0, 𝑎𝑙𝑜𝑟𝑠 𝑔 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑒𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒   

∀𝑥 ∈ ]𝑒5/6;  +∞[ , 𝑔′(𝑥) > 0 , 𝑎𝑙𝑜𝑟𝑠 𝑔 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒 .   

 

 

 

 



41 
 

 

 

 

 

 

 

 

 

D’après le tableau de variation  ,on en déduit : 

∀. 𝑥 ∈  𝐷𝑓, 𝑔(𝑥) ≥ 1,8 > 0 , 𝑎𝑙𝑜𝑟𝑠 𝑔(𝑥) 𝑒𝑠𝑡 𝑑𝑢 𝑠𝑖𝑔𝑛𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑓 𝑎𝑙𝑜𝑟𝑠 𝑔(𝑥) > 0 

II) 𝑓(𝑥) = 2𝑥 + 3
𝑙𝑛𝑥

𝑥2
 

1) a) Calculons la dérivée de f et précisons son sens de variations  

𝑓′(𝑥) = 2 + 3(
1

𝑥
 × 𝑥2−2𝑥𝑙𝑛𝑥

𝑥4
)  

  = 2 + 3 (
1−2𝑙𝑛𝑥

𝑥3
)  

𝑓′(𝑥) =
2𝑥2+3−6𝑙𝑛𝑥

𝑥3
= 𝑔(𝑥)  

 ⟹ 𝑓′(𝑥) = 𝑔(𝑥) 

D’après 𝐼) ,𝑔(𝑥) > 0; ∀ 𝑥 > 0 

𝑓′(𝑥) = 𝑔(𝑥) > 0,alors𝑓′(𝑥) > 0 et donc 𝑓 est strictement croissante sur son ensemble de 

definition. 

b) Calculons les limites de 𝑓 en 0 et en +∞ 

lim𝑥→0+ 𝑓(𝑥) = lim𝑥→0+ (2𝑥 +
3 ln𝑥

𝑥2
) = 0 +∞(−∞) = −∞   

Alors : 𝐥𝐢𝐦𝒙→𝟎+ 𝒇(𝒙) = −∞  

lim𝑥→+∞ 𝑓(𝑥) = lim𝑥→+∞ (2𝑥 +
3 ln𝑥

𝑥2
)  

= +∞+ lim𝑥→+∞
3

𝑥
(
ln𝑥

𝑥
)  

= +∞+ 0  

Alors : 𝐥𝐢𝐦𝒙→+∞ 𝒇(𝒙) = +∞ 

C) Déduisons-en le tableau de variation de 𝑓 

 

 

 

 

 

 

 

 

2)a)Démontrons que la droite (𝐷): 𝑦 = 2𝑥 est asymptote à la courbe de 𝑓. 

𝑦 = 2𝑥 est asymptote si et seulement si lim𝑥→+∞(𝑓(𝑥) − 𝑦) = 0 
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On a:  lim𝑥→∞(𝑓(𝑥) − 𝑦) = lim𝑥→+∞ (2𝑥 +
3 ln𝑥

𝑥2
− 2𝑥) = lim𝑥→+∞

3

𝑥
(
ln 𝑥

𝑥
) = 0 

lim𝑥→+∞(𝑓(𝑥) − 𝑦) = 0, 𝑎𝑙𝑜𝑟𝑠(𝐷): 𝑦 = 2𝑥  est asymptote oblique à (𝑐𝑓). 

Position de (𝑐𝑓) par rapport à (𝐷) 

𝑓(𝑥) − 𝑦 =
3 ln 𝑥

𝑥2
 

𝑓(𝑥) − 𝑦 = 0 ⇔
3 ln 𝑥

𝑥2
= 0 ln 𝑥 = 0 ⟺ 𝑥 = 1 

 

 

 

 

∀𝑥 ∈ ]0; 1[, 𝑓(𝑥) − 𝑦 < 0, 𝑎𝑙𝑜𝑟𝑠 (𝑐𝑓)est en dessous de (𝐷 

∀ 𝑥 ∈]1;+∞[ ,𝑓(𝑥) − 𝑦 > 0; 𝑎𝑙𝑜𝑟𝑠 (𝐶𝑓) 𝑒𝑠𝑡 𝑎𝑢 𝑑𝑒𝑠𝑠𝑜𝑢𝑠 𝑑𝑒 (𝐷). 

c) précisons les ordonnées des d’abscisses 
1

2
; 1: 2 𝑒𝑡 3 

 

 

 

 

 

𝑓 (
1

2
) =

2 ×
1

8
+ 3 ln

1

2
1

4

= 1 − 12 ln 2 = −7,28 

𝑓(1) =
2 + 3 ln 1

1
= 2 

𝑓(2) =
16+3 ln2

4
= 4 +

3

4
ln 2 = 4,5  

𝑓(3) =
2 × 27 + 3 ln 3

9
= 6 +

ln 3

3
= 6,36 

C) Démontrons que l’équation 𝑓(𝑥) = 0 admet une unique racine 𝛼 ∈ [
1

2
; 1] 

𝑓 est continue et strictement croissante sur son  𝐷𝑓,donc elle realise une bijection de ℝ+
∗ . 

De plus 𝑓(
1

2
)𝑓(1) < 0, alors 𝛼 ∈ [

1

2
; 1@] 

3) Tançons (𝐶) 
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Application 3 : 

Le repère (0; 𝑖 ⃗⃗ ; 𝑗  ⃗⃗⃗⃗ ) est orthonormé. 

Soit 𝑓 la fonction définie par f(x)=
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
| ).On désigne par (C) la courbe 

représentative de f. 

1) Etudier les variations de la fonction f. 

2) a) Démontrer que (C) admet un point d’inflexion Ω et que Ω est un centre de symétrie de 

(C). 

  b) Déterminer l’asymptote oblique (D) de (C) et vérifier que Ω appartient à (D). 

  c) Tracer (C). 

Résolution 

𝑓(𝑥) =
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
|), une fonction et (C) sa courbe. 

1) Etudions les variations de f. 

- Domaine de définition  

𝑓(𝑥) ∃ ⇔ 𝑥 + 1 ≠ 0 𝑒𝑡 𝑥 − 3 ≠ 0  

⇔ 𝑥 ≠ −1 𝑒𝑡 𝑥 ≠ 3  

Donc 𝐷𝑓 = ℝ′{−1; 1} = ]−∞;−1[ ∪ ]−1; 3[ ∪ ]3;+∞[  

- Limites aux bornes du Df. 

lim𝑥→−∞ 𝑓(𝑥) = lim𝑥→−∞ (
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
|))  

=
𝟏

𝟐
(−∞+ 𝟑𝒍𝒏(𝟏)) = −∞  

 Donc : 𝐥𝐢𝐦𝒙→−∞ 𝒇(𝒙) = −∞ 

𝐥𝐢𝐦x→+∞ 𝒇(𝒙) = lim𝑥→+∞ (
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
|))  

=
𝟏

𝟐
(+∞+ 𝟑𝒍𝒏(𝟏)) = +∞   

Donc : 𝐥𝐢𝐦𝒙→+∞ 𝒇(𝒙) = +∞ 

𝐥𝐢𝐦𝒙→−𝟏− 𝒇(𝒙) = 𝐥𝐢𝐦𝒙→−𝟏− (
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
|))  

=
𝟏

𝟐
(−1 + 1 + 3ln |

0

−4
|) =

1

2
(3𝑙𝑛|0|) = −∞  
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Alors : 𝐥𝐢𝐦𝒙→−𝟏− 𝒇(𝒙) = −∞ 

De même : lim𝑥→−1+ 𝑓(𝑥) = −∞ 

Donc la droite (𝐷1) d’équation 𝑥 = 1 est une asymptote à (C).  

lim𝑥→3− 𝑓(𝑥) = lim𝑥→3− (
1

2
(𝑥 + 1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
|))  

=
1

2
(3 + 1 + 3𝑙𝑛 |

4

0
| = 2 + (+∞) = +∞ 

lim𝑥→3− 𝑓(𝑥) = +∞,  

De même  𝐥𝐢𝐦𝒙→𝟑+ 𝒇(𝒙) = +∞ 

Donc la droite (𝐷2) d’équation 𝑥 =  3 est asymptote à (C). 

- Sens de variation 

La fonction 𝑓 est dérivable sur son Df et sa dérivée est la fonction 𝑓’(𝑥) tel que : 

𝑓′(𝑥) =
1

2
[1 + 3

(
𝑥+1

𝑥−3
)′

(
𝑥+1

𝑥−3
)
]  

         =
1

2
[1 + 3(

𝑥−3−(𝑥+1)

(𝑥3)2
 ×  

𝑥−3

𝑥+1
)] 

=
1

2
+ 

3

2
(

−4

(𝑥−3)(𝑥+1)
)  

=
1

2
−

6

(𝑥−3)(𝑥+1)
=

𝑥²−2𝑥−3−12

2(𝑥−3)(𝑥+1)
  

Donc: 𝑓′(𝑥) =
𝑥2−2𝑥−15

2(𝑥−3)(𝑥+1)
  

𝑓′(𝑥) = 0 ⇔ 𝑥2 − 2𝑥 − 15 = 0  

∆′= 1 − 1(−15) = 16 > 0  

 𝑥1 = 1 − 4 = −3 𝑒𝑡 𝑥2 = 1 + 4 = 5  

𝑓′(𝑥) =
(𝑥+3)(𝑥−5)

2(𝑥−3)(𝑥+1)
  

∀𝑥 ∈ ]−∞;−3[ ∪ ]−1; 3[ ∪ ]5;+∞[ , 𝑓(𝑥) > 0,> 𝑑𝑜𝑛𝑐 𝑓 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 croissante; 

∀𝑥 ∈ ]−3;−1[ ∪ ]3; 5[ 𝑓(𝑥) < 𝑂 ,   𝑑𝑜𝑛𝑐 𝑓 𝑒𝑠𝑡 𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑚𝑒𝑛𝑡 𝑑𝑒𝑐𝑟𝑜𝑖𝑠𝑠𝑎𝑛𝑡𝑒  

 

Tableau de variation 

 
 

 2a) Démontrons que (C) admet un point d’inflexionΩ et que Ωest un centre de 

symétrie de (C). 

REMARQUE :  
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𝑓 admet un point d’inflexion en 𝑥0 si 𝑓 est deux fois dérivable sur un intervalle 𝐼 et si 

𝑓′′(𝑥𝑂) = 0 et change de signe, alors la courbe (C) traverse sa tangente en un point 

𝑀0(𝑥0,𝑓(𝑥𝑂)) est appelé extremum, un tel point s’appelle le point d’inflexion. 

On a: 𝑓′(𝑥) =
𝑥²−2𝑥−15

2(𝑥−3)(𝑥+1)
 

⇒ 𝑓′(𝑥) =
(2𝑥−2)[2(𝑥−3)(𝑥+1)]−[2(𝑥+1+𝑥−3)](𝑥2−2𝑥−15)

4(𝑥−3)²(x+1)²
  

=
4(𝑥−1)(𝑥2−2𝑥−3)−2(2𝑥−2)(𝑥2−2𝑥−15)

4(𝑥−3)²(𝑥+1)²
  

=
4(𝑥−1)(𝑥2−2𝑥−3)−4(𝑥−1)(𝑥2−2𝑥−15

4(𝑥−3)²(𝑥+1)²
  

=
4(𝑥−1)[𝑥²−2𝑥−3−𝑥2+2𝑥+15]

4(𝑥−3²(𝑥+1)²
  

=
12(𝑥−1)

(𝑥−3)²(𝑥+1)²
  

 

𝑓′′(𝑥) =
12(𝑥−1)

(𝑥−3)²(𝑥+1)²
  

𝑓’’(𝑥) = 0 ⇔ 12(𝑥 − 1) = 0  

⇔ 𝑥 = 1 𝑒𝑡 𝑓(1) =
1

2
(1 + 1 + 3𝑙𝑛1) = 1  

 ⇒ 𝑓′′(1) = 1 

Donc 𝑓’’(𝑥) change de signe en 1, alors (C) traverse sa tangente (T) au point Ω(1
1
) et Ω est un 

point d’inflexion de (C) . 

Ω(1
1
) est un centre de symétrie, si ∀𝑥 ∈ ℝ  𝑡𝑒𝑙 𝑞𝑢𝑒 1 − 𝑥 ∈ 𝐷𝑓, 1 + 𝑥 ∈ 𝐷𝑓 et on vérifie 

que : 
𝑓(1−𝑥)+𝑓(1+𝑥)

2
= 1 

On a: {
𝑓(1 −𝑥) =

1

2
(1 − 𝑥 + 1 + 3𝑙𝑛 |

1−𝑥−1

1−𝑥−3
|) = 1  −

1

2
[𝑥 − 3𝑙𝑛 |

2−𝑥

−2−𝑥
|)

𝑓 = (1 +𝑥) =
1

2
(1 + 𝑥 + 1 + 3𝑙𝑛 |

1+𝑥+1

1+𝑥−3
|) = 1 +

1

2
[𝑥 − 3𝑙𝑛 |

2+𝑥

2−𝑥
|)

 

 

⇒
𝑓(1−𝑥)+𝑓(1+𝑥)

2
=

1−
1

2 
[𝑥−3𝑙𝑛|

𝑥−2

𝑥+2
]+1+

1

2
[𝑥+3𝑙𝑛|

𝑥+2

𝑥−2
]

2
  

=
2−

1

2
𝑥+

3

2
𝑙𝑛|

𝑥−2

𝑥+2

2
= 1  

𝑓(1−𝑥)+𝑓(1+𝑥)

2
= 1  

Donc Ω(1
1
) est un centre de symétrie de (C) 

b) Déterminons l’asymptote oblique (D) de (C) et vérifions que Ω ∈ (𝐷). 

On a :lim𝑥→±∞ 
𝑓(𝑥)

𝑥
= lim𝑥±∞

1

2
(𝑥−1+3𝑙𝑛|

𝑥+1

𝑥−3
)

𝑥
  

= lim𝑥→±∞
𝑥

2𝑥
+ 

1

2𝑥
+

3

2𝑥
𝑙𝑛 |

𝑥+1 

𝑥−3
  

=
1

2
  

lim𝑥→±∞
𝑓(𝑥)

𝑥
=

1

2
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Alors : lim𝑥→±∞(𝑓(𝑥) −
1

2
𝑥 = lim𝑥→±∞ [

1

2
𝑥 +

1

2
[1 + 3𝑙𝑛 |

𝑥+1

𝑥−3
] −

1

2 
𝑥] =

1

2
  

Donc la droite (D) d’équation 𝑦 =
1

2
(𝑥 + 1) est asymptote oblique de (C). 

Ω(1
1
) donc pour 𝑥 = 1, 𝑦 = 1, alors Ω ∈ (𝐷) 

d) Traçons la courbe (C) 

On a : (𝐷1) : x= −1, (𝐷2) : 𝑥 = 3 

 

(D) :  𝑦 =
1

2
(𝑥 + 1) 

𝑥 1 −1 

𝑦 1 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application 4 : 

Le repère (O,I,J) est orthonormé soit f la fonction définie par : 𝑓(𝑥) = {
𝑥 − 1 +

1

𝑋
, 𝑠𝑖 𝑥 ≤ 1

1 − (lnx)2, si x > 1
 

1a) Démontrer que f est continue et dérivable en 1  

b) Calculer les limites de f aux bornes de son ensemble de définition et préciser les branches 

infinie de la courbe représentative de la courbe représentative (C) de f . 

c) Etudier les variations de f démontrer que le point d’abscisse e est un point d’inflexion de 

(C) de f. 

d) Tracer (C) 

2) Soit h la restriction de f à l’intervalle ]1; +∞[ 

a) Démontrer que h réalise une bijection de ]1; +∞[ ver un intervalle que l’on précisera. 

b) En déduire que h admet une fonction réciproque ℎ−1 dont on précisera le sens de 

variation  
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C) Tracer la courbe représentative de ℎ−1 . 

Résolution 

𝑓(𝑥) = {
𝑥 − 1 +

1

𝑥
 , 𝑠𝑖 𝑥 ≤ 1

1 − (𝑙𝑛𝑥)2, 𝑠𝑖 𝑥 > 1
  

1)a) Continuité et dérivabilité en 1 

lim𝑥→1− = lim𝑥→1− (𝑥 − 1 +
1

𝑥
) = 1 = 𝑓(1)  

lim𝑥→1+ 𝑓(𝑥) = lim𝑥→1+(1 − (𝑙𝑛𝑥)
2) = 1 = 𝑓(1)  

lim𝑥→1− 𝑓(𝑥) = lim𝑥→1+ 𝑓(𝑥) = 𝑓(1) 𝑑𝑜𝑛𝑐 𝑓 𝑒𝑠𝑡 𝑐𝑜𝑛𝑡𝑢𝑛𝑖𝑒 𝑒𝑛 1  

lim𝑥→1−
𝑓(𝑥)−𝑓(1)

𝑥−1
= lim𝑥→1−

𝑥−1+
1

𝑥
−1

𝑥−1
= lim𝑥→1−

𝑥2−2𝑥+1

𝑥(𝑥−1)
= lim𝑥→1−

𝑥−1

𝑥
= 0  

lim𝑥→1+
𝑓(𝑥)−𝑓(𝑥)

𝑥−1
= lim𝑥→1+

𝑥−1

𝑥
= 0 = 𝑓′

𝑑
(1)  

Le nombre dérivé de f est 𝑓’(1) = 0 

lim𝑥→1−
𝑓(𝑥)−𝑓(1)

𝑥−1
= lim𝑥→1+

𝑓(𝑥)−𝑓(1)

𝑥−1
= 𝑓′(1) = 0   

Donc f est dérivable en 1 

c) calculons des limites et branches infinies 

- 𝐷𝑜𝑚𝑎𝑖𝑛𝑒 𝑑𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 

𝑓(𝑥) = {
𝑥 − 1 +

1

𝑥
 , 𝑠𝑖 𝑥 ≤ 1

1 − (𝑙𝑛𝑥)2, 𝑠𝑖 𝑥 > 1
  

𝑓(𝑥) ∃⇔ 𝑥 ≠ 0 ou 𝑥 > 0  

⇔ 𝑥 ∈ ℝ∗ 𝑜𝑢  𝑥 ∈ ]0;+∞[ = ℝ+
∗   

⇔ 𝒟𝑓 = ℝ∗  ∪  ℝ+
∗ = ℝ∗,  

Donc :  𝐷𝑓 = ]−∞;𝑂[  ∪ ]0;+∞[   

- 𝐿𝑖𝑚𝑖𝑡𝑒𝑠 𝑎𝑢𝑥 𝑏𝑜𝑟𝑛𝑒𝑠 𝑑𝑒 𝐷𝑓 

• lim𝑥→−∞ 𝑓(𝑥) = lim𝑥→−∞ 𝑥 − 1 +
1

𝑥
= −∞,  

Donc: lim𝑥→−∞ 𝑓(𝑥) = −∞ 

• lim𝑥→−∞ 𝑓(𝑥) = lim𝑥→0−(𝑥 − 1 +
1

𝑥
) = −∞,  

Donc : lim𝑥→0− 𝑓(𝑥) = −∞  

•lim𝑥→0+ 𝑓(𝑥) = lim𝑥→0+ (𝑥 − 1 +
1

𝑥
) = +∞, 

Donc: lim𝑥→0+𝑓(𝑥) =+∞ 

•lim𝑥→+∞ 𝑓(𝑥) = lim𝑥→+∞(1 − (𝑙𝑛𝑥)
2) = −∞, 

Donc: lim𝑥→+∞ 𝑓(𝑥) = +∞ 

- Branches infinies 

•lim𝑥→0± 𝑓(𝑥) = ±∞,   𝑑𝑜𝑛𝑐 𝑙𝑎 𝑑𝑟𝑜𝑖𝑡𝑒 (𝐷)𝑑′é𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑥 = 0 est asymptote vertical à (C) 

•lim𝑥→−∞(𝑓(𝑥) − (𝑥 − 1)) = lim𝑥→−∞
1

𝑥
= 0 ,   𝑑𝑜𝑛𝑐 (𝐶) 𝑎𝑑𝑚𝑒𝑡 𝑒𝑛 − ∞ une asymptote 

oblique d’équation 𝑦 = 𝑥 − 1 

•lim𝑥→+∞
𝑓(𝑥)

𝑥
= lim𝑥→+∞

1−(𝑙𝑛𝑥)²

𝑥
lim𝑥→+∞

1

𝑥
−
(𝑙𝑛𝑥)²

𝑥
 

 = lim𝑥→+∞
1

𝑥
− (

2𝑙𝑛√𝑥

√𝑥
)
2
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= lim𝑥→+∞
1

𝑥
− 4(

𝑙𝑛√𝑥

√𝑥
)
2

  

 =
1

+∞
− 4 + 0 = 0 

lim𝑥→+∞
𝑓(𝑥)

𝑥
= 0 𝑑𝑜𝑛𝑐 𝑒𝑛 + ∞  𝑢𝑛𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑞𝑢𝑒 𝑑𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑂𝐼).  

D) variations et point d’inflexion 

- 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 

𝑓 est dérivable sur son ensemble de définition et pour tout 𝑥 ∈ 𝐷𝑓, on a : 

 

𝑓′(𝑥) = {
1 −

1

𝑥²
=

𝑥2−1

𝑥
, 𝑠𝑖 𝑥 ≤ 1

−2𝑙𝑛𝑥

𝑥
 , 𝑠𝑖 𝑥 > 1                    

  

Donc 𝑓’(𝑥) = 0 ⇔
𝑥2 −1

𝑥
= 0 𝑜𝑢 − 2𝑙𝑛𝑥 = 0   

 ⇔ 𝑥 ± 1 𝑜𝑢 𝑥 = 1 

 

Tableau de signe de 𝑓′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∀𝑥 ∈ ]−∞; −1[ 𝑓′(𝑥) > 0 donc 𝑓 est strictement croissante ; 

∀𝑥 ∈ ]−1;  0[ ∪ ]0; 1[ ∪ ]1; +∞[ 𝑓′(𝑥) < 0 donc 𝑓 est strictement décroissante ; 

 

Tableau de variation  
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- 𝑃𝑜𝑖𝑛𝑡 𝑑′𝑖𝑛𝑓𝑙𝑒𝑥𝑖𝑜𝑛 

Le point d’abscisse e est un point de l’intervalle ]1 ; +∞[.  

On a : ∀𝑥 > 1, 𝑓′(𝑥) =
−2𝑙𝑛𝑥

𝑥
⇔ 𝑓′′(𝑥) =

−2+2𝑙𝑛𝑥

𝑥2
=

−2(1−𝑙𝑛𝑥)

𝑥2
 

𝑓′′(𝑥) = −2
(1−𝑙𝑛𝑥)

𝑥²
  

𝑓’′(𝑥) =0⇔ 1− 𝑙𝑛𝑥 = 0 

 ⇔ 𝑙𝑛𝑥 = 1 

⇔ 𝑥 = 𝑒  

𝐸𝑡 𝑓(𝑒) = 1 − (𝑙𝑛𝑒)
2 = 1 − 1 = 0  

𝑓(𝑒) = 0, donc le point 𝐴(𝑒, 𝑜) est un point d’inflexion. 

2) ℎ est la restriction de 𝑓 à ]1 ; +∞[, 

a) ℎ est continue et strictement décroissante sur ]1 ; +∞[.Donc ℎ réalise une bijection de 

]1; +∞[  𝑣𝑒𝑟𝑠 ℎ (]1;+∞[) = ]−∞; 1[ car (ℎ(]1;+∞[) = ]lim𝑥→+∞ ℎ(𝑥); ℎ(1)[ = ]−∞; 1[ 

b) h étant bijective, h admet une fonction réciproque ℎ−1 𝑑𝑒𝑓𝑖𝑛𝑖𝑒 de ]−∞; 1[  →

]1;+∞[ , de même sens de variation que h. C’est-à-dire ℎ−1 est strictement décroissante sur 

]−∞; 1[. La courbe (C) de ℎ−1 se déduit de (C) par système orthogonale par rapport à la 

première bissectrice d’équation (𝐷) : 𝑦 = 𝑥. 

Traçons la courbe de (𝐶𝑓) et (𝐶ℎ−1). 

On a : (𝐷) : 𝑥 = 0 

            (𝑇) : 𝑦 = 𝑥 − 1  

  (𝐷) : 𝑦 = 𝑥  
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(𝐶𝑓) ∩ (𝑜𝑥) ⇔ 𝑓(𝑥) = 0 ⇔ {
𝑥 − 1 +

1

𝑋
= 0

1 − (𝑙𝑛𝑥)2 = 0
  

⇔ { 𝑥² − 𝑥 + 1 > 0
𝑙𝑛𝑥 = 1 ⇔ 𝑥 = 𝑒

  

 

IV. Logarithme décimal  

IV1- Définition et propriétés 

1.1- Définition :  

On appelle fonction logarithme décimal, la fonction notée 𝑙𝑜𝑔 définie sur ]0; +∞[ par 

𝑝𝑎𝑟: log (𝑥) =
𝑙𝑛𝑥

𝑙𝑛10
. 

- L’ensemble de définition de la fonction log est ]0; +∞[ ; 

- On a : ∀𝑥 ∈ ]0;+∞[ , (𝑙𝑜𝑔(𝑥))
′
=

1

𝑥𝑙𝑛10
; 

- 𝑙𝑜𝑔1 = 0 et 𝑙𝑜𝑔10 = 1 et 𝑙𝑜𝑔(𝑒) = 1 

2.2- Propriétés :  

Pour tous nombres réels a, et b strictement positif et pour tout r𝜖ℝ , 𝑜𝑛 𝑎 : 

1) log(𝑎𝑏) = 𝑙𝑜𝑔𝑎 + 𝑙𝑜𝑔𝑏 ; 

2) 𝑙𝑜𝑔
1

𝑎
= −𝑙𝑜𝑔𝑎 ; 

3) 𝑙𝑜𝑔
𝑎

𝑏
= 𝑙𝑜𝑔𝑎 − 𝑙𝑜𝑔𝑏 ; 

4) 𝑙𝑜𝑔𝑎𝑟 = 𝑟𝑙𝑜𝑔𝑎  

V. Fonction logarithme de base a 

𝑽𝟏−𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 𝒆𝒕 𝒑𝒓𝒐𝒑𝒓𝒊𝒆𝒕𝒆𝒔:  

1.1-Definition : 

Soit a un nombre réel strictement positif et 𝑎 ≠ 1 . 

La fonction logarithme de base a notée 𝑙𝑜𝑔𝑎 est définie sur ]0 ; +∞ [ par 𝑙𝑜𝑔𝑎(𝑥) =
1

𝑙𝑛𝑎
𝑙𝑛𝑥. 

1.2 Propriétés : 

Pour tous 𝑥, 𝑦 ∈ ]0;+∞[ , 𝑜𝑛 𝑎: 

1) 𝑙𝑜𝑔𝑎(𝑥. 𝑦) = 𝑙𝑜𝑔𝑎(𝑥) + 𝑙𝑜𝑔𝑎(𝑦) 

2) 𝑙𝑜𝑔𝑎
𝑥

𝑦
= 𝑙𝑜𝑔𝑎(𝑥) − 𝑙𝑜𝑔𝑎(𝑦) 

3) 𝑙𝑜𝑔𝑎√𝑥 =
1

2
𝑙𝑜𝑔𝑎𝑥 

4) 𝑙𝑜𝑔𝑎𝑥
𝑛 = 𝑛𝑙𝑜𝑔𝑎 

pour tout 𝑎, 𝑏 ∈ ]0;+∞[ , 𝑜𝑛 𝑎: 

5) 𝑙𝑜𝑔𝑎𝑥 = 𝑙𝑜𝑔𝑎𝑏 × 𝑙𝑜𝑔𝑏𝑥 

VI. Points et tangentes remarquables 

1- Point d’inflexion : 

Soit 𝑓 une fonction. 
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Si 𝑓 est deux fois dérivables sur un intervalle I, et si pour tout 𝑥0 de I, 𝑓′′(𝑥0) = 𝑂 et change 

de signe, alors la courbe (C) de 𝑓 traverse sa tangente en un point Ω(𝑥0, 𝑓(𝑥0)) appelé 

extremum ,un tel point Ω s’appelle point d’inflexion . 

2- Point d’arrêt 

Les points dont l’abscisse 𝑥0 est une borne d’un intervalle de continuité I, si 𝑥0 ∈ 𝐼, on est en 

présence d’un point d’arrêt. 

3- Points anguleux et point de remboursement 

Les points où la fonction est continue, mais non dérivable : 

- Si le taux de variation en 𝑥0 admet une limite infinie, la tangente à la courbe est 

parallèle à (𝑜𝑦), la courbe traverse sa tangente. 

- Si 𝑓′
𝑑
(𝑥0) ≠  𝑓

′
𝑔
(𝑥0) = 𝑙 ≠ (∞), on a un point anguleux ; 

- Si 𝑓′
𝑑
(𝑥0) = ±∞ 𝑒𝑡 𝑓′

𝑔
(𝑥0) = ±∞, on est en présence d’un point de 

remboursement, la tangente à ce point parallèle à (𝑂𝑦). 

4- Fonction convexe, fonction concave 

- Une fonction 𝑓  est dite convexe où 𝑓  est définie sur un intervalle I de 

ℝ, 𝑠𝑖 ∀ 𝑥1, 𝑥2 ∈ 𝐼, (𝑥1, < 𝑥2), 𝑡𝑜𝑢𝑡 point M de la courbe Γ d’équation 𝑦 = 𝑓(𝑥) 

d’abscisse 𝑥 tel que  𝑥 ∈ ]𝑥1, 𝑥2[ est au-dessus de la droite (𝑀1, 𝑀2) où 

𝑀1 𝑒𝑡 𝑀2 désignent respectivement les points de Γ d’abscisse 𝑥1 𝑒𝑡 𝑥2.  

- Elle est dit concave sur I si −𝑓 est convexe sur I. 

 

 

 

 

 

 

 

 

FIN 
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Chapitre 4 : FONCTIONS EXPONENTIELLES ET FONCTIONS 

PUISSANCES 

I. Fonction, exponentielle. 

𝐼1 −Définitions et propriétés. 

𝟏. 𝟏 −Définition :  

La fonction exponentielle népérienne notée exponentielle, est la bijection réciproque de la 

fonction logarithme népérienne. La fonction 𝑙𝑛 est une bijection de ℝ+
∗  sur ℝ ; donc 

exponentielle est une bijection de ℝ sur ℝ+
∗ . D’où exponentielle est définie sur ℝ et pour  

tout réel  𝑥, exp(x) > 0 

Notation :  

 ∀ 𝑥 ∈ ℝ,  𝑒𝑥𝑝(𝑥) est noté ℮𝑥.  

𝟏. 𝟐 −propriétés fondamentales : 

- Pour tout x de ℝ, pour tout 𝑦 ∈ ℝ+
∗ , 𝑙𝑛𝑦 = 𝑥 ⇔ 𝑦 =  𝑒𝑥  ; 

- Pour tout x de ℝ, 𝑙𝑛𝑒𝑥 = 𝑥,  pour tout réel 𝑥 de ℝ+
∗ , 𝑒𝑙𝑛𝑥 = 𝑥. 

- Pour tous a, b de ℝ, 𝑒𝑎 = 𝑒𝑏  ⇔ 𝑎 = 𝑏, 𝑒𝑎 < 𝑒𝑏 ⇔ 𝑎 < 𝑏. 

1.3- Propriétés algébriques : 

Pour tous nombres réels a et b et pour tout nombre rationnel 𝑟, on a : 

1) 𝑒𝑎+𝑏 = 𝑒𝑎. 𝑒𝑏   

2) 𝑒𝑎−𝑏 =
𝑒𝑎

𝑒𝑏
 

3) 𝑒−𝑎 =
1

𝑒𝑎
 ;                                                       

4) 𝑒𝑟𝑎 = (𝑒𝑎)𝑟 

𝑰𝟐 −Etude de la fonction exponentielle. 

𝑓:ℝ → ℝ+
∗   

 𝑥 → 𝑒𝑥  

1) Sens de variation  

Les fonctions ln et exp étant des bijections réciproques, leurs tableaux de variation se 

déduisent l’une de l’autre. 
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2) Les droites remarquables de 𝑒𝑥 

On en déduit que 𝑒𝑥 admet :  

- Une tangente au point  J (0 ; 1) de coefficient directeur 1 , I(1,0) ; 

- Une tangente au point F(1,e) passant par le point 0, E(e,1) ; 

- Une asymptote horizontale, la droite d’équation (o I). (A.V→ (oJ) ln ; 

3- Branches infinies en +∞ de 𝑒𝑥. 

On a vu que la courbe de ln admet en +∞ une branche parabolique de direction (0I).  

On en déduit que la courbe  de 𝑒𝑥 admet une branche parabolique de direction (O J) en +∞. 

3) Construction de la courbe de 𝑒𝑥 et ses droites remarquables. 

On désigne par (c) la courbe de 𝑒𝑥 et par (C’) celle de 𝑙𝑛𝑥, par (D) la droite d’équation 𝑦 = 𝑥. 

(C) se déduit de (C’)  par la symétrie orthogonale d’axe (D) . 

(C’) est située en tout point au-dessous de la tangente et (C) au-dessus de celle-ci en J donc 

∀ 𝑥 ∈ ℝ, 𝑒𝑥 > 𝑥 + 1. 

 

𝟐. 𝟏 −Derivée et conséquences : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Propriétés :  

La fonction exponentielle est dérivable sur ℝ et pour tout nombre réel  𝑥, (𝑒𝑥)′ = 𝑒𝑥. 

La fonction 𝑒𝑥est dérivable en 0 et son nombre dérivée est 1.  

On a: lim𝑥→𝑜
𝑒𝑥−1

𝑥
= 1 
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𝟐. 𝟐 −Limites aux bornes de l’ensemble de définition. 

Propriétés : 

1) lim𝑥→𝑂 𝑒
𝑥 = +∞                                                           

2) lim𝑥→−∞ 𝑒
𝑥 = 0 

3) lim𝑥→+∞
𝑒𝑥

𝑥
= +∞  

4) lim𝑥→−∞ 𝑥𝑒
𝑥 = 0  

𝑰𝟑 −Résolution d’équations et d’inéquations 

Applications  

1) Résolvons dans l’équations: 𝑒2𝑥 + 𝑒𝑥 − 2 = 0 

Posons 𝑒𝑥 = 𝑋 ⇔ 𝑋2 + 𝑋 − 2 = 𝑂 

∆ =  9 ⇔ 𝑥1𝑒𝑡𝑥2 = 1 

⇔ 𝑋2 + 𝑋 − 2 = (𝑒𝑥 + 2)(𝑒𝑥 − 1) = 0 

𝑒𝑥 + 2 n’a pas de solution, donc 𝑒𝑥 − 1 = 0 ⇔ 𝑥 = 𝑂 

Alors : 𝑆 = {0}. 

2) Résolvons dans ℝ l’inéquation : 3𝑒𝑥 − 7𝑒−𝑥 + 20 ≤ 𝑂 

3𝑒𝑥 − 7𝑒−𝑥 + 20 = 3𝑒𝑥 −
7

𝑒𝑥
+ 20 

= 3𝑒2𝑥 + 20𝑒𝑥 − 7 ≤ 𝑂 

Posons  𝑋 = 𝑒𝑥 ⇔ 3𝑋2 + 20𝑋 − 7 ≤ 0 

∆’ = 121  

𝑥1 =
−10 − 11

3
=  
−21

3
= −7 𝑒𝑡 𝑥2 = 

−10 + 11

3
=  
1

3
 

⇔ 3(𝑒𝑥 + 7) (𝑒𝑥 −
1

3
) ≤ 0  ,     

 𝑒𝑥 + 7 ≤ 0 n’a pas de solution, alors :  𝑒𝑥 ≤
1

3
 ⇔ 𝑥 ≤  −𝑙𝑛3 

Donc : 𝑆 = ]−∞;−𝑙𝑛3] 

Calculs de limites : 

Calculons les limites suivantes :  

a) lim𝑥→+∞
3𝑒𝑥−2

5𝑒𝑥+3
 

On pose :  𝑒𝑥 = 𝑋, quand 𝑥 → +∞, 𝑋 → +∞ 

Donc lim𝑥→+∞
3𝑒𝑥−2

5𝑥+3
= lim𝑥→+𝜇∞

3𝑋−2

5𝑋+3
= 

3

5
 

Alors : lim𝑥→+∞
3𝑒𝑥−2

5𝑒𝑥+3
=

3

5
 

 

b) lim𝑥𝜕→−∞
ln (1+𝑒𝑥)

𝑒𝑥
, 

On pose :  𝑒𝑥 = 𝑋, quand 𝑥 → −∞, 𝑥 → 0 

Donc : lim𝑥→−∞
ln (1+𝑒𝑥)

𝑒𝑥
= lim𝑥→0

ln(1+𝑥)

𝑥
= 1 

Alors :  lim𝑥→−∞
ln (1+𝑒𝑥)

𝑒𝑥
= 1 

c)  lim𝑥→+∞(𝑥 − 𝑒
𝑥) 

On a : 𝑥 − 𝑒𝑥 = 𝑥 (1 −
𝑒𝑥

𝑥
),  

Or: lim𝑥→+∞
𝑒𝑥

𝑥
= +∞, alorslim𝑥→+∞( 𝑥 − 𝑒

𝑥) = lim𝑥→+∞ 𝑥(1 −
𝑒𝑥

𝑥
) = −∞ 
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Donc lim𝑥→+∞(𝑥 − 𝑒
𝑥) =  −∞ 

d) lim𝑥→0
𝑠𝑖𝑛2𝑥

1−𝑒𝑥
. 

On a: 
𝑠𝑖𝑛2𝑥

1−𝑒𝑥
=

𝑠𝑖𝑛2𝑥

2𝑥
×

2𝑥

1−𝑒𝑥
 

=
𝑠𝑖𝑛2𝑥

2𝑥
(
−2𝑥

𝑒𝑥−1
)  

= −2 
𝑠𝑖𝑛2𝑥

2𝑥
×

1

𝑒𝑥−1

𝑥

  

Or:  lim𝑥→0
𝑠𝑖𝑛2𝑥

2𝑥
= 1 𝑒𝑡 lim𝑥→0

𝑒𝑥−1

𝑥
= 1 

On en déduit que :  lim𝑥→0
𝑠𝑖𝑛2𝑥

1−𝑒𝑥
= −2 

II. Fonction comportant exponentielle  

𝐼𝐼2 −Dérivée et primitives  

𝟏. 𝟏 − Propriétés : 

Soit 𝑢 une fonction dérivable sur intervalle K. 

1) La fonction  𝑒𝑥𝑝 ∘ 𝑢 est dérivable sur K et on a : (𝑒𝑥𝑝 ∘ 𝑢 )′ = 𝑢′(𝑒𝑥𝑝 ∘ 𝑢 ). 

𝑒𝑥𝑝 ∘ 𝑢 est aussi notée 𝑒𝑢 et sa dérivée  est 𝑢′𝑒𝑢 . 

2) La fonction 𝑢′𝑒𝑢 admet pour primitive sur K la fonction 𝑒𝑢 

Exemples :  

- La fonction 𝑥 → 𝑒−𝑥
2+𝑥 est dérivable sur ℝ et sa dérivée est : (−2𝑥 + 1)𝑒−𝑥

2+𝑥 ; 

- La fonction𝑥 → 𝑒𝑠𝑖𝑛𝑥  est derivable  sur ℝ et sa dérivé est : 𝑐𝑜𝑠𝑥𝑒𝑠𝑖𝑛𝑥. 

- La fonction 𝑥 → 𝑥𝑒
1

𝑥 est dérivable sur ℝ∗ et sa dérivé est : 
𝑥−1

𝑥
𝑒
1

𝑥 

- Une primitive sur ℝ de la fonction 𝑥 → 𝑥𝑒−𝑥
2
 est la fonction 𝑥 → −

1

2
𝑒−𝑥

2  
. 

- La primitive sur ]−1[ de la fonction 𝑥 →
𝑒𝑡𝑎𝑛𝑥

𝑐𝑜𝑠2𝑥 
 est la fonction 𝑥 → 𝑒𝑡𝑎𝑛𝑥 

𝐼𝐼2 −Exemples d’études de fonctions : 

Application1 

Soit 𝑓 la fonction définie par :  𝑓(𝑥) = {
1

2
𝑥𝑒

1

𝑋

𝑓(𝑥) = 𝑂
       𝑠𝑖 𝑥 ≠ 𝑂 

1) Déterminer l’ensemble de définition de f. vérifier si f est continue et dérivable en O. 

Déterminer les limites aux bornes du 𝐷𝑓.  

2) Déterminer le sens de variation de 𝑓. En déduire le tableau de variation de 𝑓. 

3) Déterminer  les branches infinies si elles existent . 

4) Tracer la courbe de𝑓 et ses a asymptotes 

 

Solution : 

𝑓(𝑥) = {

1

2
𝑥𝑒

1

𝑥

𝑓(𝑜) = 𝑂
   ,      𝑠𝑖 𝑥 ≠ 𝑂 

1) Ensemble de définition.  

𝐷𝑓 =ℝ 

- Continuité en O . 

 lim𝑥→𝑂− 𝑓(𝑥) = lim𝑥→0−
1

2
𝑥𝑒

1

𝑥 =
1

2
× 0𝑒

1

0− =
1

2
× 𝑂 ×= 𝑂 
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lim𝑥→𝑂− 𝑓(𝑥) = 𝑂  

Donc lim𝑥→𝑂−(𝑥) = 𝑓(𝑂) = 𝑂, 𝑓 est continue en gauche en 0. 

 lim𝑥→𝑂+ 𝑓(𝑥) = lim𝑥→𝑂+
1

2
𝑥𝑒

1

𝑥 =
1

2
× 0 × 𝑒

1

𝑂+ = 0 × +∞ ? ? ? 

On pose 𝑋 =
1

𝑥
,  alors quand :𝑥 → 𝑂+, 𝑋 → +∞ 

⇒lim𝑥→𝑂+
1

2
𝑥𝑒

1

𝑥 = lim𝑥→0+
1

2
[
𝑒
1
2

1

𝑥

] = lim𝑥→+∞
1

2
(
𝑒𝑋

𝑋
) =

1

2
(+∞) = +∞ 

lim𝑥→𝑂+ 𝑓(𝑥) = +∞ , 𝑓 n’est pas continue à droite en O, donc 𝑓 n’est pas continue 

en O. 

- Dérivabilité en O. 

Comme 𝑓 n’est pas continue en O, donc elle n’est pas dérivable en O. 

A cet  effet , on a : lim𝑥→𝑂−
𝑓(𝑥)−𝑓(𝑂)

𝑥−𝑂
= lim𝑥→𝑂−

1

2
𝑥𝑒

1
𝑥−𝑂

𝑥
= lim𝑥→𝑂−

1

2
𝑒
1

𝑥 = 𝑂 

Donc 𝑓′𝑔(𝑂) = 𝑂, donc (𝐶) admet une demi –tangente en O de support (OI)  

- Limites :  

lim𝑥→+∞ 𝑓(𝑥) = −∞  et lim𝑥→+∞ 𝑓(𝑥) = +∞ 

2) Déterminons le sens de variation de 𝑓.  

𝑓 est dérivable sur ℝ∗ et sa dérivée 𝑓’ est :  

𝑓′(𝑥) =
1

2
(𝑒

1

𝑥 −
1

𝑥2
𝑥𝑒

1

𝑥)  

=
1

2
(𝑒

1

𝑥 −
1

𝑥
𝑒
1

𝑥)  

= 
𝑥𝑒

1
𝑥−𝑒

1
𝑥

2𝑥
  

=
𝑥−1

2𝑥
𝑒
1

𝑥  

Donc   𝑓′(𝑥) =
𝑥−1

2𝑥
𝑒
1

𝑥 ,  

𝑓′(𝑥) = 0⇔(𝑥 − 1)𝑒
1

𝑥 = 0 

                  ⇔𝑥 = 1 et 𝑒
1

𝑥 > 𝑂  

      𝑓′(𝑥)∃⇔ 2𝑥 ≠ 𝑂 ⇔ 𝑥 ≠ 𝑂   

 

Tableau de signe de 𝑓′ 

 

 

 

 

 

 

 

 

∀𝑥 ∈ ]−∞;  0[ ∪ ]1; +∞[ ;  𝑓′(𝑥) > 0, donc 𝑓 est strictement croissante ; 

∀𝑥 ∈ ]0; 1[;  𝑓′(𝑥) < 0,  donc 𝑓 est strictement décroissante ; 
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Déduisons en le tableau de variation de 𝑓. 

 

3) Déterminons les branches infinies si elles existent. 

On a :lim𝑥→+∞ 𝑓(𝑥) = ±∞ , alors la courbe admet des branches  infinies  en ±∞ ;  

- Branches infinies en +∞ : 

On a :lim𝑥→±∞
𝑓(𝑥)

𝑥
= lim𝑥→+∞

1

2
𝑒
1
𝑥

𝑥
 

   = lim
𝑥→   

1

2
𝑒
1

𝑥 =
1

2
  

𝑓(𝑥) −
1

2
𝑥 =

1

2
𝑥𝑒

1

𝑥 −
1

2
𝑥  

=
1

2
𝑥 (𝑒

1

𝑥 − 1)  

𝑓(𝑥) −
1

2
𝑥 =

1

2
[
𝑒
1
𝑥−1
1

𝑥

]  

Posons :  𝑋 =
1

𝑥
⇒ 𝑓(𝑥) − 

1

2
𝑥 =

1

2
(
𝑒𝑋−1

𝑋
) 

Quand 𝑥 → +∞ , 𝑋 → 𝑂 

⇒ lim𝑥→+∞ (𝑓(𝑥) = −
1

2
𝑥) = lim𝑋→𝑂

1

2
(
𝑒𝑥−1

𝑋
) =

1

2
× 1.  

lim𝑥→+∞ (𝑓(𝑥) −
1

2
𝑥) =

1

2
 , donc la droite (∆) d’équation𝑦 =

1

2
(𝑥 + 1) est a asymptotes 

oblique à (C ) en +∞. 

- Branches infinie en −∞ 

On a :lim𝑥→−∞
𝑓(𝑥)

𝑥
= lim𝑥→−∞

1

2
𝑥𝑒

1
2

𝑥
 

= lim𝑥→−∞
1

2
𝑒
1

𝑥 =
1

2
  

Donc : lim𝑥→−∞
𝑓(𝑥)

𝑥
=

1

2
  

𝑓(𝑥) −
1

2
𝑥 =

1

2
(
𝑒𝑋−1

𝑋
)  

On pose : 𝑋 =
1

𝑥
 et quand 𝑥 → +∞ , 𝑋 → 𝑂 

⇒ lim𝑥→−∞ (𝑓(𝑥) −
1

2
𝑥) = lim𝑋→𝑂

1

2
(
𝑒𝑥−1

𝑋
) =

1

2
× 1.  

Alors : lim𝑥→−∞ (𝑓(𝑥) −
1

2
𝑥) =

1

2
  donc la même droite (D) :𝑦 =

1

2
(𝑥 + 1) est aussi  

asymptote oblique a (C ) en -∞.  
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De ce qui précède, on a vu que lim𝑥→𝑂+ 𝑓(𝑥) = +∞ , donc la droite (OJ) est aussi 

a asymptotes  horizontale  à (c )  

4) Traçons la courbe (c )de f  ses asymptotes on a :(∆) :𝑦 =
1

2
(𝑥 + 1);  (D) : y=O 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application 2 :  

Soit 𝑓 la fonction définie par :  𝑓(𝑥) = {𝑒
𝑥2

𝑥2−1     , 𝑠𝑖 𝑥 ∈ ℝ‛{−1; 1}

𝑓(−1) = 𝑓(1) = 𝑂
 

On désigne  par (C ) la courbe représentative  de f .  

1) Démontrer que f est dérivable à droite en -1 et a gauche en 1. 

2) Etudier et tracer (C ) 

Solution : 

𝑓(𝑥) = { 𝑒
𝑥2

𝑥2−1

𝑓(−1) = 𝑓(1) = 𝑂
 

1) Démontrons que f est dérivable à droite en -1 et à gauche en 1.  

∀𝑥 ∈ ℝ‛{−1; 1}, 

On a :  
𝑓(𝑥)−𝑓(−1)

𝑥+1
=

𝑒
𝑥2

𝑥2−1

𝑥+1
 

=
1

𝑥 + 1
𝑒

𝑥2

𝑥2−1 

=
𝑥2 − 1

𝑥2(𝑥 + 1)
(

𝑥2

𝑥2 − 1
𝑒

𝑥2

𝑥2−1) 

=
𝑥 − 1

𝑥2
(

𝑥2

𝑥2 − 1
𝑒

𝑥2

𝑥2−1) 
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𝑓(𝑥)−𝑓(−1)

𝑥+1
=

𝑥−1

𝑥2
(

𝑥2

𝑥2−1
𝑒

𝑥2

𝑥2−1)  

Donc lim𝑥→−1+
𝑓(𝑥)−𝑓(−1)

𝑥+1
= lim𝑥→−1+

𝑥−1

𝑥2
(

𝑥2

𝑥2−1
𝑒

𝑥2

𝑥2−1)  

On a :lim𝑥→−1+
𝑥−1

𝑥2
= −2 𝑒𝑡𝑒𝑛 𝑝𝑜𝑠𝑎𝑛𝑡 𝑋 =

𝑥2

𝑥2−1
 𝑡𝑒𝑙 𝑞𝑢𝑒 𝑞𝑢𝑎𝑛𝑑 { 𝑥 → − 1+

𝑥 → −∞
 

lim𝑥→−12
𝑥2

𝑥2−1
𝑒

𝑥2

𝑥2−1 = lim𝑋→+∞ 𝑋𝑒
𝑋 = 0,  

Donc : lim𝑥→−1+
𝑓(𝑥)−𝑓(−1)

𝑥+1
= 0 

De même, ∀ 𝑥 ≠ 1 𝑒𝑡 𝑥 ≠ −1, 𝑜𝑛 𝑎 : 

𝑓(𝑥)−𝑓(1)

𝑥−1
=

𝑒
𝑥2

𝑥2−1

𝑥−1
  

=
𝑥2

𝑥2(𝑥−1)
(
𝑥2

𝑥2−1

𝑥2

𝑒𝑥2−1
)  

=
𝑥+1

𝑥2
(

𝑥2

𝑥2−1
𝑒
𝑥2

𝑥2 − 1)  

𝑓(𝑥)−𝑓(1)

𝑥−1
=

𝑥+1

𝑥2
(

𝑥2

𝑥2−1
𝑒

𝑥2

𝑥2−1)  

Alors :  lim𝑥→1−
𝑓(𝑥)−𝑓(1)

𝑥−1
= lim𝑥→1−

𝑥+1

𝑥2
(

𝑥2

𝑥2−1
𝑒

𝑥2

𝑥2−1). 

On a :  lim𝑥→1−
𝑥−1

𝑥2
= 2 𝑒𝑡 𝑒𝑛 𝑝𝑜𝑠𝑎𝑛𝑡 𝑋 =

𝑥2

𝑥2−1
𝑡𝑒𝑙 𝑞𝑢𝑒  𝑞𝑢𝑎𝑛𝑑 [

𝑥 → 1
𝑋 → −∞,

 

lim𝑥→1−
𝑥+1

𝑥2
𝑒

𝑥2

𝑥2−1 = lim𝑋→−∞ 𝑋𝑒
𝑋 = 𝑂  

Donc : lim𝑥→1−
𝑓(𝑥)−𝑓(1)

𝑥−1
= 𝑂  

On en déduit que 𝑓 est dérivable à droite en -1 et à gauche en 1 𝑒𝑡 𝑓’𝑑(−1)  = 𝑓’𝑑(1)  =  𝑂. 

2) Etudions et traçons( Cf.) . 

Df =ℝ  

- lim𝑥→±∞ 𝑓(𝑥) = lim𝑥→±∞ 𝑒
𝑥2

𝑥2−1 = 𝑒  

lim𝑥→±∞ 𝑓(𝑥) = 𝑒  

- lim𝑥→−1+ 𝑓(𝑥) = lim𝑥→−1+ 𝑒
𝑥2

𝑥2−1 = 𝑒−∞ = 0 ⇒ lim𝑥→−1+𝑓(𝑥) =0 et lim𝑥→−1− 𝑓(𝑥) =

+∞ 

- lim𝑥→1− 𝑓(𝑥) = 𝑒
𝑥2

𝑥2−1 = 𝑒−∞ = 0 ⇒ lim𝑥→1− 𝑓(𝑥) = 𝑜 𝑒𝑡 lim𝑥→1+ 𝑓(𝑥) = +∞ 

Donc la droite d’équation 𝑦 = 𝑒 est asymptote horizontale à (𝐶𝑓) et les droites d’équations 

𝑥 = 1 et 𝑥 = −1 sont asymptotes verticales à (𝐶𝑓). 

Pour tout 𝑥 ∈ 𝑅 {−1; 1};  

On a : 𝑓 ′(𝑥) = (
𝑥2

𝑥2−1
)
′

𝑒
𝑥2

𝑥2−1 

=
2𝑥(𝑥2−1)−2𝑥(𝑥2)

(𝑥2−1)2
𝑒

𝑥2

𝑥2−1  

Donc : 𝑓 ′(𝑥) =
−2𝑥

(𝑥2−1)2
𝑒

𝑥2

𝑥2−1  
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𝑓 ′(𝑥) = 𝑂 ⇔ −2𝑥𝑒
𝑥2

𝑥2−1 = 𝑂 

⇔ −2𝑥 = 𝑂 𝑒𝑡 𝑒
𝑥2

𝑥2−1 > 0 

⇔ 𝑥 = 0 𝑒𝑡 𝑒
𝑥2

𝑥2−1 > 0  

 

𝑇𝑎𝑏𝑙𝑒𝑎𝑢 𝑑𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛  

 

 

 

 

 

 

 

 

 

 

 

Représentation graphique de (𝑐𝑓)  

 

Représentation graphique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II3- Fonctions exponentielles de base à (𝒂 > 𝟎) 

3.1- Définition et propriétés  
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1.1- Définition. 

Soit 𝑎 un nombre réel strictement positif et différent de 1. 

① Pour tout nombre réel  𝑥, 𝑜𝑛 𝑎 ∶ 𝑎𝑥 = 𝑒𝑥𝑙𝑛𝑥  

② On appelle la fonction exponentielle de base 𝑎, l’application 

𝑒𝑥𝑝𝑎 ∶  ℝ → ℝ+
∗  

               𝑥 → 𝑎𝑥  

Donc :  ∀ 𝑥 ∈  ℝ, 𝑒𝑥𝑝𝑎(𝑥) = 𝑎
𝑥 = 𝑒𝑥𝑙𝑛𝑎  (𝑎 > 0; 𝑎 ≠ 1) 

Ainsi 𝑒𝑥 est appelé exponentielle de base 𝑒. 

1.2-proprièté : 

1) Pour tous nombre réel 𝑎 > 0 𝑒𝑡 𝑝𝑜𝑢𝑟 𝑡𝑜𝑢𝑡 𝑟é𝑒𝑙 𝑥, 𝑜𝑛 𝑎 ∶ 

𝑙𝑛𝑎𝑥 = 𝑥𝑙𝑛𝑎;  
2) 𝑃𝑜𝑢𝑟 𝑡𝑜𝑢𝑠 𝑎 > 0 𝑒𝑡 𝑏 > 0 𝑒𝑡 ∀ 𝑥, 𝑦 ∈ ℝ, 𝑜𝑛 𝑎:   

① 𝑎𝑥+𝑦 = 𝑎𝑥 . 𝑎𝑦  

② 𝑎−𝑦 =
1

𝑎𝑦
  

③ 𝑎𝑥−𝑦 =
𝑎𝑥

𝑎𝑦
  

④ (𝑎𝑏)𝑥 = 𝑎𝑥𝑏𝑥  

 ⑤ (
𝑎

𝑏
)
𝑥

=
𝑎𝑥

𝑏𝑥
 

 ⑥ (𝑎𝑥)𝑦 = 𝑎𝑥𝑦 

Application 1 : 

Considère la fonction de ℝ → ℝ définie par : 𝑓(𝑥) = 𝑥3−𝑥 et (𝑐) sa courbe représentative 

𝑑𝑎𝑛𝑠 𝑙𝑒 𝑝𝑙𝑎𝑛 𝑚𝑢𝑛𝑖 𝑑𝑢 𝑟𝑒𝑝é𝑟𝑒 (0, 𝐼, 𝐽).  

1) 𝑎) Déterminons la limite de f en −∞ 

      b) Déterminons la limite en +∞ de la fonction g definie par 𝑔(𝑥) = 𝑓(𝑥) × 𝑙𝑛3. En 

déduire la limite en +∞ de la fonction f 

2)  Etudier les variations de f sur ℝ 

3) construire la courbe (𝑐𝑓)𝑑𝑒 𝑓 

Application 2 : 

On considère dans la fonction numérique définie par : 𝑓(𝑥) = (𝑎𝑥2 + 𝑏)𝑒1+𝑐𝑥 (𝐶) sa courbe 

représentative dans un repère orthogonal, unité 2 cm. 

1) Déterminer les réels 𝑎, 𝑏 et 𝑐 pour que la courbe (𝐶) : 

- Admet un minimum relatif au point 0 ; 

- Passe par le point 𝐴(1
1
) et qu’en ce point, elle admet une tangente de coefficient directeur 

égal à 1.  

2) Les réels 𝑎, 𝑏 et 𝑐 étant déterminés, justifier que 𝑓 est dérivable sur ℝ et que sa fonction 

dérivée est 𝑓′(𝑥) = −(𝑥2 − 2𝑥)𝑒1−𝑥. 

3) Etudier les variations de 𝑓 et tracer la courbe (𝐶) de 𝑓. 

4) Soit 𝑛 un entier naturel non nul, on considère l’intégrale 𝐼𝑛 = ∫ 𝑥𝑛𝑒1−𝑥𝑑𝑥.
1

0
 

a) Etablir une relation entre  𝐼𝑛+1 et 𝐼𝑛. 

b) Calculer 𝐼2 et donner une interprétation graphique du nombre 𝐼2. 

5) a) Démontrer que pour tout 𝑥 réel de [0; 1] et pour tout 𝑛 ∈ ℕ∗ : 

   On a l’inégalité suivante : 𝑥𝑛 ≤ 𝑥𝑛𝑒1−𝑥 ≤ 𝑥𝑛𝑒.  

b)  En déduire un encadrement de 𝐼𝑛, puis la limite de 𝐼𝑛 quand 𝑥 tend vers +∞. 
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Application 3 : 

          Partie A : Soit la fonction définie sur ℝ par : 𝑓(𝑥) =
1

2
𝑥2𝑒−𝑥. On note (𝐶) la courbe    

représentative de 𝑓 dans un plan 𝒫 rapporté à un repère orthogonal (0;  𝐼; 𝐽) unité graphique 1cm 

sur (𝑂𝑥) et 10 cm sur (𝑂𝑦).  

1) a)  Déterminer la limite de 𝑓 en −∞. 

b) Déterminer la limite de 𝑓 en +∞ (on pourra noter que 𝑓(𝑥) = 2 [
𝑥

2
𝑒−

𝑥

2] 

c) Expliciter la dérivée 𝑓′ de 𝑓 et étudier, c’est à dire signe de 𝑓′(𝑥). 

d) Etudier les variations de 𝑓. 

e) Construire la courbe(𝐶) de 𝑓 dans le plan. 

2) On considère la fonction F définie sur [0 ; +∞[ par F (𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 

a) Utiliser une intégration par partie pour calculer : 𝐼(𝑥) = ∫ 𝑡𝑒−𝑡𝑑𝑡
𝑥

0
 

b) Montrer en utilisant a) et une nouvelle intégration par partie que 𝐹(𝑥) = 1 − 𝑒−𝑡 (1 + 𝑥 +
𝑥2

2
). 

c) Montrer que F est une fonction strictement croissante telle 0 ≤ 𝐹(𝑥) ≤ 1 pour tout 𝑥. 

d) Montrer en utilisant 1-b), que F admet en +∞ une limite que l’on déterminera. En déduire 

que l’équation F(x) = c, avec 0 ≤ 𝑐 ≤ 1 admet une solution et une seule dans [0; +∞[. 

         Partie B : Dans cette partie, on se propose de résoudre l’équation 𝐹(𝑥) = 0,95. pour cela, 

on introduit la fonction auxiliaire : g(𝑥) = 𝑙𝑛 (1 + 𝑥 +
𝑥2

2
) + 𝑙𝑛20 

1) Montrer que l’unique réel 𝛼 tel que 𝐹(𝛼) = 0,95 est aussi l’unique solution de g(𝑥) = 𝑥. 

2) Montrer que g est une fonction strictement croissante sur ℝ. en déduire que l’image 

g([5; 10] est incluse dans [5; 10]  

3) a) Justifier que |g′(x)|≤
1

3
 pour tout 𝑥 ∈ [5; 10] 

      b) En déduire |g(𝑣) − g(𝑢) |≤
1

3
| 𝑣 − 𝑢| pour tout 𝑥 ∈ [5; 10]  

     c) Montrer  que 𝛼 ∈ [0; 10]. 

4) On considère la suite (𝑈𝑛) de nombres de l’intervalle [0; 10] définie par  𝑈0 = 5 et 𝑈𝑛+1 = 𝑔(𝑈𝑛). 

a) Utiliser la question 3. c) par récurrence sur n que : |𝑈𝑛 − 𝛼| ≤
5

3𝑛
;  

b) Déterminer 𝑛0 tel que |𝑈𝑛0 − 𝛼| < 10−2. 

c) Donner une valeur décimale approchée 10−2 près de 𝛼. 

Remarque : 

 𝑓a :𝑥 → 𝑎𝑥 = ℮𝑥 ln𝑎 

①𝐷𝑓 = ℝ 

②𝑓′a(𝑥) = (℮
𝑥 ln𝑎)

′
= ln 𝑎℮𝑥 ln𝑎  ∀ 𝑥 ∈ ℝ, 𝑓a   est dérivable sur ℝ 

𝑓′a est du signe de ln 𝑎  :  

On a deux cas : 

1er cas : 0<a<1                                                    

1) lim𝑥→+∞ 𝑎
𝑥 = 0   

2) lim𝑥→−∞ 𝑎
𝑥 = +∞  

3) lim𝑥→−∞
𝑎𝑥

𝑥
= −∞  

2e cas :  a>1 

1) lim𝑥→−∞ 𝑎
𝑥 = 0  
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2) lim𝑥→+∞ 𝑎
𝑥 = +∞ 

3) lim𝑥→+∞
𝑎𝑥

𝑥
= +∞ 

3 .2-Résolution d’équation 

Exemples : 

Résolutions dans ℝ 

(E) :22𝑥+3 − 3 × 2𝑥+1 = 0 

On a :22𝑥+3 − 3 × 2𝑥+1 + 1 = 22𝑥 × 23 − 3 × 2𝑥 × 2 + 1 

8 × 22𝑥 − 6 × 2𝑥 + 1  

En posant 𝑋 = 2𝑥  ,on réecrit et de la forme : 

8𝑋2 − 6 × +1 = 0 ⟺ Δ′ = 9 − 8 × 1 = 1 > 0 

⟺ 𝑋1=
3−1

8
=

1

4
 𝑒𝑡 𝑋2=

3+1

8
=

1

2
 

⟺ 8(𝑋 −
1

4
) (𝑋 −

1

2
) = 0 ⟺ 8(2𝑋 −

1

4
) (2𝑥 −

1

2
) = 0 

⟺ 2𝑥 =
1

4
ou 2𝑥 =

1

2
 

⟺℮𝑿 𝐥𝐧𝟐 =
𝟏

 𝟒
 ou  ℮𝑿 𝐥𝐧𝟐 =

𝟏

𝟐
 

⟺ 𝑥 ln2 = − ln 4 OU 𝑥 ln 2 = − ln 2 

⟺ 𝑥 = −
ln4

ln2
ou𝑥 = −

ln 2

ln2
= −1 

⟺ 𝑥 = −
2 ln2

ln2
ou𝑥 = −1 ⟺ 𝑥 = −2 ou 𝑥 = −1 

𝑆 = {−2;−1}  
 

III. Fonctions puissances : 

III.1- Etudes des fonctions  puissances. 

1.1- Définition :  

soit 𝛼 un nombre réel. 

On appelle fonction puissance d’exposant 𝛼, la fonction 𝑥 → 𝑥2. 

∀ 𝑥 > 0,on a :  𝑥𝛼 = ℮𝛼ln𝑥  

La fonction 𝑥 → 𝑥𝛼est définie sur ]0; +∞[ et b sa fonction dérivée est la fonction 𝑥 →
𝛼

𝑥
℮𝛼 ln𝑥 

1.2-Fonction 𝒖𝜶(𝜶 ∈ ℝ) 

Propriétè1 :  

Soit 𝛼 un nombre réel  et U une fonction dérivable et strictement positive sur un intervalle K. 

la fonction 𝑥 → 𝑢(𝑥)𝛼 est la composée des fonctions 𝑥 → 𝑢(𝑥) et 𝑥𝛼.Elle est dérivable sur k 

et on a (𝑢𝛼)′ = 𝛼𝑢′𝑢𝛼d 

De plus , on a :𝑢(𝑥)𝛼 = ℮𝛼 ln𝑢(𝑥) 

Propriété 2 : 

Soit ∝ un nombre réel diffèrent de -1, u une fonction dérivable strictement positive sur un 

intervalle K. la fonction u’u² admet pour primitive sur K la fonction 
𝑢∝+1

∝+1
. 

Exemple :  

La fonction  𝑓(𝑥)  = 2𝑥(1 − 𝑥²)√2 admet pour primitive  sur ]−1; 1[  la fonction 

 𝑓(𝑥) = −
(1−𝑥²)√2+1

√2+1
. 
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III2- Croissance  comparée de lnx ,𝒆𝒙  𝒆𝒕 𝒙∝ 

2.1- Limites de référence :  

Propriétés : 

Soit 𝛼 ∈ ℝ+. on a :  

1) lim𝑥→+∞
𝑙𝑛𝑥

𝑥2
= 𝑂                                     3) lim𝑥→+∞

𝑒𝑥

𝑒∝
= +∞                  5)lim𝑥→−∞|𝑥|

2 𝑒𝑥=O 

2) lim𝑥→𝑂+ 𝑥
2𝑙𝑛𝑥 = 𝑂                               4)lim𝑥→+∞ 𝑥

2𝑒−𝑥 = 𝑂                  6)lim𝑥→+∞
𝑙𝑛𝑥

𝑒𝑥
= 𝑂 

Remarque :  

Lorsqu’on ne peut conclure directement, on peut conjoncture  la limite d’une fonction 

comportant des fonction logarithme ou expo en remarquant que :  

- La fonction expo soit  plus  vite que la fonction  puissance ; 

- La fonction soit plus que la fonction logarithme népérien  

 

Application 1 : 

Soit 𝑓 la fonction définie par : {
𝑓(𝑥) = |

𝑥−1

𝑥
|
1

√2
     , 𝑠𝑖 𝑥 ≠ 1

𝑓(1) = 0
 

On désigne par (c) la courbe représentative de f. 

1) Etudier la continuité et la dérivabilité de f en 1 

2) Etudier et tracer (c). 

Résolution : 

{
𝑓(𝑥) = |

𝑥 − 1

𝑥
|
1

√2
   ,   𝑠𝑖 𝑥 ≠ 1

𝑓(1) = 𝑂

 

1) Continuité et dérivabilité en 1 de f  

- Continuité en 1, 

𝑓(𝑥) = |
𝑥 − 1

𝑥
|
1

√2
= 𝑒

1

√2𝑙𝑛 |
𝑥 − 1

𝑥
|. 

lim
𝑥→1

𝑓(𝑥) = lim
𝑥→1

𝑒
1

√2 ln (
𝑥 − 1

𝑥
) = 𝑒−∞ = 0 

lim𝑥→1 𝑓(𝑥) = 𝑓(1) = 0.  

Donc f est  continue en 1. 

- Dérivabilité en 1   

lim
𝑥→1+

𝑓(𝑥) − 𝑓(1)

𝑥 − 1
= lim

𝑥→1+

𝑒
1

√2ln (
𝑥−1

𝑥
)

𝑥 − 1
 

= lim𝑥→1+
𝑒

1

√2 ln(
𝑥−1

𝑥
)

𝑒ln(𝑥−1)
  

= lim𝑥→1+ 𝑒
(
1

√2
−1) ln(𝑥−1)−

1

√2
𝑙𝑛𝑥

= +∞  

Alors : lim𝑥→1+
𝑓(𝑥)−𝑓(1)

𝑥−1
= +∞    

lim𝑥−1−
𝑓(𝑥)−𝑓(1)

𝑥−1
= lim𝑥→1−

𝑒

1

√2
ln(

1−𝑥
𝑥
)

𝑥−1
 

= lim𝑥→1− (−
𝑒

1

√2
ln(

1−𝑥
𝑥
)

1−𝑥
)  
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= lim𝑥→1−
𝑒

1

√2
ln (

1−𝑥
𝑥
)

𝑒ln (1−𝑥)
 = −∞ 

 

lim𝑥→1+
𝑓(𝑥)−𝑓(1)

𝑥−1
= +∞ 𝑒𝑡  lim𝑥→1−

𝑓(𝑥)−𝑓(1)

𝑥−1
= −∞,  donc  𝑓 n’est pas dérivable en 

1.  

2) 𝐷𝑓 = ]−∞; 0[∪] 0; +∞[ 

lim𝑥→−∞(𝑓𝑥) = 1 𝑒𝑡 lim𝑥→+∞ 𝑓(𝑥) = 1.  

lim𝑥→0<(𝑓𝑥) = lim𝑥→0> 𝑓(𝑥) = +∞.  

Sens de variation 

𝑙𝑎 𝑓𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 𝑒𝑠𝑡 𝑑é𝑟𝑖𝑣𝑎𝑏𝑙𝑒 𝑠𝑢𝑟 𝐷𝑓 𝑒𝑡 𝑠𝑎 𝑑𝑒𝑟𝑖𝑣é𝑒 𝑒𝑠𝑡 ∶ 

𝑓′(𝑥) =
1

√2|𝑥−1|
|
𝑥−1

𝑥
|

1

√2    

𝑓′(𝑥) = 0 ⇔
𝑥−1

𝑥
= 0  

lim
𝑥→0<

𝑓(𝑥) = lim
𝑥→0>

𝑓(𝑥) = +∞  

 

 

 

 

 

 

 

 

 

 

Tableau de variation 
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Chapitre 5 : SUITES NUMERIQUES 

I. Etude globale d’une suite numérique 

I1 –Definition d’une suite numérique 

𝐈𝟏.𝟏 − Definition: 

On appelle suite numérique, toute fonction de ℕ vers ℝ généralement notée(𝑢𝑛)𝑛, 𝑛 ∈ ℕ 

ou tout simplement(𝑢𝑛). 

 Une suite peut être définie par une formule explicite qui permet de calculer 𝑢𝑛 en 

fonction de 𝑛 telle que :   
ℕ⟶ ℝ                           
𝑛 ⟶ 𝑢𝑛 = 𝑛 + (−1)

𝑛  

 Une Suite peut-être définie par son premier terme et une formule de récurrence telle 

que :  {
𝑢𝑛 = 1                   

𝑢𝑛+1 =
1

2
𝑈𝑛 + 3 

; ∀𝑛 ∈ ℕ 

𝐈𝟐 −Suites minorées, majorées et bornées. 

𝐈𝟐.𝟏 − Définition : Soit(𝑢𝑛)𝑛, Une suite numérique. 

 (𝑢𝑛)𝑛, est dite minorée, s’il existe un nombre réel 𝑚 tel que : pour tout entier 

naturel  𝑛, on a : 𝑚 ≤ 𝑢𝑛 ; 

 (𝑢𝑛)𝑛, est dite majorée, s’il existe un nombre réel M tel que : pour tout entier 

naturel 𝑛, on a : 𝑢𝑛 ≤ 𝑀 ; 

 (𝑢𝑛)𝑛, est dite bornée, si elle est à la fois minorée et bornée i.e : 𝑚 ≤ 𝑢𝑛 ≤ 𝑀. 

Les nombres réels 𝑚 et 𝑀 sont respectivement appelés minorant et majorant de(𝑈𝑛)𝑛. 

Exemple :  

Soit (𝑢𝑛)𝑛; 𝑛 ∈ ℕ, la suite définie  par : 𝑢𝑛 =
𝑛(−1)𝑛+cos𝑛

𝑛+1
  

Démontrons que 𝑢𝑛 est bornée. 

En effet, |𝑢𝑛| = |
𝑛(−1)𝑛+cos𝑛

𝑛+1
| 

  =
1

𝑛=1
|(−1)𝑛 × 𝑛 + cos 𝑛| 

  ≤ 
1

𝑛+1
(|(−1)𝑛|. |𝑛| + |𝑐𝑜𝑠𝑛|) car |𝑥 + 𝑏| ≤ |𝑥 + 𝑏| (inégalité triangulaire) 

  ≤
1

𝑛+1
(|𝑛| + | cos 𝑛|)𝑜𝑟 |𝑐𝑜𝑠𝑛| ≤ 1 𝑒𝑡 |𝑛| = 𝑛 

 ⟹ |𝑈𝑛| ≤
1

𝑛+1
 (𝑛 + 1) ⟹ |𝑢𝑛| ≤ 1 

Donc 𝑈𝑛 est minorée par −1 et majorée par 1, d’où (𝑢𝑛) 𝑒𝑠𝑡 𝑏𝑜𝑟𝑛é𝑒. 

𝐈𝟐.𝟐 − Théorème : 

En général, pour démontrer qu’une suite (𝑈𝑛) est bornée, l’un des procédés ci-dessous 

est utile. 

 Encadrer le terme général de la suite (𝑈𝑛) par deux nombres réels. 

 Etudier la fonction 𝑓 lorsque (𝑈𝑛) est du type 𝑈𝑛 = 𝑓(𝑛). 

 Faire un raisonnement par récurrence. 

𝐈𝟑 −Sens de variations 

𝐈𝟑.𝟏 –Théorème : 
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Pour étudier le sens de variation d’une suite Numérique, l’une de méthodes suivantes est 

admise.  

 Comparer 𝑢n et 𝑢n+1, ceci revient à étudier le signe de : 𝑢𝑛+1 − 𝑢𝑛 

 Comparer 
𝑈𝑛+1

𝑈𝑛
 𝑒𝑡 1 pour une suite à terme positif. 

 Raisonner par récurrence lorsque 𝑢𝑛 est définie par une formule de récurrence 

(𝑖𝑒 𝑢𝑛+1 = 𝑓(𝑢𝑛) 

Exemple 1 :  

Etudier le sens de variation de la suite (𝑢𝑛)𝑛 définie par : 𝑢𝑛 =
3𝑛+2

2𝑛−1
 

Procédons par deux méthodes différentes : 

Méthode 1 : comparons 𝑢𝑛+1 − 𝑢𝑛 

On a: 𝑢𝑛+1 − 𝑢𝑛 =
3(𝑛+1)+2

2(𝑛+1)−1
−
3𝑛+2

2𝑛−1
 

=
3𝑛+5

2𝑛+1
−
3𝑛+2

2𝑛−1
  

=
(3𝑛+5)(2𝑛−1)−(2𝑛+2)(3𝑛+2)

(2𝑛+1)(2𝑛−1)
   

=
6𝑛²−3𝑛+10𝑛−5−6𝑛2−4𝑛−3𝑛−2

4𝑛²−1
  

𝑢𝑛+1 − 𝑢𝑛 =
−7

4𝑛2−1
< 0 ⟹ 𝑢𝑛+1 − 𝑢𝑛 < 0, 

Donc ∀ 𝑛 ∈ ℕ, donc 𝑈𝑛 est strictement decroissante. 

Méthode 2 : posons 𝑢𝑛 = 𝑓(𝑛) 

On a: 
𝑓:ℕ⟶ℝ

𝑥→𝑓(𝑥)=
3𝑥+2

2𝑥−1
 
  

𝑓(𝑥) =
3𝑥+2

2𝑥−1
⟹ 𝑓′(𝑥) =

3(2𝑥−1)−2(3𝑥+2)

(2𝑥−1)2
=

−7

(2𝑥−1)2
< 0,  

𝑓′(𝑥) < 0 ,𝑓 est strictement  decroissante, donc 𝑢𝑛 est decroissante. 

Exemple 2:  

Etudions le sens de variation de la suite (𝑣𝑛) définie par 𝑣𝑛 =
1

3𝑛
 

Comparons : 
𝑉𝑛+1

𝑉𝑛
𝑒𝑡 1 

On a: 
𝑉𝑛+1

𝑉𝑛
=

1

3𝑛+1
1

3𝑛

=
1

3𝑛+1
× 3𝑛 =

3𝑛

3𝑛×3
=

1

3
< 1 

𝑉𝑛+1

𝑉𝑛
=

1

3
< 1, donc 𝑢𝑛 est strictement decroissante. 

𝐈𝟒 −Suites monotones : 

𝐈𝟒.𝟏 –Ppropriétés : 

Soit(𝑢𝑛)𝑛, 𝑛 ∈ ℕ, une suite numérique. 𝑠𝑖 ∀𝑛 ∈ 𝑁 : 

 𝑢𝑛 ≤ 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est croissante ;  

 𝑢𝑛 ≥ 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est décroissante ;  

 𝑢𝑛 = 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est constante. 

Remarque : 

 Une suite (𝑢𝑛) est dite monotone si elle est soit croissante, soit décroissante ; 

 Une suite (𝑢𝑛) est dite stationnaire, si elle est constante à un certain rang. 

𝐈𝟓 –Suites arithmétiques, suites géométrique  
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𝐈𝟓.𝟏 –Suites arithmétiques 

𝐈𝟓.𝟏.𝟏 –Definition :  

Une suite (𝑈𝑛) est dite arithmétique lorsqu’il existe un nombre réel 𝒓 appelé raison tel que 

pour tous entiers naturels 𝑛, 𝑝; on a :  

 𝑢𝑛+1 = 𝑢𝑛 + 𝑟 : Formule de récurrence 

Si 𝑛 = 0, alors 𝑢𝑛 = 𝑢0 + 𝑛𝑟  

 Si 𝑛 = 1, alors 𝑢𝑛 = 𝑢1 + (𝑛 − 1)𝑟   

Si 𝑛 = 2, alors 𝑢𝑛 = 𝑢2 + (𝑛 − 2)𝑟 

D’une façon générale, pour tout entier naturel 𝑛 𝑒𝑡 𝑝, on a : 

     𝑈𝑛 = 𝑈𝑝 + (𝑛 − 𝑝)𝑟 : Formule explicite 

Retenons bien : 

Pour démontrer qu’une suite est arithmétique, il suffit de prouver que la différence entre 

deux termes consécutifs est constante, i.e. : 𝑈𝑛+1 − 𝑈𝑛 = 𝑟,𝑛 ∈ ℕ. 

𝐈𝟓.𝟏.𝟐 –Somme des termes consécutifs d’une suite arithmétique: 

(𝑢𝑛)𝑛,  est une suite arithmétique,∀ 𝑛 ∈ ℕ, on a : 

𝑼𝟏 + 𝑼𝟐 + …+ 𝑼𝒏 = 𝒏 ×
𝑼𝟏+𝑼𝒏

𝟐
   et 𝑼𝟎 + 𝑼𝟏 + 𝑼𝟐  …+ 𝑼𝒏−𝟏 = 𝒏 ×

𝑼𝟎+𝑼𝒏−𝟏

𝟐
  

En particulier : 1 + 2 + 3 + 4 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
. 

𝐈𝟓.𝟐 –Suites géométriques 

𝐈𝟓.𝟐.𝟏 – Définition :  

Une suite (𝑢𝑛) est dite géométrique lorsqu’il existe un nombre réel  𝒒 appelé raison tel que 

pour tout nombre entier naturel 𝑛, 𝑝; On a : 

       𝑢𝑛+1 = 𝑞𝑢𝑛 : Formule de récurrence) 

Si 𝑛 = 0, alors :  𝑢𝑛 = 𝑢0𝑞
𝑛   

 Si 𝑛 = 1, alors :  𝑢𝑛 = 𝑢1𝑞
𝑛−1 

Si 𝑛 = 2, alors :  𝑢𝑛 = 𝑢2𝑞
𝑛−2 

D’une façon générale, pour tout entier naturel 𝑛 𝑒𝑡 𝑝, on a : 

      𝑢𝑛 = 𝑢𝑝𝑞
𝑛−𝑝: Formule explicite 

Retenons bien :  

Pour démontrer qu’une suite est géométrique, il suffit de prouver que le quotient de deux 

termes consécutifs est constant, i.e. : 
𝑈𝑛+1

𝑈𝑛
= 𝑞,(𝑞 ∈ ℕ) 

𝐈𝟓.𝟐.𝟐 –Somme des termes consécutifs d’une suite géométrique: 

(𝑈𝑛)𝑛,  est une suite géométrique de raison  𝑞, (𝑞 ≠ 1),∀ 𝑛 ∈ ℕ, on a :  

𝑈1 + 𝑈2 + …+ 𝑈𝑛 = 𝑈𝑛 ×
1−𝑞𝑛+1

1−𝑞
   et 𝑈0 +𝑈1 + 𝑈2  …+ 𝑈𝑛−1 = 𝑈0 ×

1−𝑞𝑛

1−𝑞
 

𝐈𝟓.𝟑 –Convergence et divergence d’une suite : 

 Une suite (𝑈𝑛) est dite convergente lorsqu’elle admet une limite finie (𝑙) lorsque 

𝑛 → +∞ 

 Une suite (𝑈𝑛) est dite divergente lorsqu’elle admet une limite infinie(∞) lorsque 

𝑛 → +∞ 
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II. Limite d’une suite numérique :  

𝐈𝐈𝟏 –Calcul de limites 

𝐈𝐈𝟏.𝟏 –Propriété: 

Soit (𝑢𝑛), une suite definie par : 𝑢𝑛 = 𝑓(𝑛) où 𝑓est une fonction numérique. Si 𝑓 a une 

limite en +∞, alors (𝑢𝑛) a une limite et on a : 

lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

𝑓(𝑥) , (𝑙𝑎 𝑟é𝑐𝑖𝑝𝑟𝑜𝑞𝑢𝑒 𝑒𝑠𝑡 𝑓𝑎𝑢𝑠𝑠𝑒) 

Exemple : 

 lim
𝑛→+∞

𝑙𝑛 (
𝑥2+1

𝑥2
) = 0, donc la suite (𝑣𝑛)𝑛, de terme général 𝑣𝑛 = 𝑙𝑛 (

𝑛2+1

𝑛2
) converge 

vers 0. 

 lim
𝑛→+∞

(𝑥 cos
1

𝑥
) = +∞, donc la suite (𝑤𝑛)𝑛 de terme général 𝑤𝑛 = 𝑛 𝑐𝑜𝑠

1

𝑛
 est 

divergente. 

𝐈𝐈𝟐 –Convergence d’une Suite arithmétique et géométrique. 

𝐈𝐈𝟐.𝟏 –Théorème :  

1) Soit (𝑢𝑛)𝑛,𝑛 ∈ ℕ, une suite arithmétique de raison 𝑟,∀ 𝑛 ∈ ℕ, 𝑢𝑛 = 𝑢0 + 𝑛𝑟 

 Si 𝑟 > 0, alors : lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

(𝑛𝑟) = +∞ ; (𝑢𝑛)𝑛,est divergente ; 

 Si 𝑟 = 𝑜, alors : lim
𝑛→+∞

𝑢𝑛 = 𝑢0   la suite (𝑢𝑛) converge donc vers 𝑢0 ; 

 Si 𝑟 < 0, alors : lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

(𝑛𝑟) = −∞, (𝑢𝑛)𝑛,est divergente ; 

2) Soit(𝑢𝑛)𝑛,𝑛 ∈ ℕ, une suite géométrique de raison 𝑞 et de 1er terme 𝑢0 ≠ 0, 𝑢𝑛 = 𝑢0𝑞
𝑛 

 Si |𝑞| > 1, alors la suite (𝑢𝑛) est divergente. 

 Si |𝑞| < 1, alors la suite (𝑢𝑛) est convergente. 

 Si |𝑞| = 1, alors la suite (𝑢𝑛) est stationnaire (𝑢𝑛 = 𝑢0) 

𝐈𝐈𝟐.𝟐 –Propriétés et comparaison: 

On considère les suites (𝑢𝑛) ,(𝑣𝑛) et(𝑤𝑛) et  𝑙 un nombre réel. 

 Si (𝑢𝑛) et (𝑢𝑛) sont convergentes et si à partir d’un certain indice (𝑟𝑎𝑛𝑔), 𝑢𝑛 ≤ 𝑣𝑛,  

alors lim
𝑛→+∞

𝑢𝑛 ≤ lim
𝑛→+∞

𝑣𝑛 ; 

 Si à partir d’un certain rang, 𝑢𝑛 ≥ 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑣𝑛 = +∞, alors lim
𝑛→∞

𝑢𝑛 = +∞ 

 Si à partir d’un certain rang, 𝑣𝑛 ≤ 𝑢𝑛 ≤ 𝑤𝑛 et lim
𝑛→+∞

𝑣𝑛 = lim
𝑛→+∞

𝑤𝑛 = 𝑙, 

alors lim
𝑛→+∞

𝑢𝑛 = 𝑙 ; 

 Si à partir d’un certain rang, 𝑢𝑛 ≤ 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑤𝑛 = −∞, alors lim
𝑛→+∞

𝑢𝑛 = −∞ ; 

 Si la suite (𝑣𝑛) est telle qu’à partir d’un certain rang partir, on ait : 

|𝑢𝑛 − 𝑙| < 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑣𝑛 = 0, 𝑎𝑙𝑜𝑟𝑠 lim
𝑛→+∞

𝑢𝑛 = 𝑙 

𝐈𝐈𝟑 –Convergence d’une suite monotone : 

 Toute suite croissante et majorée est convergent ; 

 Toute suite décroissante et minorée est convergente ; 

 Toute suite croissante et non majorée diverge vers +∞ 

 Toute suite décroissante et non minorée diverge vers −∞ 
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𝐈𝐈𝟑 –Image d’une suite par une fonction: 

𝐈𝐈𝟑.𝟏 –Propriété :  

Soit 𝑓 une fonction, 𝐷𝑓 son domaine de définition et (𝑈𝑛)une suite  d’éléments de 𝐷𝑓. 

 Si lim
𝑛→+∞

𝑢𝑛 = 0et lim
𝑛→ 𝑎

𝑓(𝑥) = 𝑙, alors lim
𝑛→+∞

𝑓(𝑢𝑛) = 𝑙. (𝑓𝑖𝑛𝑖𝑒 𝑜𝑢 𝑖𝑛𝑓𝑖𝑛𝑖𝑒) 

𝐈𝐈𝟑.𝟐 −Autre propriété : 

Soit 𝑔 une fonction continue sur un intervalle 𝑘, (𝑈𝑛)une suite à valeur dans 𝑘 définie parla 

relation de récurrence 𝑢𝑛+1 = 𝑔(𝑢𝑛) 

Si (𝑢𝑛) est convergente, alors sa limite est une solution de l’équation 𝑔(𝑥) = 𝑥.  

La solution ∝ de cette équation est un point fixe de 𝑔. 

Retenons bien :  

Si 𝑔(𝑥) = 𝑥 n’admet pas de solution, alors (𝑢𝑛) est divergente.  

Si(𝑢𝑛) converge vers 𝑙 et si 𝑓 est continue en 𝑙, alors : 𝑓(𝑙) = 𝑙. 

𝐈𝐈𝟒 –Croissances comparées des suites 𝒂𝒏, 𝒏𝜶 𝒆𝒕 𝒍𝒏(𝒏) : 

𝐈𝐈𝟒.𝟏 –Propriété : 

Pour tout 𝑛, et ∀ 𝑎 ∈ ℝ on a :  

 Si ∝ > 0, alors lim
𝑛→+∞

ln𝑥

𝑛∝
= 0 

 Si ∝ > 1 et ∝> 𝑜, alors ; lim
𝑛→+∞

𝑛𝛼

𝑎𝑛
= 0 

 Si 0 < 𝑎 < 1 et ∝< 0, alors lim
𝑛→+∞

𝑛𝛼

𝑎𝑛
= +∞ 

𝐈𝐈𝟓 – Suites adjacentes : 

𝐈𝐈𝟓.𝟏 −Définition : 

Soit (𝑢𝑛) une suite croisante et (𝑣𝑛) une Suite décroissante. On dit que (𝑢𝑛)et (𝑣𝑛) sont 

adjacentes si : lim
𝑛→+∞

(𝑣𝑛 − 𝑢𝑛) = 0 

Deux suites adjacentes convergent et ont la même limite. 

Exercices d’application 

Exercice 1 

Soit (𝑢𝑛) la suite définie par : {
𝑢0 = 1

𝑢𝑛+1 =
𝑢𝑛−1

𝑢𝑛+3
, ∀ 𝑛 ∈ ℕ

 

1) Calculer 𝑢, 𝑢2, 𝑢3 et 𝑢4 et prouver que ∀ 𝑛 ∈ ℕ, 𝑢𝑛 + 1 > 0. 

2) Démontrer que la suite (𝑣𝑛) définie sur ℕ par : 𝑣𝑛 =
1

𝑢𝑛+1
 est une suite arithmétique. 

3) Exprimer 𝑣𝑛 puis 𝑢𝑛 en fonction de n et étudier la convergente de la suite (𝑢𝑛). 

Exercice 2 

On considère la suite u définie sur ℕ par : {
𝑢0 = 1

𝑢𝑛+1 =
2𝑢𝑛

𝑢𝑛+2

 

1) Démontrer que la suite 𝑣𝑛 =
1

𝑢𝑛
 est une suite arithmétique. Préciser sa raison et son 

premier terme. 

2) Exprimer 𝑣𝑛 en fonction de 𝑛, puis 𝑢𝑛 en fonction de 𝑛. 

3) Calculer 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛 en fonction de 𝑛. 
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4) Etudier la convergence de la suite 𝑢. 

Exercice 3 

1) Soit u la suite définie par : {
𝑢0 = 0

𝑢𝑛+1 =
1

2−𝑢𝑛
, ∀∈ ℕ

 

a) Calculer 𝑢1, 𝑢2 et 𝑢3 

b) Comparer les 4 premiers termes de la suite u aux 4 premiers termes de la suite W 

définie sur ℕ par : 𝑊𝑛 =
𝑛

𝑛+1
 

2) Soit 𝑣 la suite définie par : 𝑣𝑛 = 𝑙𝑛 (
𝑛

𝑛+1
),∀∈ ℕ 

a) Montrer que 𝑣0 + 𝑣1 + 𝑣3 = −𝑙𝑛4 

b) On pose : 𝑠𝑛 = 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛. Exprimer 𝑠𝑛en fonction de 𝑛. 

Exercice 4 

On considère la suite (𝑢𝑛) définie par : {
𝑢0 = 0

𝑢𝑛+1 =
3𝑢𝑛+2

𝑢𝑛+2

, ∀∈ ℕ 

1) Démontrer que pout entier 𝑛de ℕ, 𝑢𝑛 ≠ 2 

2) On pose : 𝑉𝑛 =
𝑢𝑛+1

𝑢𝑛+2
 ; ∀∈ ℕ 

a) Montrer que (𝑉𝑛) est une suite géométrique dont on précisera la raison et le  

premier terme 𝑣0. 

b) Exprimer 𝑉𝑛 en fonction de n 

c) En déduire 𝑢𝑛 en fonction de n 

d) Calculer la limite de (𝑉𝑛) lorsque n tend vers +∞ 

e) Calculer en fonction de n, la somme 𝑠𝑛 = 𝑣0 + 𝑣1 +⋯+ 𝑣𝑛. 
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Chapitre 6 : LES INTEGRALES 

I. Intégrale d’une fonction continue 

𝐈𝟏 –Definition de l’intégrale d’une fonction continue 

Soit 𝑓 une fonction continue sur un intervalle I, a et b deux éléments de I. 

On appelle intégrale de a à b de, le nombre réel 𝐹(𝑏) −  𝐹(𝑎) où 𝐹 est une primitive de 𝑓 

sur I. 

On note : ∫ 𝑓(𝑥)𝑑𝑥 = [𝐹(𝑥)]𝑎
𝑏 = 𝐹(𝑏) − 𝐹(𝑎)

𝑏

𝑎
)   

On calcule une intégrale, il y a au moins une étape de calcul où l’on détermine une primitive 

F puis une étape de calcul où l’on calcule F(b) - F(a).  

Exemple : 

Calculer : 

a) ∫ 𝑥𝑑𝑥
1

0
 

b) ∫ 𝑥2𝑑𝑥
2

1
 

c) ∫ 𝑐𝑜𝑠𝑥𝑑𝑥
𝜋

0
 

𝐈𝟐 –Propriété 

Soit 𝑓 une fonction continue sur un intervalle I, a et b deux éléments de I. 

1) ∫ 𝑓(𝑥)𝑑𝑥 = 0
𝑎

𝑎
 

2) ∫ 𝑓(𝑥)𝑑𝑥 = −∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎
 

3) ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎

𝑐

𝑎
 

𝐈𝟑 –Linéarité de l’intégrale 

Propriété 

𝑓 et 𝑓 sont deux fonctions continue sur un intervalle I. 

1) ∫ 𝛼𝑓(𝑥)𝑑𝑥 = 𝛼 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
 

2) ∫ (𝛼𝑓 + 𝛽𝑔)(𝑥)𝑑𝑥 = 𝛼 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
+ 𝛽 ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 

3) ∫ −𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= −∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

Exemple : 

Calculer : 𝐼 = ∫ 𝑐𝑜𝑠2𝑥𝑑𝑥
2

1
 

𝐈𝟑 –Signe de l’intégrale 

Propriété 

𝑓 et 𝑔 sont deux fonctions continue sur un intervalle I et a et b deux éléments de I. 

- Si 𝑓 ≥ 0 sur [𝑎 ; 𝑏], alors ∫ 𝑓(𝑥)𝑑𝑥 ≥ 0
𝑏

𝑎
 

- Si 𝑓 ≤ 𝑔 sur [𝑎; 𝑏], alors ∫ 𝑓(𝑥)𝑑𝑥 ≤
𝑏

𝑎
∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 

𝐈𝟒 –Inégalité de la moyenne 

Propriété : 

Soit 𝑓 une fonction continue sur un intervalle I a et b deux éléments de I. 

1) Si pour tous réels m et M et pour tout élément x de [𝒂; 𝒃], 𝒎 ≤ 𝒇(𝒙) ≤ 𝑴, alors :  

𝒎(𝒃 − 𝒂) ≤ ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝑀(𝒃 − 𝒂)
𝑏

𝑎
. 



74 
 

2) Si M est un réel tel que pour tout élément x de [𝒂; 𝒃], |𝒇(𝒙)| ≤ 𝑴, alors : 

|∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| ≤ 𝑀(|𝒃 − 𝒂|). 

II. Technique de calcul d’intégrale : 

𝐈𝐈𝟏 – Technique de base 

𝟏. 𝟏–Primitives usuelles 

Tableau des primitives 

Fonction 𝑢′

𝑢
 

𝑢′𝑒𝑢 𝑢′𝑢𝛼 𝑢′ × 𝑣′ ∘ 𝑢 

Primitive 𝑙𝑛|𝑢| 𝑒𝑢 𝑢𝛼+1

𝛼 + 1
 

𝑣 ∘ 𝑢 

 

Exemple : Calculer 

a) ∫ (
2𝑥+4

𝑥2+4𝑥+1
)𝑑𝑥

2

1
 

b) ∫ 𝑐𝑜𝑠𝑥𝑒𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

 

c) ∫ 2(2𝑥 + 3)4𝑑𝑥
2

−1
 

𝟏. 𝟐–Integration par parties 

Propriété : 

𝑢 et 𝑣 sont deux fonctions dérivable sur un intervalle I telles que leurs dérivées soient 

continues sur I a et b deux éléments de I. 

On a : ∫ 𝑢′(𝑥). 𝑣(𝑥)𝑑𝑥 = [𝑢(𝑥). 𝑣(𝑥)]𝑎
𝑏 −

𝑏

𝑎
∫ 𝑢(𝑥). 𝑣′(𝑥)𝑑𝑥
𝑏

𝑎
 

Exemple : Calculer 

a) ∫ 𝑥𝑒𝑥𝑑𝑥
1

0
 

b) ∫ 𝑙𝑛𝑥𝑑𝑥
2

1
 

c) ∫
𝑙𝑛𝑠

𝑥
𝑑𝑥

2

−1
 

 

𝟏. 𝟑–Changement de variables 

Propriété : 

Pour intégrer l’intégrale : ∫ 𝑓(𝛼𝑥 + 𝛽)𝑑𝑥
𝑏

𝑎
, avec 𝑎 ≠ 0, on peut utiliser le procéder suivant : 

- Faire le changement de variables en posant : 𝑢 = 𝛼𝑥 + 𝛽, alors on obtient : 𝑑𝑢 = 𝛼𝑑𝑥 ; 

- Utiliser l’intégrale : ∫ 𝑓(𝛼𝑥 + 𝛽)𝑑𝑥
𝑏

𝑎
= ∫

1

𝛼
𝑓(𝑢)𝑑𝑢 =

1

𝛼
∫ 𝑓(𝑢)𝑑𝑢
𝛼𝑏+𝛽

𝛼𝑎+𝛽

𝑢(𝑏)

𝑢(𝑎)
 

Exemple : Calculer 

a) ∫
𝑥

√𝑥2−1
𝑑𝑥

−2

−3
 

b) ∫
𝑥

√9−𝑥2
𝑑𝑥

1

−1
 

c) ∫ 𝑥√𝑥 + 1𝑑𝑥
1

0
 

𝟏. 𝟐–Integration des fonctions paires, impaires et périodique 

Propriété : 

1) Soit 𝑓 une fonction continue sur un intervalle I symétrique par rapport à l’origine. 
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- Si 𝑓 est paire, alors : ∫ 𝑓(𝑥)𝑑𝑥 = 2∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

𝑎

−𝑎
 ; 

- Si 𝑓 est paire, alors : ∫ 𝑓(𝑥)𝑑𝑥 = 2∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

𝑎

−𝑎
 

2) Soit 𝑓 une fonction continue sur ℝ périodique de période P. 

Pour tous nombres réels a et b, on a : 

- ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏+𝑝

𝑎+𝑝
 

- ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑝

0

𝑎+𝑝

𝑎
 

𝐈𝐈𝟐 – Intégration de fonctions particulières 

𝟐. 𝟏–Intégration de fonctions trigonométriques 

Exemple :  

Calculer ∫ (𝑐𝑜𝑠3𝑥𝑥𝑠𝑖𝑛𝑠 + 3𝑠𝑖𝑛3𝑥)𝑑𝑥
𝜋

2
0

 

𝟐. 𝟏–Intégration de fonctions rationnelles 

Exemple : Calculer 

a) ∫
1

𝑥2−𝑥−6
𝑑𝑥

1

0
 

b) ∫
1

𝑥(𝑥2+1)
𝑑𝑥

2

1
 

c) ∫
8𝑥+5

2𝑥2+3𝑥+1
𝑑𝑥

2

0
 

Exercice d’application : 

1) On donne  I = ∫ (cos 𝑥)2𝑑𝑥
𝜋

2
0

 ; 𝐽 = ∫ (sin𝑥)2𝑑𝑥
𝜋

2
0

 

a) Calculer Ι + 𝐽  et  Ι − 𝐽   
b) En déduire  I et J 

2) On considère les intégrales I et J  suivantes :  𝐼 = ∫ (𝑥 + 1)𝑐𝑜𝑠2𝑥𝑑𝑥
𝜋

4
0

 et  

𝐽 = ∫ (𝑥 + 1)𝑠𝑖𝑛2𝑥𝑑𝑥
𝜋

4
0

  

a) Calculer Ι + 𝐽  et  Ι − 𝐽   
b) En déduire  I et J 

3) On considère les intégrales I et J suivantes :   𝐼 = ∫ 𝑠𝑖𝑛2𝑥𝑐𝑜𝑠4𝑥𝑑𝑥
𝜋

4
0

 et  

 𝐽 = ∫ 𝑐𝑜𝑠2𝑥𝑠𝑖𝑛4𝑥𝑑𝑥
𝜋

4
0

 

a) Calculer Ι + 𝐽  et  Ι − 𝐽   
b) En déduire  I et J 

 

 

 

 

 

 

Fin 
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Chapitre 7 : Nombres complexes 

I. Etudes algébriques  

I1 −Notion de nombre complexe 

𝟏. 𝟏 − Définition :  

On appelle nombre complexe, tout nombre qui s’écrit de la forme 𝑎 + 𝑖𝑏 où 𝑎 𝑒𝑡 𝑏 sont des 

nombres réels et 𝑖 est appelé nombre complexe imaginaire tel que 𝑖2 = −1 avec 𝑖 = (0; 1). 

L’ensemble des nombres complexes est noté ℂ, par ailleurs ℂ∗ est l’ensemble des nombres 

complexes non nuls. 

𝟏. 𝟐 −Notation et vocabulaire : 

On considère un nombre complexe 𝑍 tel que : 𝑧 = 𝑎 + 𝑖𝑏. 

 L’écriture 𝑎 + 𝑖𝑏 est appelé forme algébrique. 

 Le nombre réel 𝑎 est appelé partie réelle de 𝑧, notée 𝑎 = 𝑅e(𝑧) 

 Le nombre réel 𝑏 est appelé partie imaginaire de 𝑧, notée, 𝑏 = 𝐼m(𝑧) 

L’ensemble des nombres imaginaires purs est noté 𝑖ℝ. 

Remarque :  

Soit 𝑧 = 𝑎 + 𝑖𝑏 un nombre complexe. 

 Si   𝑏 = 0, alors 𝑧 = 𝑎  est appelé nombre réel pur 𝑧 ∈ ℝ. Tout nombre réel est un 

nombre complexe car  (ℝ ⊂ ℂ). 

 Si  𝑎 = 0, alors 𝑧 = 𝑖𝑏  est appelé nombre réel pur 𝑧 ∈ 𝑖ℝ 

Propriété :  

Soient 𝑧 = 𝑎 + 𝑖𝑏 et 𝑧′ = 𝑎 + 𝑖𝑏 deux nombres complexes. On a les propriétés suivantes :  

 𝑧 = 𝑧′ ⟺ {
𝑅𝑒(𝑧) = 𝑅𝑒(𝑧′)

𝐼𝑚(𝑧) = 𝐼𝑚(𝑧′)  
⟺ {

𝑎 = 𝑎′

 𝑏 = 𝑏′
  

 𝑧 = 0 ⟺ {
𝑅𝑒(𝑧) = 0

𝐼𝑚(𝑧) = 0  
⟺ {

𝑎 = 0
 𝑏 = 0

  

𝟏. 𝟑 − Représentation géométrique d’un nombre complexe 

Le plan est muni d’un repère orthonormé direct (0; 𝑒1; 𝑒2) 

L’application M : 𝒫 ⟶ ℂ 

           𝑎 + 𝑖𝑏 ⟶ 𝑀(𝑎; 𝑏) est une bijection de  ℂ ⟶ 𝒫 

 𝑀(𝑏
𝑎) est appelé point image de 𝑧 = 𝑎 + 𝑖𝑏 

 𝑎 + 𝑖𝑏 est appelé affixe du point 𝑀(𝑏
𝑎) 

Par ailleurs l’application 𝑢⃗⃗ ∶  𝜗 ⟶ ℂ qui, à tout  𝑎 + 𝑖𝑏, associe 

 𝑢⃗⃗ (𝑎, 𝑏) est aussi une bijection de ℂ ⟶ 𝜗. (𝜗 est l’ensemble des 

vecteurs du plan). 

 𝑢⃗⃗(𝑏
𝑎) est appelé vecteur image de 𝑍 = 𝑎 + 𝑖𝑏 

 𝑎 + 𝑖𝑏 est appelé affixe du vecteur 𝑢⃗⃗(𝑏
𝑎). 

 Le plan est muni d’un repère orthonormé direct  (0; 𝑒1; 𝑒2) est appelé plan complexe ; 

 Un point 𝑀 d’affixe 𝑧 de ce plan est souvent noté 𝑀(𝑧) 

 La droite de repère  (0; 𝑒1) appelée axe des réels et celle de repère  (0; 𝑒2) est appelée 

axe des imaginaires. 

Exemple : 
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Représentons dans le plan complexe, les nombres complexes suivantes : 𝑧1 = 2 + 3𝑖 ; 

𝑧2 = −
3

2
+ 2𝑖 ;  𝑧3 = 4 + 5 

𝟏. 𝟒 −Opération dans ℂ 

𝐚 −Addition et multiplication dans ℂ 

Soient 𝑧 = 𝑎 + 𝑖𝑏 et 𝑧′ = 𝑎′ + 𝑖𝑏′ deux nombres complexes. 

 𝑧 + 𝑧′ = 𝑎 + 𝑎′ + 𝑖(𝑏 + 𝑏′), la somme de 𝑧 et 𝑧′ 

 𝑧. 𝑧′ = 𝑎𝑎′ − 𝑏𝑏′ + 𝑖(𝑎𝑏′ + 𝑎′𝑏), le produit de 𝑧 et 𝑧′ 

Exemple :  

Effectuons les opérations suivantes :  

 (2 − 𝑖) + (4 − 3𝑖) = 6 − 4𝑖  

 (4 − 5𝑖)(3 + 2𝑖) = 22 − 7𝑖  

 2𝑖(4 − 5𝑖) = 10 + 8𝑖  

 (2 + 5𝑖)2 = −21 + 20𝑖  

 (3𝑖 − 1)3 = 26 − 18𝑖  
Remarque :  

D’après ce qui précède, on remarque que : 

i) (ℂ, +) est un groupe commutatif ; 

ii) (ℂ∗, ×) est un groupe commutatif ; 

iii) La multiplication est distributive par rapport à l’addition ; 

On dit que (ℂ, +, ×) est un corps commutatif. 

iv) L’opposé de nombre complexe 𝑎 + 𝑖𝑏 est le nombre complexe – 𝑎 − 𝑖𝑏 

v) L’inverse de tout nombre complexe 𝑎 + 𝑖𝑏 est :  
1

𝑎+𝑖𝑏
=

a

a2+b2
− 𝑖

𝑏

𝑏2+𝑏2
 

Preuve : 

 (𝑎 − 𝑖𝑏) est appelé conjugué de 𝑧 et (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2 

On a :  
1

a+𝑖𝑏
=

𝑎−𝑖𝑏

(𝑎+𝑖𝑏)(𝑎−𝑖𝑏)
=

𝑎

𝑎2+𝑏2
− 𝑖

𝑏

𝑎2+𝑏2
 

Exemple : 
1

2−3𝑖
=

2+3𝑖

(2−3𝑖)(2+3𝑖)
=

2+3𝑖

4+9
=

2

13
+

3𝑖

13
  

Remarque :  

Dans ℂ, tout comme dans ℝ, 0 n’a pas d’inverse. 

Propriété : 

Soient 𝑧 et 𝑧′ deux nombres complexes. 

𝑧𝑧 = 0 ⟺ 𝑧 = 0 ou 𝑧′ = 0 

𝐛 − Les produits remarquables 

Propriété : 

Pour tous nombres complexes z et z’ et pour tout entier naturel 𝑛, on a : 

 (𝑧 + 𝑧′)2 = 𝑧2 + 2𝑧𝑧′ + 𝑧′2 ; 

 (𝑧 − 𝑧′)2 = 𝑧2 − 2𝑧𝑧′ + 𝑧′2 ; 

 (𝑧 + 𝑧′)(𝑧 − 𝑧′) = 𝑧2 − 𝑧′2 . 

 (𝑧 + 𝑧′)𝑛 = ∑ 𝐶𝑛
𝑘𝑛

𝑘=0 z𝑛−𝑘. 𝑧′𝑘  

La forme : (𝑧 + 𝑧′)𝑛 = ∑ 𝐶𝑛
𝑘𝑛

𝑘=0 z𝑛−𝑘. 𝑧′𝑘 est appelée formule du binôme de Newton. 
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Les 𝐶𝑛
𝑘 sont appelés coefficients binomiaux. Ils sont obtenus à partir du triangle de Pascal ou 

à partir de calcul de combinaison suivante 𝐶𝑛
𝑘 =

𝑛!

𝑘!(𝑛−𝑘)!
 qui sera vue en probabilité. 

Exemple :  

Calculons (2 + 𝑖)5 

Triangle de Pascal correspondant à 𝑛 − 1.  

 1 

 1  1 

 1  2  1 

 1  3  3  1 

 1  4  6  4  1 

 1  5  10  10  5  1 

(2 + 𝑖)5 = ∑ 𝐶5
𝑘5

𝑘=0 (2)5−𝑘 × (𝑖)𝑘  

          = 𝐶5
0(2)5 + 𝐶5

1(2)4(𝑖)1 + 𝐶5
2(2)3(𝑖)2 + 𝐶5

3(2)2(𝑖)3 + 𝐶5
4(2)1(𝑖)4 + 𝐶5

5(𝑖)5  

          = 25 + 5 × 24 × 𝑖 + 10 × 23(−1) + 10 × 22(−𝑖) + 5 × 2(1) + 𝑖5  

          = 32 + 80𝑖 − 80 − 40𝑖 + 10 + 𝑖  

(2 + 𝑖)5 = −38 + 41𝑖  

𝐜 − Affixe du barycentre de 𝒏 points pondérés. 

Propriété :soit 𝐴1, 𝐴2, … , 𝐴𝑛des points d’affixes respectives 𝑧𝐴1 , 𝑧𝐴2 , … , 𝑧𝐴𝑛 et 𝛼1, 𝛼2, … , 𝛼𝑛 

des nombres réels dont ∑ 𝛼𝑖
𝑛
𝑖=1 ≠ 0. 

L’affixe du barycentre G des points pondérés  (𝐴𝑖; 𝛼𝑖) est : 

𝑧𝐺 =
∑ 𝛼𝑘
𝑛
𝑘=1 𝑧𝐴𝑘
∑ 𝛼𝑘
𝑛
𝑘=1

=
𝛼1𝑧𝐴1 + 𝛼2𝑧𝐴2 + … + 𝛼𝑛𝑧𝐴𝑛

𝛼1 + 𝛼2 + …+ 𝛼𝑛
 

Exemple :  

Soit deux points A et b d’affixes 𝑧𝐴 et 𝑧𝐵. 

 L’affixe de AB est: 𝑧𝐵 − 𝑧𝐴 ; 

 L’affixe d’un point I milieu du segment [𝐴𝐵] est : 𝑧𝐼 =
𝑧𝐴+𝑧𝐵

2
 

 L’affixe du point G , centre de gravité d’un triangle 𝐴𝐵𝐶 est : 𝑧𝐺 =
𝑧𝐴+𝑧𝐵+𝑧𝐶

3
 

 L’affixe du point G, centre de gravité d’un rectangle 𝐴𝐵𝐶𝐷 est : 𝑧𝐺 =
𝑧𝐴+𝑧𝐵+𝑧𝐶+𝑧𝐷

4
 

𝐝 − Puissances entière d’un nombre complexe 

Propriétés : 

1) Soit z un nombre complexe non nul et n un entier naturel non nul. On a : 

 𝑧0 = 1 

 𝑧−𝑛 =
1

𝑧𝑛
 

 𝑧𝑛+1 = 𝑧𝑛 × 𝑧. 

2) Puissance entière de 𝑖 

𝑖0 = 1 

𝑖1 = 𝑖  

𝑖2 = −1 

𝑖3 = −𝑖 

𝑖4 = 1 

𝑖5 = 𝑖 

𝟏. 𝟓 −Conjugué d’un nombre complexe. 

Définition :  

Soit 𝑧 un nombre complexe tel que : 𝑧 = 𝑎 + 𝑖𝑏.  

On appelle conjugué de 𝑧, le ombre complexe noté 𝑧 tel que 𝑧 = 𝑎 − 𝑖𝑏 
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Exemple : 

 1 + 𝑖̅̅ ̅̅ ̅̅ = 1 − 𝑖 ; 

 3 − 2𝑖̅̅ ̅̅ ̅̅ ̅̅ = 3 + 2𝑖           

 −2 − 𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2𝑖           

Remarque :  

Les points 𝑀 et 𝑀’ d’affixes respectives 𝑧 et 𝑧 sont symétriques par rapport à l’axe réel. 

 

 

 

 

 

 

 

Propriétés 1: 

Pour tout nombre complexe 𝑧 = 𝑎 + 𝑖𝑏, on a : 

 𝑧̿ = 𝑧 

 𝑧 + 𝑧̅ = 2𝑅e(𝑧) : la somme de 𝑧 et son conjugué est un réel ; 

 𝑧. 𝑧̅ = 𝑎2 + 𝑏2 : le produit de z et son conjugué est un réel positif ou nul ; 

 𝑧 − 𝑧̅ = 2𝐼m(𝑧) : la différence de 𝑧 et son conjugué est un imaginaire pur ; 

 𝑧 ∈ ℝ ⟺  𝑧 = 𝑧̅ : Si 𝑧 est un réel, alors 𝑧 = 𝑧̅  

 𝑧 ∈ 𝑖ℝ ⟺ 𝑧 = −𝑧 et 𝑧 ≠ 0 : Si 𝑧 est un imaginaire pur, alors 𝑧 = −𝑧. 

Exemple 

Soit 𝑧 = −1 + 2𝑖. Déterminons  𝑧̿ ; 𝑧 + 𝑧̅ ; 𝑧. 𝑧 ̅et 𝑧 − 𝑧̅. On a : 

 𝑧̿ = (−1 + 2𝑖) ⟹ 𝑧. 𝑧̅ = −1 + 2𝑖  

 𝑧 + 𝑧̅ = −1 + 2𝑖 + (−1 + 2𝑖)  

                           = −1 + 2𝑖 − 1 − 2𝑖  

          ⟹ 𝑧 + 𝑧̅ = −2  

 𝑧. 𝑧̅ = (−1 + 2𝑖)(−1 + 2𝑖)   

  = (−1 + 2𝑖)(−1 − 2𝑖)  

  = 1 + 4  

 ⟹ 𝑧. 𝑧̅ = 5  

 𝑧 − 𝑧̅ = −1 + 2𝑖 − (−1 + 2𝑖)  

     = −1 + 2𝑖 + 1 + 2𝑖  

 ⟹ 𝑧 − 𝑧̅ = 4𝑖  

Propriété 2 :  

Pour tous nombres complexes 𝑧 et 𝑧′, ∀ 𝑛 ∈ ℤ , on a :  

1) 𝑧 + 𝑧′̅̅ ̅̅ ̅̅ ̅̅ = 𝑧̅ + 𝑧′ 

2) – 𝑧 = −𝑧 

3) 𝑧. 𝑧′̅̅ ̅̅ ̅ = 𝑧. 𝑧′ 

4) (
1

𝑧
) =

1

𝑧
;  (𝑧 ≠ 0) 

5) (
𝑧

𝑧′
) =

𝑧

𝑧′
;  (𝑧′ ≠ 0) 

6) (𝑧𝑛) = (𝑧)𝑛;  (𝑧 ≠ 0) 
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Exemple : 

Soit les nombres complexes 𝑧 et 𝑧′ tels que : 𝑧 = 2 + 𝑖 et 𝑧′ = 1 − 𝑖  

Ecrire sous forme algébrique les nombres complexes suivants :  

a) (2𝑧 + 𝑧′) 

b) (𝑧 +
2

𝑧′
) 

c) (𝑧2 + 𝑧′2) 

d) (𝑧 + 𝑧′)2 

Solution : 

𝑧 = 2 + 𝑖 et 𝑧′ = 1 − 𝑖 

Ecrire sous forme algébrique les nombres complexes suivants :  

a) (2𝑧 + 𝑧′) = 2𝑧 + 𝑧′  

   = 2(2 + 𝑖) + (1 − 𝑖)  

   = 2(2 − 𝑖) + 1 + 𝑖  

    = 4 − 2𝑖 + 1 + 𝑖  

             ⟹ (2𝑧 + 𝑧′) = 5 − 𝑖  

b) (𝑧 +
2

𝑧′
) = 𝑧 +

2

𝑧′
 

   = (2 + 𝑖) +
2

(1−𝑖) 
  

   = 2 − 𝑖 +
2

1+𝑖
  

   = 2 − 𝑖 +
2(1−𝑖)

(1+𝑖)(1−𝑖)
  

   = 2 − 𝑖 +
2(1−𝑖)

1+1
  

   = 2 − 1 +
2(1−𝑖)

2
  

   = 2 − 𝑖 + 1 − 𝑖  

    ⟹ (𝑧 +
2

𝑧′
) = 3 − 2𝑖  

c) (𝑧2 + 𝑧′2) = 𝑧2 + 𝑧′2 

 = (2 + 𝑖)
2
+(1 − 𝑖)

2
    

 = (2 − 𝑖)2+(1 + 𝑖)2  

 = 4 − 4𝑖 − 1 + 2𝑖  

⟹ (𝑧2 + 𝑧′2) = 3 − 2𝑖  

d) (𝑧 + 𝑧′)2 = (𝑧 + 𝑧′)
2

 

 = ((2 + 𝑖) + (1 − 𝑖) )
2

  

 = (2 − 𝑖 + 1 + 𝑖)2  

 = 32  

  ⟹ (𝑧 + 𝑧′)2 = 9  

𝟏. 𝟔 −Module d’un nombre complexe. 

Définition : 

Soit 𝑧 un nombre complexe tel que : 𝑧 = 𝑎 + 𝑖𝑏. 

On appelle module de z, le nombre réel positif noté |𝑧| tel que : |𝒛| = √𝒂𝟐 + 𝒃𝟐 
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Exemple : 

Calculons le moudule du nombre complexe 𝑧 dans les cas suivants : 

a)  𝑧 = 3 − 4i 

 |𝑧| = √32 + (−4)2 = √25 = 5  

 ⟹ |𝑧| = 5  

b) 𝑧 =
1

2
+ 𝑖

√3

2
  

            |𝑧| = √(
1

2
)
2

+ (
√3

2
)
2

= √
1

4
+
3

4
= √1 = 1   

           ⟹ |𝑧| = 1  

c) 𝑧 = 2 − 𝑖  

  |𝑧| = √4 + 1 = √5   

           ⟹ |𝑧| = √5  
Remarque :  

Soit 𝑧 = 𝑎 + 𝑖𝑏 un nombre complexe. 

 Si 𝑏 = 0, alors |𝑧| = 𝑎 

 Si 𝑎 = 0, alors |𝑧| = 𝑏 

 ∀ z ∈ ℂ; |𝑧| = |−𝑧| = √𝑎2 + 𝑏2  
Propriétes : 

Pour tous nombres complexes   𝑧 et 𝑧′ et pour tout nombre entier relatif, on a : 

1) |z. z′| = |z| × |z′|  

2) |
1

z
| =

1

|z|
;  (z ≠ 0)  

3) |z𝑛| = |z|𝑛;  (z ≠ 0)  

4) |
z

z′
| =

|z|

|z′|
;  (z′ ≠ 0)  

5) |𝑧 + 𝑧′| ≤ |𝑧| + |𝑧′| ; (inégalité triangulaire) 

6) |𝑅𝑒(𝑧)| ≤ |𝑧|  et |𝐼𝑚(𝑧)| ≤ |𝑧| 

7) |𝑧| − |𝑧′| ≤ |𝑧 + 𝑧′|  
Exemples :  

Déterminons le module de nombre complexe : 

|(−√3 + 𝑖)(1 + 𝑖)2| = |−√3 + 𝑖| × |1 + 𝑖|2  

   = √3 + 1 × (√1 + 1)
2
  

   = √4 × (√2)
2
  

   = 2 × 2  

⟹ |(−√3 + 𝑖)(1 + 𝑖)2| = 4  

|
(−√3+𝑖)

3

(1+𝑖)2
| =

|−√3+𝑖|
3

|1+𝑖|2 
 =

23

(√2)
2 = 2

2       

⟹ |
(−√3+𝑖)

3

(1+𝑖)2
| = 4    

Remarque : 
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 Si 𝑧 est l’affixe d’un point 𝑀, alors |𝑧| = 𝑂𝑀 ; 

 Si z est l’affixe d’un vecteur 𝑢⃗⃗, alors |𝑧| = ‖𝑢⃗⃗‖; 

 si 𝑧𝐴 et 𝑧𝐵 sont les affixes respectives de deux points 𝐴 et 𝐵, alors 

|𝐴𝐵⃗⃗⃗⃗ ⃗⃗ | = |𝒛𝐵 − 𝒛𝐴| = 𝐴𝐵. 

 

 

 

 

 

 

II. Etude trigonométrique 

𝐈𝐈𝟏 − Forme trigonométrique d’un nombre complexe 

𝒂 −Argument d’un nombre complexe 

              Rappel trigonométrique 

   

 

{
 
 

 
 −

𝝅

𝟔
≃
11𝜋

𝟔

−
𝝅

𝟒
≃
𝟕𝝅

𝟒

−
𝝅

𝟑
≃
𝟓𝝅

𝟑

 

{
 
 

 
 −

𝟐𝝅

𝟑
≃
4𝜋

𝟑

−
𝟑𝝅

𝟒
≃
𝟓𝝅

𝟒

−
−𝟓𝝅

𝟔
≃
𝟕𝝅

𝟔

 

 

 

Définition :  

Soit 𝑧 un nombre complexe non nul et 𝑀 son image dans le plan 

complexe. 

On appelle argument de 𝑧, toute mesure de l’angle orienté 

(𝒆𝟏⃗⃗⃗⃗⃗;  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗
̂ ).noté arg(𝑧). Souvent le note 𝜃 ou 𝛼.  

Tout argument de 𝑧 est de la forme : 𝜃 + 2𝑘𝜋, 𝑘 ∈ 𝕫 

On note: arg(𝑧) = 𝜃 + 2𝑘𝜋, 𝑘 ∈ ℤ ou arg (𝑧) ≡ 𝜃[2𝜋]  

Interprétation géométrique 
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Si 𝑧 est l’affixe d’un vecteur 𝑢⃗⃗ , arg (𝑧) est une mesure de l’angle orienté (𝒆𝟏⃗⃗⃗⃗⃗;  𝑢̂⃗⃗). 

si 𝒛𝐴 et 𝒛𝐵 sont les affixes respectives de deux points 𝐴 et 𝐵, alors arg(𝑧 − 𝒛𝐴)  est une 

mesure de l’angle orienté (𝒆𝟏⃗⃗⃗⃗⃗;  𝐴𝐵⃗⃗⃗⃗ ⃗⃗
̂ ) . 

Détermination de l’argument 

Pour tout nombre complexe non 𝑧 = 𝑎 + 𝑖𝑏  et pour argument 𝜃(𝑧), on a : 

                        {
𝑐𝑜𝑠𝜃 =

𝑅𝑒(𝑧)

|𝑧|

𝑠𝑖𝑛𝜃 =
𝐼𝑚(𝑧)

|𝑧|

  ⟹ {
𝑐𝑜𝑠𝜃 =

𝑎

|𝑧|

𝑠𝑖𝑛𝜃 =
𝑏

|𝑧|

 

Remarque : 

i) Soit 𝑧 un nombre complexe 𝑧 ; 

 si 𝑧 = 0, alors |𝑧| = 0 et 𝑧 n’a pas d’argument. 

 Si 𝑧 est un réel, i.e.  (𝑧 ∈ ℝ), alors arg(𝑧) ≡ 0[𝜋] 

 Si 𝑧 est un imaginaire pur, i.e. (𝑧 ∈ 𝑖ℝ), alors 

arg (𝑧) ≡
𝜋

2
[𝜋]. 

ii) Pour tout nombre complexe 𝑧 non nul, on a : 

 arg(𝑧̅) ≡ −arg(𝑧) [2𝜋] = −arg(𝑧) + 2𝑘𝜋;  𝑘 ∈ ℤ 

 arg(−𝑧) ≡ 𝜋 + arg(𝑧) [2𝜋] = 𝜋 + arg(𝑧) + 2𝑘𝜋;  𝑘 ∈ ℤ 

 arg(−𝑧̅) ≡ 𝜋 − arg(z) [2π] = π − arg(z) + 2kπ;  k ∈ ℤ 

 

 

 

 

 

 

 

 

 

Exemple :  

Déterminons un argument des nombres complexes suivants :  

a) 𝑧1 = 1 + 𝑖 

On a : |𝑧1| = √1 + 1 = √2 ⟹ |𝑧1| = √2 

Soit 𝜃 son argument. On a : 

 {
𝑐𝑜𝑠𝜃 =

√2

2

𝑠𝑖𝑛𝜃 =
√2

2

  ⟹ 𝜃 =
𝜋

4
  

     ⟹ arg (𝑧1) ≡
𝜋

4
[2𝜋].   

b) z2 = 1 + 𝑖√3 

  |z2| = √1 + (√3)2 = √4 = 2 ⟹ |z2| = 2 



84 
 

Soit 𝜃 son argument de z2, on a : {
𝑐𝑜𝑠𝜃 =

1

2

𝑠𝑖𝑛𝜃 =
√3

2

     ⟹ 𝜃 =
𝜋

3
;  

    ⟹ arg(z2) =
𝜋

3
+ 2𝑘𝜋;  𝑘 ∈ 𝕫  

c) 𝑧3 = −
1

2
+ 𝑖

√3

2
 

On a :   |z3| = √(−
1

2
)
2

+ (
√3

2
)
2

= √
1

4
+
3

4
= 1 ⟹ |𝑧3| = 1 

Soit 𝜃 un argument de 𝑧3, on a : {
𝑐𝑜𝑠𝜃 = −

1

2

𝑠𝑖𝑛𝜃 =
√3

2

     ⟹ 𝜃 =
2𝜋

3
;  

    ⟹ arg(z3) =
2𝜋

3
+ 2𝑘𝜋;  𝑘 ∈ 𝕫  

𝒃 − Argument d’un produit et d’un quotient 

Propriété :  

Pour tous nombres complexes non nuls 𝑧 et 𝑧′  et pour entier relatif 𝑛, on a : 

i) arg(𝑧. 𝑧′) = arg(𝑧) + arg(𝑧′) + 2𝑘𝜋;  𝑘 ∈ ℤ 

ii) arg (
1

𝑧
) = −arg(𝑧) + 2𝑘𝜋;  𝑘 ∈ ℤ 

iii) arg (𝑧)𝑛 = 𝑛 × 𝑎𝑟𝑔(𝑧) + 2𝑘𝜋;  𝑘 ∈ ℤ 

iv) arg (
𝑧

𝑧′
) = arg(𝑧) − arg(𝑧′) + 2𝑘𝜋;  𝑘 ∈ ℤ 

Remarque : 

Soit 𝐴, 𝐵 𝑒𝑡 𝐶  trois points deux à deux distincts, d’affixes respectives 𝑧𝐴,  𝑧𝐵 et 𝑧𝐶. 

On a : arg (
𝑧
𝐴𝐶⃗⃗⃗⃗⃗⃗⃗

𝑧 
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⃗
) = arg (

𝑧𝐶−𝑧𝐴

𝑧𝐵−𝑧𝐴
) ≡ 𝑀𝑒𝑠 (𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ;  𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) [2𝜋] 

Exemple:  

Déterminons les arguments des nombres complexes suivants : 

Z1 = (−√3 + 𝑖)(1 + 𝑖)2   et Z2 = (
(−√3+𝑖)3

(1+𝑖)2
) 

 Z1 = (−√3 + 𝑖)(1 + 𝑖)2  

Posons  𝑧′1 = −√3 + 𝑖  et  𝑧′′1 = 1 + 𝑖 tels que : Z1 = 𝑧′1(𝑧′′1)
2    

|z′1| = √(−√3)2 + 12 = √3 + 1 = 2   et   |z′′1| = √1 + 1 = √2 

On a : |z′1| = 2  et  |z′′1| = √2 

Soit 𝜃′1, 𝜃′′1 les arguments de 𝑧1  et  𝑧2, on a : 

{
𝑐𝑜𝑠𝜃′1 =

−√3

2

𝑠𝑖𝑛𝜃′1 =
1

2

 ;  ⟹ 𝜃′1 =
5𝜋

6
   et  {

𝑐𝑜𝑠𝜃′′1 =
√2

2

𝑠𝑖𝑛𝜃′′1 =
√2

2

;  ⟹ 𝜃′′1 =
𝜋

4
 

  ⟹ arg(z′1) ≡
5𝜋

6
[2𝜋] et arg(z′′1) ≡

𝜋

4
[2𝜋] 

Z1 = 𝑧′1(𝑧′′1)
2 , alors, on a :  

      |𝑍1| = |𝑧′1| × |𝑧
′′
1|
2  

   = 2 × (√2)
2
  

           ⟹ |𝑍1| = 4  
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Soit 𝛼 , un argument de 𝑍1, on a : 

  𝑎𝑟𝑔(𝑍1) = arg[z′1 × (𝑧′′1)
2]  

      = 𝑎𝑟𝑔(𝑧′1) + 2 × 𝑎𝑟𝑔(𝑧′′1)  

      ≡
5𝜋

6
+ (2 ×

𝜋

4
) [2𝜋] 

      ≡
5𝜋+3𝜋

6
[2𝜋]  

      ⟹ 𝑎𝑟𝑔(𝑍1) ≡
4𝜋

3
[2𝜋] ou 𝑎𝑟𝑔(𝑍1) ≡ −

2𝜋

3
[2𝜋] 

 Z2 = (
(−√3+𝑖)3

(1+𝑖)2
),  d’après de ce qui précède, on a : 

arg(Z2) = arg (
𝑧′1
3

𝑧′′1
2) ≡ 3 arg(𝑧′1) − 2arg (𝑧′′1)  

   ≡ 3 ×
5𝜋

6
− 2 ×

𝜋

4
[2𝜋]  

   ≡
5𝜋

2
−
𝜋

2
[2𝜋]  

   ≡ 2𝜋[2𝜋]  

    ⟹ arg (Z2) ≡ 0[2𝜋] ou  arg(Z2) = 0 + 2𝑘𝜋;  𝑘 ∈ 𝕫 

𝒄 − Forme trigonométrique d’un nombre complexes non nul. 

Définition et présentation :  

Soit 𝑧 un nombre complexe de la forme 𝑧 = 𝑎 + 𝑖𝑏,  

On a :  {
𝑐𝑜𝑠𝜃 =

𝑎

|𝑧|

𝑠𝑖𝑛𝜃 =
𝑏

|𝑧|

 ⟺{
𝑎 = |𝑧|𝑐𝑜𝑠𝜃
𝑏 = |𝑧|𝑠𝑖𝑛𝜃

  

𝑧 = 𝑎 + 𝑖𝑏, ⟹ 𝑧 = |𝑧|𝑐𝑜𝑠𝜃 + 𝑖|𝑧|𝑠𝑖𝑛𝜃 

       = |𝑧|(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  

En posant: 𝑟 = |𝑧|,  

on a:   

  𝒛 = 𝒓(𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽)  appelée forme trigonométrique de 𝒛. 

Remarque:  

Soit 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃), 𝑟 ∈ ℝ∗ et 𝜃 ∈ ℝ. 

 Si 𝑟 > 0 ⟹ 𝑧 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) et arg (𝑧) ≡ 𝜃[2𝜋] 

 Si 𝑟 < 0 ⟹ 𝑧 = −𝑟(cos(𝜃 + 𝜋) + 𝑖𝑠𝑖𝑛(𝜃 + 𝜋))   et arg(𝑧) ≡ (𝜃 + 𝜋)[2𝜋] 

Exemple :  

Mettons ces nombres complexes sous la forme trigonométrique :  

 𝑧1 = 1 + 𝑖  

|𝑧1| = √1 + 1 = √2 ⟹ |𝑧1| = √2  

Soit  𝜃 son argument de 𝑧1, on a : {
𝑐𝑜𝑠𝜃 =

√2

2

𝑠𝑖𝑛𝜃 =
√2

2

;  ⟹𝜃 ≡
𝜋

4
[2𝜋] 

Donc 𝒛𝟏 = √𝟐(𝒄𝒐𝒔
𝝅

𝟒
+ 𝒊𝒔𝒊𝒏

𝝅

𝟒
)  : est la forme trigonométrique de 𝑧1 

 𝑧2 = −
1

2
+ 𝑖

√3

2
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|𝑧2| = √(−
1

2
)
2

+ (
√3

2
)
2

= √
1

4
+
3

4
= √1 = 1   

           ⟹ |𝑧| = 1  

Soit  𝜃 son argument de 𝑧2 , on a : {
𝑐𝑜𝑠𝜃 = −

1

2

𝑠𝑖𝑛𝜃 =
√3

2

;  ⟹𝜃 ≡
2𝜋

3
[2𝜋] 

Donc 𝒛𝟐 = 𝒄𝒐𝒔
𝟐𝝅

𝟑
+ 𝒊𝒔𝒊𝒏

𝟐𝝅

𝟑
 : est la forme trigonométrique de 𝑧2 

 𝑧3 = 1 − 𝑖√3  

|𝑧3| = √1 + (−√3)2 = √1 + 3 = 2 ⟹ |𝑧3| = 2  

Soit 𝜃 son argument de 𝑧3 , on a : {
𝑐𝑜𝑠𝜃 =

1

2

𝑠𝑖𝑛𝜃 = −
√3

2

 ;  ⟹ 𝜃 ≡
5𝜋

3
[2𝜋] 

Donc  𝒛𝟑 = 𝟐(𝒄𝒐𝒔
𝟓𝝅

𝟑
+ 𝒊𝒔𝒊𝒏

𝟓𝝅

𝟑
)  : est la forme trigonométrique de 𝑧3 

Propriété : 

Soit 𝑧 et 𝑧′ deux nombres complexes non nuls. 

On a : 𝑧 = 𝑧′ ⟺ |𝑧| = |𝑧′| et arg(z) ≡ arg(z′)[2π] . 

Deux nombres complexes conjugués ont même module et des arguements opposés 

Exemple :  

Dans chacun des cas suivants, déterminer le module et un argument de 𝑧. 

1) 𝑧 = 1 + 𝑖𝑡𝑎𝑛𝜃 

2) 𝑧 = 1 − 𝑖𝑡𝑎𝑛𝜃 

3) 𝑧 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 

4) 𝑧 = −𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃 

5) 𝑧 = 1 + 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 et 𝜃 ∈ [0;  𝜋] 

6) 𝑧 =
𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃−𝑖𝑠𝑖𝑛𝜃
 

Solution :  

Dans chacun des cas suivants, déterminons le module et un argument de 𝑧. 

1) 𝑧 = 1 + 𝑖𝑡𝑎𝑛𝜃 = 1 + 𝑖
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
  

               𝑧 =
1

𝑐𝑜𝑠𝜃
(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) ⟹ |𝒛| =

𝟏

𝒄𝒐𝒔𝜽
 et 𝒂𝒓𝒈(𝒛) ≡ 𝜽[𝟐𝝅] 

2) 𝑧 = 1 − 𝑖𝑡𝑎𝑛𝜃 = 1 − 𝑖
𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
  

             =
1

𝑐𝑜𝑠𝜃
(𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃) 

                  𝑧 =
1

𝑐𝑜𝑠𝜃
(𝑐𝑜𝑠(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃))  ⟹ |𝒛| =

𝟏

𝒄𝒐𝒔𝜽
 et 𝒂𝒓𝒈(𝒛) ≡ −𝜽[𝟐𝝅] 

3) 𝑧 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 

𝑧 = 𝑐𝑜𝑠(−𝜃) + 𝑖𝑠𝑖𝑛(−𝜃) ⟹ |𝒛| = 𝟏 et 𝒂𝒓𝒈(𝒛) ≡ −𝜽[𝟐𝝅] 

4) 𝑧 = −𝑠𝑖𝑛𝜃 + 𝑖𝑐𝑜𝑠𝜃 

            𝑧 = (𝑐𝑜𝑠 (
𝜋

2
+ 𝜃) + 𝑖𝑠𝑖𝑛 (

𝜋

2
+ 𝜃)) ⟹ |𝒛| = 𝟏 et 𝒂𝒓𝒈(𝒛) ≡ (

𝝅

𝟐
+ 𝜽) [𝟐𝝅] 

5) 𝑧 = 1 + 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 et 𝜃 ∈ [0;  𝜋] 

On a : 𝑧 = 1 + 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 = 1 + 𝑒𝑖𝜃 
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    = 𝑒𝑖
𝜃

2 (𝑒−𝑖
𝜃

2 + 𝑒𝑖
𝜃

2)  

    = 2𝑒𝑖
𝜃

2 (
𝑒
𝑖
𝜃
2+𝑖𝑒

−𝑖
𝜃
2

2
)  

    = 2(𝑐𝑜𝑠
𝜃

2
+ 𝑖𝑠𝑖𝑛

𝜃

2
) 𝑐𝑜𝑠

𝜃

2
  

            𝑧 = 2𝑐𝑜𝑠
𝜃

2
(𝑐𝑜𝑠

𝜃

2
+ 𝑖𝑠𝑖𝑛

𝜃

2
) 

On distingue deux cas: 

1
er

 cas:  𝜃 ∈ [0; 
𝜋

2
[ 

Pour 𝜃 ∈ [0; 
𝜋

2
[ ;  2𝑐𝑜𝑠

𝜃

2
> 0, ⟹ |𝒛| = 2𝑐𝑜𝑠

𝜃

2
 et 𝒂𝒓𝒈(𝒛) ≡

𝜃

2
[𝟐𝝅] 

2
e
 cas:  𝜃 ∈ [ 

𝜋

2
;  𝜋[ 

𝜃 ∈ [ 
𝜋

2
;  𝜋[ ⟹ 2𝑐𝑜𝑠

𝜃

2
< 0  

           ⟹−2𝑐𝑜𝑠
𝜃

2
> 0  

On a :  𝑧 = 2𝑐𝑜𝑠
𝜃

2
(𝑐𝑜𝑠

𝜃

2
+ 𝑖𝑠𝑖𝑛

𝜃

2
) 

   ⟹ 𝑧 = −2𝑐𝑜𝑠
𝜃

2
(−𝑐𝑜𝑠

𝜃

2
− 𝑖𝑠𝑖𝑛

𝜃

2
)  

   ⟹ 𝑧 = −2𝑐𝑜𝑠
𝜃

2
(𝑐𝑜𝑠 (𝜋 +

𝜃

2
) + 𝑖𝑠𝑖𝑛 (𝜋 +

𝜃

2
))  

   ⟹ |𝒛| = −𝟐𝒄𝒐𝒔
𝜽

𝟐
 et 𝒂𝒓𝒈(𝒛) ≡ (𝝅 +

𝜽

𝟐
) [𝟐𝝅] 

6) 𝑧 =
𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃−𝑖𝑠𝑖𝑛𝜃
=

𝑒𝑖𝜃

𝑒−𝑖𝜃
 

     𝑧 = 𝑒2𝑖𝜃 ⟹ |𝒛| = 𝟏 et 𝒂𝒓𝒈(𝒛) ≡ 𝟐𝜽[𝟐𝝅] 

𝒅 − Forme exponentille d’un nombre complexes 

Définition : 

Soit 𝑧 un nombre complexe non nul. 

On appelle forme exponentielle du nombre complexe 𝑧, de module 𝑟 et d’un argument 

𝜃, c’est l’écriture : 𝒛 = 𝒓𝒆𝒊𝜽 ; avec 𝑟 ∈ ℝ+
∗  𝑒𝑡 𝜃 ∈ ℝ. 

cette écriture :  𝑟𝑒𝑖𝜃 est aussi appelée forme polaire de 𝑧. 

Exemple :  

Mettons à la forme exponenntielle les nombres complexes de l’exemple précèdant : 

 𝑧1 = 1 + 𝑖 ⟹ 𝑧1 = √2𝑒
𝑖
𝜋

4   

 𝑧2 = 𝑧2 = −
1

2
+ 𝑖

√3

2
 ⟹ 𝑧2 = 𝑒𝑖

2𝜋

3  

 𝑧3 = 1 + 𝑖√3 ⟹ 𝑧3 = 2𝑒
𝑖
𝜋

3   

Propriétés :  

Soit 𝑧 et 𝑧′ deux nombres complexes non nuls tels que : 𝑧 = 𝑟𝑒𝑖𝜃 et 𝑧′ = 𝑟′𝑒𝑖𝜃′, 𝑛 ∈ ℤ, on a : 

1) 𝑧. 𝑧′ = 𝑟. 𝑟′𝑒
𝑖(𝜃+𝜃′)

 

2) 
1

𝑧
=

1

𝑟
𝑒−𝑖𝜃 

3) 𝑧𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃 

4) 
𝑧

𝑧′
=

𝑟

𝑟′
𝑒𝑖(𝜃−𝜃

′) 
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𝒆 −Formule de Moivre 

Soit 𝑧 le nombre complexe de module 1 et d’un argument 𝜃 tel que soit 𝑧 = 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃. 

∀ 𝑛 ∈ ℤ, 𝑧𝑛 a pour module 1 et argument 𝑛𝜃. 

On en déduit la formule très importante suivante appelée formule de Moivre : 

 (𝒄𝒐𝒔𝜽 + 𝒊𝒔𝒊𝒏𝜽)𝒏 = 𝒄𝒐𝒔(𝒏𝜽) + 𝒊𝒔𝒊𝒏(𝒏𝜽)  

Exemple : 

1)  𝜃 ∈ ℝ, exprimons 𝑐𝑜𝑠4𝜃 et 𝑠𝑖𝑛4𝜃 en fonction de 𝑐𝑜𝑠𝜃 et 𝑠𝑖𝑛𝜃. On a : 

(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)4 = ∑ 𝐶4
𝑘(𝑐𝑜𝑠𝜃)4−𝑘(𝑖𝑠𝑖𝑛𝜃)𝑘4

𝑘=0   

 =

𝑐𝑜𝑠4𝜃 + 𝐶4
1𝑐𝑜𝑠3𝜃(𝑖𝑠𝑖𝑛𝜃) + 𝐶4

2𝑐𝑜𝑠2𝜃(𝑖𝑠𝑖𝑛𝜃)2 + 𝐶4
3𝑐𝑜𝑠𝜃(𝑖𝑠𝑖𝑛𝜃)3 + 𝐶4

4𝑐𝑜𝑠0(𝑖𝑠𝑖𝑛𝜃)4

 = 𝑐𝑜𝑠4𝜃 + 4𝑖𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃 × 6𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 − 4𝑖𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛3𝜃 + 𝑠𝑖𝑛4𝜃 

(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)4 = 𝑐𝑜𝑠4𝜃 + 𝑠𝑖𝑛4𝜃 − 6𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑖(4𝑐𝑜𝑠3𝜃𝑠𝑖𝑛𝜃 − 4𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛3𝜃)    (1) 

Or (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)4 = 𝑐𝑜𝑠4𝜃 + 𝑖𝑠𝑖𝑛4𝜃 (2) 

En égalant les deux relations, on a :  

   (1) = (2) ⟺ {𝑐𝑜𝑠4𝜃 = 𝑐𝑜𝑠
4𝜃 − 6𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃

𝑠𝑖𝑛4𝜃 = 4𝑐𝑜𝑠3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃𝑐𝑜𝑠𝜃          
    

    ⟺ {
𝑐𝑜𝑠4𝜃 = 𝑐𝑜𝑠4𝜃 − 6𝑐𝑜𝑠2𝜃(1 − 𝑐𝑜𝑠2𝜃) + (1 − 𝑐𝑜𝑠2𝜃)2

𝑠𝑖𝑛4𝜃 = 4𝑐𝑜𝑠3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃𝑐𝑜𝑠𝜃                                  
  

⟺ {𝑐𝑜𝑠4𝜃 = 8𝑐𝑜𝑠
4𝜃 − 8𝑐𝑜𝑠2𝜃 + 1               

𝑠𝑖𝑛4𝜃 = 4𝑐𝑜𝑠3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃𝑐𝑜𝑠𝜃          
  

2) Soit 𝑧 =
1

√2
+ 𝑖

1

√2
.  Calculons 𝑧199 

 |𝑧| = √
1

2
+
1

2
= 1 et 𝑎𝑟𝑔(𝑧) =

𝜋

4
 

Donc : 𝑧199 = (𝑐𝑜𝑠
𝜋

4
+ 𝑖𝑠𝑖𝑛

𝜋

4
)
199

 

  = 𝑐𝑜𝑠
199𝜋

4
+ 𝑖𝑠𝑖𝑛

199𝜋

4
  

Or :  
199𝜋

4
=

120𝜋

4
−
𝜋

4
= 30𝜋 −

𝜋

4
⟹

199𝜋

4
= −

𝜋

4
+ 2 × 15𝜋 

          ⟹
199𝜋

4
≡ −

𝜋

4
[2𝜋]  

On en déduit que  : 𝑧199 = 𝑐𝑜𝑠 (−
𝜋

4
) + 𝑖𝑠𝑖𝑛 (−

𝜋

4
) =

1

√2
− 𝑖

1

√2
.   ⟹ 𝒛𝟏𝟗𝟗 =

𝟏

√𝟐
− 𝒊

𝟏

√𝟐
.   

𝒇 −Formule d’Euler : 

Pour tout nombre réel 𝜃, on a le système suivant : 

  {
𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃   (1)

𝑒−𝑖𝜃 = 𝑐𝑜𝑠𝜃 − 𝑖𝑠𝑖𝑛𝜃 (2)
  

 (1) + (2)  ⟹ 𝑒𝑖𝜃 + 𝑒−𝑖𝜃 = 2𝑐𝑜𝑠𝜃 ⟹ 𝑐𝑜𝑠𝜃 =
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
  

 (1) − (2)  ⟹ 𝑒𝑖𝜃 − 𝑒−𝑖𝜃 = 2𝑖𝑠𝑖𝑛𝜃 ⟹ 𝑠𝑖𝑛𝜃 =
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
  

Donc pour tout nombre réel 𝜃, on a:  {
𝒄𝒐𝒔𝜽=

𝒆𝒊𝜽+𝒆−𝒊𝜽

𝟐
 

𝒔𝒊𝒏𝜽=
𝒆𝒊𝜽−𝒆−𝒊𝜽

𝟐𝒊

 

Exemple :  

𝜃 ∈ ℝ,  linéarisons 𝑐𝑜𝑠6𝜃  et   𝑠𝑖𝑛5𝜃. 
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 𝑐𝑜𝑠6𝜃  

On sait que : 𝑐𝑜𝑠𝜃 =
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
  

⟹ 𝑐𝑜𝑠6𝜃 = (
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
)6  

    =
1

26
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃)6  

=
1

26
[∑ 𝐶6

𝑘(𝑒𝑖𝜃)
6−𝑘

. (𝑒−𝑖𝜃)
𝑘6

𝑘=0 ]   

=
1

26
[𝑒6𝑖𝜃 + 6(𝑒5𝑖𝜃 . 𝑒−𝑖𝜃) + 15(𝑒4𝑖𝜃. 𝑒−2𝑖𝜃) + 20𝑒0 + 15(𝑒2𝑖𝜃 . 𝑒−4𝑖𝜃) + 6(𝑒𝑖𝜃. 𝑒−5𝜃) + 𝑒−6𝑖𝜃] 

    =
1

26
[(𝑒6𝑖𝜃 + 𝑒−6𝑖𝜃) + 6(𝑒4𝑖𝜃 + 𝑒−4𝜃) + 15(𝑒2𝑖𝜃 + 𝑒−2𝑖𝜃) + 20] 

   =
1

25
[(
𝑒6𝑖𝜃+𝑒−6𝑖𝜃

2
) + 6 (

𝑒4𝑖𝜃+𝑒−4𝑖𝜃

2
) + 15 (

𝑒2𝑖𝜃+𝑒−2𝑖𝜃

2
) +

20

2
]  

     =
1

32
[𝑐𝑜𝑠6𝜃 + 6𝑐𝑜𝑠4𝜃 + 15𝑐𝑜𝑠2𝜃 + 10]  

⟹ 𝒄𝒐𝒔𝟔𝜽 =
𝟏

𝟑𝟐
[𝒄𝒐𝒔(𝟔𝜽) + 𝟔𝒄𝒐𝒔(𝟒𝜽) + 𝟏𝟓𝒄𝒐𝒔(𝟐𝜽) + 𝟏𝟎]  

 sin5 𝜃 = (
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
)
5

 

 =
1

(2𝑖)5
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)5  

=
1

(2𝑖)5
[𝑒5𝑖𝜃 + 5𝑒4𝑖𝜃(−𝑒−𝑖𝜃) + 10𝑒3𝑖𝜃(−𝑒−𝑖𝜃)

2
+ 10𝑒2𝑖𝜃(−𝑒−𝑖𝜃)

3
+ 5𝑒𝑖𝜃(−𝑒−𝑖𝜃)

4

+ (−𝑒−𝑖𝜃)
5
] 

=
1

(2𝑖)5
[𝑒5𝑖𝜃 − 5𝑒3𝑖𝜃 + 10𝑒𝑖𝜃 − 10𝑒−𝑖𝜃 + 5𝑒−3𝑖𝜃 − 𝑒−5𝑖𝜃]  

=
1

(2𝑖)5
[(𝑒5𝑖𝜃 + 𝑒−5𝑖𝜃) − 5(𝑒3𝑖𝜃 − 𝑒−3𝑖𝜃) + 10(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)]  

=
1

(2𝑖)4
[(
𝑒5𝑖𝜃−𝑒−5𝜃

2
) − 5 (

𝑒3𝑖𝜃−𝑒−3𝑖𝜃

2𝑖
) + 10 (

𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
)]  

sin5 𝜃 =
1

16
[𝑠𝑖𝑛5𝜃 − 5𝑠𝑖𝑛3𝜃 + 10𝑠𝑖𝑛𝜃]  

⟹ 𝐬𝐢𝐧𝟓 𝜽 =
𝟏

𝟏𝟔
𝒔𝒊𝒏𝟓𝜽 −

𝟓

𝟏𝟔
𝒔𝒊𝒏𝟑𝜽 +

𝟓

𝟖
𝒔𝒊𝒏𝜽      

 

𝐈𝐈𝟐 − Racine nième d’un nombre complexe 

𝟐. 𝟏 − Définition  

 

1 
1  1 
1   2  1 
1   3  3  1 
1   4  6  4  1 
1   5  10 10  5  1 

1  6 15  20  15 6 1 
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Soit 𝑧 un nombre complexe non nul et un entier naturel  (𝑛 ≥ 2).  

On appelle racine 𝑛𝑖è𝑚𝑒  de 𝑧, tout nombre complexe 𝑧 tel que :𝑧𝑛 = 𝑧. 

On considère les nombres complexes Ƶ = 𝑟𝑒𝑖𝜃 et 𝑧 = 𝜌𝑒𝑖𝛼.  ∀ 𝑛 ∈ ℕ (𝑛 ≥ 2), on a : 

   𝑧𝑛 = Ƶ⟺ (𝜌𝑒𝑖𝛼)
𝑛
= 𝑟𝑒𝑖𝜃  

   ⟺ 𝜌𝑛𝑒𝑛𝑖𝛼 = 𝑟𝑒𝑖𝜃  

   ⟺ {
𝜌𝑛 = 𝑟

𝑛𝛼 = 𝜃 + 2𝑘𝜋;  𝑘 ∈ 𝕫
  

   ⟺ {
𝜌 = √𝑟

𝑛
                         

𝛼 =
𝜃

𝑛
+
2𝑘𝜋

𝑛
;  𝑘 ∈ 𝕫

  

Propriété : 

Soit Ƶ = 𝑟𝑒𝑖𝜃 un nombre complexe non nul et 𝑛 un entier naturel (𝑛 ≥ 2). 

Ƶ admet des racines n-ièmes telles que :  

𝒛𝒌 = √𝒓
𝒏
𝒆𝒊(

𝜶

𝒏
+
𝟐𝒌𝝅

𝒏
) = √𝒓

𝒏
[𝐜𝐨𝐬 (

𝜶

𝒏
+
𝟐𝒌𝝅

𝒏
) + 𝒊𝒔𝒊𝒏 (

𝜶

𝒏
+
𝟐𝒌𝝅

𝒏
)] ;   𝒌 ∈ {𝟎;  𝟏;  𝟐; …  ;  𝒏 − 𝟏}  

Les racines 𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑛−1 sont obtenues en donnant les valeur 0, 1, 2, … , 𝑛 − 1 à 𝑘. 

Les images 𝑀0, 𝑀1, … ,𝑀𝑛−1  de ces racines sont les sommets d’un polygône regulier à 𝑛 

côtés inscrits dans le cercle de centre 𝑂 et de rayon 𝑂𝑀0 = 𝑂𝑀1 = ⋯ 𝑂𝑀𝑛−1 = √𝑟
𝑛

. 

Remarque :  

La somme de 𝑛 racines 𝑛𝑖è𝑚𝑒 d’un nombre complexes non nul est nulle. 

Exemple :  

1) Déterminons les racines carrées de Ƶ = 1 + 𝑖√3. 

 |Ƶ| = √1 + 3 = 2  

Soit 𝜃 un argument de z. On a :  {
𝑐𝑜𝑠 =  

1

2

𝑠𝑖𝑛 =
√3

2

 ;⟹ 𝜃 =
𝜋

3
  

Donc Ƶ = 2𝑒𝑖
𝜋

3  

Posons 𝑧 = 𝑟𝑒𝑖𝜃 tel que : 𝑧2 = Ƶ ;  où 𝑟 > 0. 

   𝑧2 = Ƶ ⟺ 𝑟2𝑒2𝑖𝜃 = 2𝑒𝑖
𝜋

3   

   ⟺ {
𝑟2 = 2

2𝜃 =
𝜋

3
+ 2𝑘𝜋;  𝑘 ∈ 𝕫  

   ⟺ {
𝑟 = √2                         

𝜃 =
𝜋

6
+ 𝑘𝜋;  𝑘 ∈ 𝕫

   

Les racines de Ƶ sont de la forme : 𝑧𝑘 = √2𝑒
𝑖(
𝜋

6
+𝑘𝜋);  𝑎𝑣𝑒𝑐 𝑘 = {0;  1}. 

On a : 𝑧0 = √2𝑒
𝑖
𝜋

6  et 𝑧1 = √2𝑒
𝑖
7𝜋

6  et 

2) Ecrivons sous forme algébrique les racines carrées de Ƶ. 

On a :  

 𝑧0 = √2𝑒
𝑖
𝜋

6 = √2 (𝑐𝑜𝑠
𝜋

6
+ 𝑖𝑠𝑖𝑛

𝜋

6
)  

   = √2 (
√3

2
+ 𝑖

1

2
)  
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                      𝑧0 =
√6

2
+ 𝑖

√2

2
  

 𝑧1 = √2𝑒
𝑖(
𝜋

6
+𝜋)

= √2 (𝑐𝑜𝑠 (
𝜋

6
+ 𝜋) + 𝑖𝑠𝑖𝑛 (

𝜋

6
+ 𝜋))  

   = √2 (−
√3

2
− 𝑖

1

2
)  

                      𝑧1 = −
√6

2
− 𝑖

√2

2
  

Exemple : 

1) Déterminons les racines cubiques de Ƶ =
1+𝑖√3

1−𝑖√3
 

On a : 1 + 𝑖√3 = 2𝑒
𝑖
𝜋

3  et 1 − 𝑖√3 = 2𝑒
−𝑖
𝜋

3  , alors Ƶ =
2

2
𝑒
𝑖
2𝜋

3 = 𝑒
𝑖
2𝜋

3  

Soit 𝑧 = 𝑟𝑒𝑖𝜃 tel que : 𝑧3 = Ƶ 

                         𝑧3 = Ƶ ⟺ 𝑟3𝑒3𝑖𝜃 = 𝑒
𝑖
2𝜋

3   

   ⟺ {
𝑟3 = 1

3𝜃 =
2𝜋

3
+ 2𝑘𝜋;  𝑘 ∈ 𝕫

  

   ⟺ {
𝑟 = 1                         

𝜃 =
2𝜋

9
+
2𝑘𝜋

3
;  𝑘 ∈ 𝕫   

Les racines de Ƶ sont de la forme : 𝑧𝑘 = √2𝑒
𝑖(
2𝜋

9
+
2𝑘𝜋

3
);  𝑎𝑣𝑒𝑐 𝑘 = {0;  1; 2}. 

On a : 𝑧0 = 𝑒
𝑖
2𝜋

9 ; 𝑧1 = 𝑒
𝑖
8𝜋

9  et 𝑧2 = 𝑒
𝑖
14𝜋

9  

2) Déterminons les racines cubiques de l’unité. 

 𝑧3 = 1 ⟺ 𝑟3𝑒3𝑖𝜃 = 𝑒𝑖(0+2𝑘𝜋)  

   ⟺ {
𝑟3 = 1

3𝜃 = 2𝑘𝜋;  𝑘 ∈ 𝕫
  

   ⟺ {
𝑟 = 1

𝜃 =
2𝑘𝜋

3
;  𝑘 ∈ 𝕫  

Les racines cubiques de l’unité sont de la forme : 𝑧𝑘 = 𝑒
𝑖
2𝑘𝜋

3 ;  𝑎𝑣𝑒𝑐 𝑘 = {0;  1; 2}. 

On a : 𝑧0 = 1; 𝑧1 = 𝑒
𝑖
2𝜋

3  et 𝑧2 = 𝑒
𝑖
4𝜋

3 . 

Les images sont les sommets d’un triangle équilatéral et 𝑧0 + 𝑧1 + 𝑧2 = 0. 

Preuve : 

𝑧0 + 𝑧1 + 𝑧2 = 1 + (𝑐𝑜𝑠
2𝜋

3
+ 𝑖𝑠𝑖𝑛

2𝜋

3
) + (cos

4𝜋

3
+ 𝑖𝑠𝑖𝑛

4𝜋

3
)  

  = 1 + (−
1

2
+ 𝑖

√3

2
) + (−

1

2
− 𝑖

√3

2
)  

  = 1 −
1

2
+ 𝑖

√3

2
−
1

2
− 𝑖

√3

2
  

  = 1 − 1 = 0  

D’où 𝑧0 + 𝑧1 + 𝑧2 = 0 

𝑰.𝟑− Nombres complexes et utilisation  

3.1- Equation  du premier degré et système d’équation linéaire  

1) Une équation du 1er  degré est une équation de la forme : 𝑎𝑧 + 𝑏 = 0 où 𝑎 𝑒𝑡 𝑏 sont des 

nombres complexes. Cette équation admet :  

 Une solution unique si 𝑎 ≠ 0 et cette solution est −
𝑏

𝑎
 ; 
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 Une infinité de solutions si 𝑎 = 𝑏 = 0 ; 

 Aucune solution si 𝑎 = 0 et 𝑏 ≠ 0. 

2) Tout système de la forme : { 𝑎𝑧 + 𝑏𝑧′ = 𝑐
𝑎′𝑧 + 𝑏′𝑧′ = 𝑐′

 ; où  𝑎, 𝑏, 𝑐, 𝑎’, 𝑏’, 𝑒𝑡 𝑐’ sont des nombres 

complexes (𝑎 ≠ 0; 𝑏 ≠ 0) est un système d’équations linéaires à deux inconnues dans 

(ℂ)2. 

Exemple : 

1) Résoudre dans ℂ les équations suivantes : 

a) (2 + 5𝑖)𝑧 = 4 − 2𝑖  

b) 𝑖𝑧 − 2 = 2𝑧 + 1 + 𝑖  

2) Résoudre dans (ℂ)2 le système : {
(2 + 3𝑖)𝑧 − 3𝑖𝑧′ = 1 − 𝑖
(−1 + 2𝑖)𝑧 + (3 − 𝑖)𝑧′ = 𝑖

 

Solution : 

1) Résolvons dans ℂ les équations suivantes : 

a) (2 + 5𝑖)𝑧 = 4 − 2𝑖  

On a : (2 + 5𝑖)𝑧 = 4 − 2𝑖 ⟹ 𝑧 =
4−2𝑖 

2+5𝑖
  

    =
(4−2𝑖 )(2−5𝑖)

4+25
  

    =
8−20𝑖−4𝑖−10

29
  

    =
−2−24𝑖

29
  

                   𝑧 = −
2

29
−
24

29
𝑖  

L’ensemble de solution est : 𝑆 = {−
2

29
−
24

29
𝑖} 

b) 𝑖𝑧 − 2 = 2𝑧 + 1 + 𝑖  

On a : 𝑖𝑧 − 2 = 2𝑧 + 1 + 𝑖 ⟹ 𝑖𝑧 − 2𝑧 = 1 + 𝑖 + 2  

  ⟹ (−2 + 𝑖)𝑧 = 3 + 𝑖  

  ⟹ 𝑧 =
3+𝑖 

−2+𝑖
  

  =
(3+𝑖 )(−2−𝑖)

4+1
   

  =
−6−3𝑖−2𝑖+1

5
   

  =
−5−5𝑖

5
  

     𝑧 = −1 − 𝑖  

L’ensemble de solution est : 𝑆 = {−1 − 𝑖} 

2) Résoudre dans (ℂ)2 le système : {
(2 + 3𝑖)𝑧 − 3𝑖𝑧′ = 1 − 𝑖
(−1 + 2𝑖)𝑧 + (3 − 𝑖)𝑧′ = 𝑖

 

𝒂 −Racines carrées d’un nombre complexes. 

Propriété :  

Soit Ƶ et 𝑧 les nombres complexes tels que 𝑧𝑛 = Ƶ ;  (𝑛 ∈ ℕ)𝑒𝑡 𝑛 ≥ 2. On désignera par 𝑤1 

et 𝑤2 les racines carrées de Ƶ. 

On a : ∀ 𝑥, 𝑦 ∈ ℝ,  on pose 𝑧 = 𝑥 + 𝑖𝑦 ⟹ |𝑧| = √𝑥2 + 𝑦2. 

∀ 𝑎, 𝑏 ∈ ℝ,  on a : Ƶ = 𝑎 + 𝑖𝑏 ⟹ |Ƶ| = √𝑎2 + 𝑏2 
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Pour 𝑛 = 2, on a: 𝑧2 = Ƶ 

𝑧 = 𝑥 + 𝑖𝑦 ⟹ 𝑧2 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 et |𝑧|2 = 𝑥2 + 𝑦2. 

  𝑧2 = Ƶ⟺ 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 = 𝑎 + 𝑖𝑏  

 ⟺ {

|𝑧|2 = |Ƶ|           

𝑅𝑒(𝑧
2) = 𝑅𝑒(Ƶ)

𝐼𝑚(𝑧
2) = 𝐼𝑚(Ƶ)

  ⟺ {

𝑥2 + 𝑦2 = |Ƶ|              (1)

 𝑥2 − 𝑦2 = 𝑎               (2)
2𝑥𝑦 = 𝑏                       (3)

 

(1) + (2) ⟹ 2𝑥2 = 𝑎 + |Ƶ|  

  ⟹ 𝑥2 =
𝑎+|Ƶ|

2
   

  ⟹ 𝑥 = √
𝑎+|Ƶ|

2
    ou 𝑥 = −√

𝑎+|Ƶ|

2
   

(1) − (2) ⟹  2𝑦2 = |Ƶ| − 𝑎   

  ⟹ 𝑦2 =
|Ƶ|−𝑎

2
   

  ⟹ 𝑦 = √
|Ƶ|−𝑎

2
     ou 𝑦 = −√

|Ƶ|−𝑎

2
     

Pour choisir les couples (𝑥;  𝑦), on tient compte du signe de 𝑏 : 

 Si 𝑏 > 0, alors 𝑥𝑦 > 0 et donc 𝑥 et 𝑦 sont de même signe et on a : 

                

{
 

 𝑤1 = √
𝑎+|Ƶ|

2
+ i√

|Ƶ|−𝑎

2
⟹𝑤1 = 𝑥 + 𝑖𝑦

 𝑤2 = −√
𝑎+|Ƶ|

2
− i√

|Ƶ|−𝑎

2
⟹𝑤2 = −𝑥 − 𝑖𝑦

  

 Si 𝑏 < 0, alors 𝑥𝑦 < 0 et donc 𝑥 et 𝑦 sont de signe contraire et on a : 

                 

{
 

 𝑤1 = √
𝑎+|Ƶ|

2
− i√

|Ƶ|−𝑎

2
⟹𝑤1 = 𝑥 − 𝑖𝑦

 𝑤2 = −√
𝑎+|Ƶ|

2
+ i√

|Ƶ|−𝑎

2
⟹𝑤2 = −𝑥 + 𝑖𝑦

  

L’ensemble des racines carrées de Ƶ est :  𝑆 = {𝜔1, 𝜔2} 

Exemple : 

Soit Ƶ = 3 − 4𝑖 un nombre complexe. 

Calculons la racine de Ƶ.   

Posons 𝑧 = 𝑥 + 𝑖𝑦 tel que : 𝑧2 = Ƶ 

On a : |𝑧2| = 𝑥2 + 𝑦2 et |Ƶ| = √9 + 16 = √25 = 5 

  𝑧2 = Ƶ ⟺ 𝑧2 = 3 − 4𝑖 ; or 𝑧2 = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖 

   𝑧2 = 3 − 4𝑖 ⟺ 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 = 3 − 4𝑖  

𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 = 3 − 4𝑖 ⟺ {

𝑥2 + 𝑦2 = 5     (1) 

𝑥2 − 𝑦2 = 3    (2) 
2𝑥𝑦 = −4         (3)  

   

(1) + (2) ⟹ 2𝑥2 = 8  

  ⟹ 𝑥2 = 4   

  ⟹ 𝑥 = 2    ou 𝑥 = −2   

(1) − (2) ⟹  2𝑦2 = 2   

  ⟹ 𝑦2 = 1   

  ⟹ 𝑦 = 1     ou 𝑦 = −1   
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Le produit 𝑥𝑦 = −2 est négatif donc 𝑥 et 𝑦 sont de signes contraires, alors on pose : 

                                  𝜔1 = 2 − 𝑖  et 𝜔2 = −2 + 𝑖 

L’ensemble des racines carrées de Ƶ = 3 − 4𝑖 est :  𝑆 = {2 − 𝑖; −2 + 𝑖} 

𝒃 − Résolution de l’équation du 2
nd

 degrés dans ℂ. 

Etude de cas général : 

On veut résoudre dans ℂ une équation du 2
nd

 degré 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 0,   𝑎, 𝑏, 𝑒𝑡 𝑐 ∈

ℝ;  (𝑎 ≠ 0). Comment alors procéder ? 

Méthode :  

Pour résoudre une équation dans ₵, on procède de la manière suivante : 

- On calcule le discriminant ∆ du polynôme complexe ; 

- On détermine les racines carrés de ∆ suivant que ∆ soit ou non complexe. 

Pour cela, on rappelle que la forme canonique du polynôme 𝑃(𝑧) = 𝑧2 + 𝑏𝑧 + 𝑐 est :  

𝑃(𝑧) = 𝑎 [(𝑧 +
𝑏

2𝑎
)
2

− (
∆

4𝑎2
)]  ; avec ∆= 𝑏2 − 4𝑎𝑐 

Propriété :  

Une équation du 2
nd

 degré à coefficients réels à toujours deux racines : 

 Si ∆= 𝑏2 − 4𝑎𝑐 > 0, elles sont réelles et distinctes : 𝑥1 =
−𝑏−√∆

2𝑎
 et 𝑥2 =

−𝑏+√∆

2𝑎
  

 Si ∆= 𝑏2 − 4𝑎𝑐 = 0, elles sont confondues : 𝑥1 = 𝑥2 = −
𝑏

2𝑎
 

 Si ∆= 𝑏2 − 4𝑎𝑐 < 0, elles sont complexes conjuguées : 𝑥1 =
−𝑏−𝑖√∆

2𝑎
 et 𝑥2 =

−𝑏+𝑖√∆

2𝑎
 

Exemple :  

Résoudre dans ₵  l’équation suivante 

1- Cas où les coefficients sont des nombres réels. 

(E) : 𝑧2 + 𝑧 + 1 = 0 

                ∆= 1 − 4 × 1 = −3 

  ⟹ ∆= 3𝑖2  

  ⟹ 𝑧1 =
−1−𝑖√3

2
     et   𝑧2 =

−1+𝑖√3

2
 

  ⟹ 𝑆 = {
−1−𝑖√3

2
;    

−1+𝑖√3

2
}  

 

2- Cas où les coefficients sont des nombres complexes 

(𝐸1):   𝑧
2 + (2 + 3𝑖)𝑧 − 2(1 − 2𝑖) = 0  

  ∆= (2 + 3𝑖)2 − 4 × 1(−2 + 4𝑖)  

     = 4 + 12𝑖 − 9 + 8 − 16𝑖  

  ∆= 3 − 4𝑖 ;  ∆∈ ℂ 

A cet effet, cherchons les racines carrées de ∆. 

Soit 𝑧 = 𝑥 + 𝑖𝑦 tel que : 𝑧2 = ∆. 

𝑧2 = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 ;  |∆| = √9 + 16 = 5 et |𝑧2| = 𝑥2 + 𝑦2 

  𝑧2 = ∆⟺ 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 = 3 − 4𝑖  

 𝑧2 = ∆⟺ {

𝑥2 + 𝑦2 = 5     (1) 

𝑥2 − 𝑦2 = 3    (2) 
2𝑥𝑦 = −4         (3)  

   

(1) + (2) ⟹ 2𝑥2 = 8  
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  ⟹ 𝑥2 = 4   

  ⟹ 𝑥 = 2    ou 𝑥 = −2   

(1) − (2) ⟹  2𝑦2 = 2   

  ⟹ 𝑦2 = 1   

  ⟹ 𝑦 = 1     ou 𝑦 = −1   

Le produit 𝑥𝑦 = −2 est négatif donc 𝑥 et 𝑦 sont de signes contraires, alors on pose :  

𝜔1 = 2 − 𝑖  et 𝜔2 = −2 + 𝑖 les racines carrées de ∆.  

⟹ 𝑧1 =
−𝑏+𝜔1

2
=

−2−3𝑖+2−𝑖

2
= −2𝑖 ⟹ 𝑧1 = −2𝑖 

      𝑧2 =
−𝑏+𝜔2

2
=

−2−3𝑖−2+𝑖

2
= −2 − 𝑖 ⟹ 𝑧2 = −2 − 𝑖 

  ⟹ 𝑆 = {−2𝑖; −2 − 𝑖}  

 

(𝐸2):   𝑧
2 + (4 + 5𝑖)𝑧 − 7𝑖 − 1 = 0  

  ∆= (4 + 5𝑖)2 − 4 × 1(7𝑖 − 1)  

     = 16 + 40𝑖 − 25 − 28𝑖 + 4  

  ∆= −5 + 12𝑖 ; ∆∈ ℂ  

Posons 𝑧 = 𝑥 + 𝑖𝑦  /  𝑧2 = ∆ 

𝑧2 = ∆⟺ {
𝑥2 + 𝑦2 = √25 + 144 = 13          (1) 

𝑥2 − 𝑦2 = −5                                    (2) 
𝑥𝑦 = 6                                                   (3)  

   

(1) + (2) ⟹ 2𝑥2 = 8  

  ⟹ 𝑥2 = 4   

  ⟹ 𝑥 = 2    ou 𝑥 = −2   

(1) − (2) ⟹  2𝑦2 = 18   

  ⟹ 𝑦2 = 9   

  ⟹ 𝑦 = 3     ou 𝑦 = −3  

Le produit 𝑥𝑦 = 6 est positif donc 𝑥 et 𝑦 sont de mêmes signes, alors on pose : 

  𝜔1 = 2 + 3𝑖  et 𝜔2 = −2 − 3𝑖 les racines carrées de ∆.  

  ⟹ 𝑧1 =
−𝑏+𝜔1

2
=

4+5𝑖+2+3𝑖

2
= 3 + 4𝑖 ⟹ 𝑧1 = 3 + 4𝑖  

            𝑧2 =
−𝑏+𝜔2

2
=

4+5𝑖−2−3𝑖

2
1 + 𝑖 ⟹ 𝑧2 = 1 + 𝑖 

  ⟹ 𝑆 = {3 + 4𝑖;  1 + 𝑖}  

𝒄 − Equation se ramenant au 2nd degré : 

Exemple 1 : 

Soit l’équation (𝐸):   𝑧3 + (4 − 5𝑖)𝑧2 + (8 − 20𝑖)𝑧 − 40𝑖 = 0 

a) Démontrer que (𝐸) admet une solution imaginaire pure. 

b) Résoudre (𝐸) dans ℂ 

Résolution 

Soit (𝐸):   𝑧3 + (4 − 5𝑖)𝑧2 + (8 − 20𝑖)𝑧 − 40𝑖 = 0 

a) Démontrons que (𝐸) admet une solution imaginaire pure. 

Posons 𝑃(𝑧) = 𝑧3 + (4 − 5𝑖)𝑧2 + (8 − 20𝑖)𝑧 − 40𝑖 

Soit 𝑧1 = 𝑖𝑏 cette solution imaginaire. (𝑏 ≠ 0) 

𝑃(𝑧1) = 𝑃(𝑖𝑏) = −𝑖𝑏3 − (4 − 5𝑖)𝑏2 + (8 − 20𝑖)𝑖𝑏 − 40𝑖   
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   = −𝑖𝑏3 − 4𝑏2 + 5𝑖𝑏2 + 8𝑖𝑏 + 20𝑏 − 40𝑖  

 𝑃(𝑖𝑏) = −4𝑏2 + 20𝑏 + 𝑖(−𝑏3 + 5𝑏2 + 8𝑏 − 40) 

𝑃(𝑖𝑏) = 0 ⟺ {
−4𝑏2 + 20𝑏 = 0                     (1)

−𝑏3 + 5𝑏2 + 8𝑏 − 40 = 0    (2)
 

𝑧1 est un imaginaire, donc on considère seulement l’équation (1). 

(1)  : −4𝑏2 + 20𝑏 = 0 ⟹ −4𝑏(𝑏 − 5) = 0  

   ⟹ 𝑏 = 0 ou 𝑏 = 5 ≠ 0 

Donc 𝑧1 = 5𝑖 est la solution imaginaire pure (𝐸) cherchée. 

b) Résolvons (𝐸) dans ℂ 

5𝑖 est la racine de 𝑃, alors 𝑃(𝑧) = (𝑧 − 5𝑖)𝑄(𝑧) ; où  𝑄(𝑧) = 𝑧2 + 𝑎𝑧 + 𝑏; (𝑎, 𝑏 ∈ ℂ) tel 

que : 

  𝑃(𝑧) = (𝑧 − 5𝑖)(𝑧2 + 𝑎𝑧 + 𝑏)   

  𝑃(𝑧) = 𝑧3 + 𝑎𝑧2 + 𝑏𝑧 − 5𝑖𝑧2 − 5𝑎𝑖𝑧 − 5𝑖𝑏  

Par identification, on a : {
𝑎 − 5𝑖 = 4 − 5𝑖    
𝑏 − 5𝑎𝑖 = 8 − 20𝑖
−5𝑖𝑏 = −40           

⟹ {
𝑎 = 4
𝑏 = 8

 

Donc : 𝑄(𝑧) = 𝑧2 + 4𝑧 + 8 

𝑃(𝑧) = (𝑧 − 5𝑖)𝑄(𝑧) ⟹ 𝑃(𝑧) = (𝑧 − 5𝑖)(𝑧2 + 4𝑧 + 8)  

   𝑃(𝑧) = 0 ⟺ (𝑧 − 5𝑖)(𝑧2 + 4𝑧 + 8)  

         ⟺ 𝑧 = 5𝑖 ou 𝑧2 + 4𝑧 + 8 = 0 

𝑧2 + 4𝑧 + 8 = 0 ⟺ ∆′ = 4 − 8  

     = −4  

   ∆′ = (2𝑖)2  

  ⟹ 𝑧2 = −2 − 2𝑖 et 𝑧3 = −2 + 2𝑖 

     ⟹ 𝑆 = {5𝑖;  −2 − 2𝑖; −2 + 2𝑖}  

𝒅 − Transformation de produit en somme et de somme en produit  

Propriétés 1 :  

Pour tous nombres réels 𝑎 et 𝑏, on a : 

 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 =
1

2
[cos(𝑎 + 𝑏) + cos(𝑎 − 𝑏)];  

 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏 = −
1

2
[cos(𝑎 + 𝑏) − cos(𝑎 − 𝑏)];  

 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏 =
1

2
[sin(𝑎 + 𝑏) + sin(𝑎 − 𝑏)].  

Propriété 2 :  

Pour tous nombre réels  𝑝 et 𝑞, on a : 

 𝑐𝑜𝑠𝑝 + 𝑐𝑜𝑠𝑞 = 2𝑐𝑜𝑠
𝑝+𝑞

2
𝑐𝑜𝑠

𝑝−𝑞

2
  

 𝑠𝑖𝑛𝑝 + 𝑠𝑖𝑛𝑞 = 2𝑠𝑖𝑛
𝑝+𝑞

2
𝑐𝑜𝑠

𝑝−𝑞

2
  

 𝑐𝑜𝑠𝑝 − 𝑐𝑜𝑠𝑞 = −2𝑠𝑖𝑛
𝑝+𝑞

2
𝑠𝑖𝑛

𝑝−𝑞

2
  

 𝑠𝑖𝑛𝑝 + 𝑠𝑖𝑛𝑞 = 2𝑐𝑜𝑠
𝑝+𝑞

2
𝑠𝑖𝑛

𝑝−𝑞

2
  

3.2- Géométrie et nombre complexes 

𝒂 −Transformations et nombres complexes 

Tableau récapitulatif d’écriture complexe de certaines transformations du plan 
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Dans ce tableau, 𝑀(Ƶ) et 𝑀′(Ƶ) désigne un point et son image, ainsi que leurs affixes, par 

chacune de ces transformation. 

 

 

 

Translation de 

vecteur 𝑢⃗⃗(𝑎) 

 

 

 

 

𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑢⃗⃗ 

 

 

 

𝑧′ = 𝑧 + 𝑎 

 

Symétrie de 

centre Ω(𝜔) 

 

 

Ω𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = −ΩM⃗⃗⃗⃗ ⃗⃗ ⃗ 

 

𝑧′ − 𝜔 = −(𝑧 − 𝜔) 

 

 

Symétrie par 

rapport à l’axe 

réel 
 

 

{
𝑂𝑀′ = 𝑂𝑀               

(𝑒1⃗⃗⃗⃗ ;  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗
̂ ) = −(𝑒1⃗⃗⃗⃗ ;  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

̂ )
 

 

 

𝑧′ = 𝑧̅ 

 

 

Symétrie par 

rapport à 

imaginaire 

 

 

 

{
𝑂𝑀′ = 𝑂𝑀               

(𝑒1⃗⃗⃗⃗ ;  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗
̂ ) = 𝜋 − (𝑒1⃗⃗⃗⃗ ;  𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗

̂ )
 

 

 

 

 

𝑧′ = −𝑧̅ 

 

 

 

Homothétie de 

centre  Ω(𝜔) 
etd’angle 𝛼  

 

 

Ω𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗⃗ = 𝑘ΩM⃗⃗⃗⃗ ⃗⃗ ⃗ 

 

 

𝑧′ − 𝜔 = 𝑘(𝑧 − 𝜔) 

Rotation de 

centre Ω(𝜔) et 

d’angle 𝛼 

 

 

{
𝑂𝑀′ = 𝑂𝑀               

𝑀𝑒𝑠 (ΩM⃗⃗⃗⃗ ⃗⃗ ⃗;  Ω𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗̂ ) ≡ 𝛼[2𝜋]
 

 

 

𝑧′ − 𝜔 = 𝑒𝑖𝛼(𝑧 − 𝜔) 

Exemple : 

Soit les points Ω(−2; 1) et 𝐴(1;−1) 

Dans chacun des cas suivants : 

 Donner l’écriture complexe de la transformation ; 

 Déterminer l’image de A  par la transformation. 

1) Symétrie de centre Ω ; 

On a :  𝑧′ − 𝜔 = −(𝑧 − 𝜔) 

  ⟺ 𝑧′ − (−2 + 𝑖) = −(𝑧 − (−2 + 𝑖))  

  ⟺ 𝑧′ = −𝑧 − 2 + 𝑖 − 2 + 𝑖  

 ⟺ 𝑧′ = −𝑧 − 4 + 2𝑖 est l’écriture complexe de la symétrie de centre Ω. 
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L’image de A par cette symétrie : 

On a : 𝑧′ = −𝑧 − 4 + 2𝑖 ⟺ 𝑧𝐴′ = −𝑧𝐴 − 4 + 2𝑖 

          = −(1 − 𝑖) − 4 + 2𝑖  

         ⟺ 𝑧𝐴′ = −5 + 3𝑖  

𝒃 −Confuguration du plan et nombres complexes 

Pour tous nombres complexes : 𝑧𝐴;  𝑧𝐵;  𝑧𝐶  et 𝑧𝐷 d’affixes respectives des points A, B, C et D, 

on a les configurations géométriques suivantes : 

1) Le triangle 𝐴𝐵𝐶 et isocéle en 𝐴 si et seulement si :  

 
Ƶ𝑪−Ƶ𝑨

Ƶ𝑩−Ƶ𝑨
= 𝒆𝒊𝜶  ou    

Ƶ𝑪−Ƶ𝑨

Ƶ𝑩−Ƶ𝑨
= 𝒆−𝒊𝜶 ; avec 𝐴𝐵 = 𝐴𝐶  et   𝑚𝑒𝑠Â = 𝛼   0 < 𝛼 < 𝜋 

2) Le triangle 𝐴𝐵𝐶 est équilatéral si et seulement si : 𝐴𝐵 = BC = 𝐴𝐶 ;  𝑚𝑒𝑠Â =
𝜋

2
  et  

   
Ƶ𝑪−Ƶ𝑨

Ƶ𝑩−Ƶ𝑨
= 𝒆

𝒊𝝅

𝟑   ou 
Ƶ𝑪−Ƶ𝑨

Ƶ𝑩−Ƶ𝑨
= 𝒆−

𝒊𝝅

𝟑  

3) Le triangle 𝐴𝐵𝐶 est rectangle isocèle en 𝐴 si et seulement si : 

             
Ƶ𝐶−Ƶ𝐴

Ƶ𝐵−Ƶ𝐴
= 𝑖  ou 

Ƶ𝐶−Ƶ𝐴

Ƶ𝐵−Ƶ𝐴
= −𝑖 ; 𝐴𝐵 = 𝐴𝐶 et   𝑚𝑒𝑠Â =

𝜋

2
  

4) Le triangle 𝐴𝐵𝐶 est rectangle en 𝐴 si et seulement si : 
Ƶ𝐶−Ƶ𝐴

Ƶ𝐵−Ƶ𝐴
= 𝑏𝑖 ; avec 𝑏 ≠ 0 et 𝑚𝑒𝑠Â =

𝜋

2
 

5) Les points 𝐵, 𝐵  et 𝐶 sont alignés si et seulement si : 

 
Ƶ𝐶−Ƶ𝐴

Ƶ𝐵−Ƶ𝐴
∈ ℝ∗ et 𝑚𝑒𝑠(𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) ≡ 0[𝜋] 

6) Les points 𝐴, 𝐵, 𝐶 et 𝐷 sont concycliques si et seulement si : 

  
Ƶ𝐶−Ƶ𝐵

Ƶ𝐶−Ƶ𝐴
÷
Ƶ𝐷−Ƶ𝐵

Ƶ𝐷−Ƶ𝐴
∈ ℝ∗ ou 

Ƶ𝐶−Ƶ𝐵
Ƶ𝐶−Ƶ𝐴
Ƶ𝐷−Ƶ𝐵
Ƶ𝐷−Ƶ𝐴

∈ ℝ∗ 

𝒃 −Lieux géométriques et nombres complexes 

Propriétés :  

Soit 𝐴 le point d’affixes z𝐴 et 𝑀un point d’affixe z  

Si 𝑅 est un complexe réel directement positif, le lieu des points 𝑀 dont l’affixe Ƶ verifie 

||z − z𝐴| = 𝑅 est le cercle de centre 𝐴 et de rayon 𝑅. 

Si 𝛼 est un nombre réel, le lieu des points 𝑀 dont l’affixe z vérifie arg (z − z𝐴) ≡ 𝛼[𝜋] est la 

droite de repère (𝐴, 𝑢⃗⃗), privé de 𝐴 avec  𝑀𝑒𝑠(𝒆𝟏⃗⃗⃗⃗⃗;  𝑢̂⃗⃗) ≡ 𝜶[𝝅]. 

Remarque :  

Le lieu des points 𝑀 dont l’affixe z vérifie : arg (z − z𝐴) ≡ 𝛼[𝜋] est la demi-droite de 

repère(𝐴, 𝑢⃗⃗), privé de 𝐴, avec 𝑀𝑒𝑠(𝒆𝟏⃗⃗⃗⃗⃗;  𝑢̂⃗⃗) ≡ 𝜶[𝝅]. 

Exemple 1:  

Soit 𝐴 le point d’affixe 𝑧𝐴 tel que : 𝑧𝐴 = 1 + 𝑖 

Déterminer le lieu des points 𝑀 dont l’affixe 𝑧 vérifie : 

a) 𝑧 − 𝑧𝐴 = 2 

b) arg(𝑧 − 𝑧𝐴) ≡
𝜋

6
[𝜋] 

c) arg(𝑧 − 𝑧𝐴) ≡ −
𝜋

3
[2𝜋] 

Résolution :  

Soit 𝑧𝐴 = 1 + 𝑖 
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Déterminons le lieu des points 𝑀 dont l’affixe 𝑧 vérifie : 

a) 𝑧 − 𝑧𝐴 = 2 

Méthode 1 : 

|𝑧 − 𝑧𝐴| = 2 ⟺ 𝐴𝑀 = 2  

Donc le lieu 𝑀 cherché est un cercle (𝐶)de centre 𝐴 et de rayon 2. 

Méthode2 :  

On a : 𝑧𝐴 = 1 + 𝑖  et 𝑧 = 𝑥 + 𝑖𝑦 

|𝑧 − 𝑧𝐴| = 2 ⟺ |𝑥 + 𝑖𝑦 − (1 + 𝑖)| = 2  

⟺ |𝑥 − 1 + 𝑖(𝑦 − 1)| = 2  

⟺√(𝑥 − 1)2 + (𝑦 − 1)2 = 2  

⟺ (𝑥 − 1)2 + (𝑦 − 1)2 = 22    est une équation du cercle de centre 𝐴 et de rayon 𝑟 = 2 

Donc le lieu  𝑀 est un cercle (𝐶) de centre 𝐴(1; 1) et de rayon 𝑟 = 2. 

b) arg(𝑧 − 𝑧𝐴) ≡
𝜋

6
[𝜋] ⟺ 𝑚𝑒𝑠 (𝒆𝟏⃗⃗⃗⃗⃗;  𝐴𝑀⃗⃗⃗⃗ ⃗⃗ ⃗

̂ ) ≡
𝝅

𝟔
[𝝅] donc le lieu de 𝑀 est la droite du repère 

(𝐴, 𝑢⃗⃗) , privé de point 𝐴(1;  𝑖). 

c) arg(𝑧 − 𝑧𝐴) ≡ −
𝜋

3
[2𝜋] ⟺ 𝑚𝑒𝑠(𝒆𝟏⃗⃗⃗⃗⃗;  𝐴𝑀⃗⃗⃗⃗ ⃗⃗ ⃗)

̂
≡ −

𝝅

𝟑
[𝟐𝝅]  donc le lieu de 𝑀 est la demi-

droite de repère  (𝐴, 𝑣⃗) privé de 𝐴 avec (𝒆𝟏⃗⃗⃗⃗⃗;  𝑣⃗) ≡ −
𝝅

𝟑
[𝟐𝝅]. 

 

 

 

 

 

 

 

Exemple 2 : 

𝐴 tout nombre complexe 𝑧 ≠ 2 − 𝑖, on a : Ƶ =
𝑧+3−2𝑖

𝑧−2+𝑖
 

Déterminer l’ensemble réel des points 𝑀 d’affixe Ƶ tels que : 

a) Ƶ soit un nombre réel ; 

b) Ƶ soit un imaginaire pur 

Résolution : 

On a : Ƶ =
𝑧+3−2𝑖

𝑧−2+𝑖
 , 𝑧 ≠ 2 − 𝑖 

Déterminons l’ensemble des points 𝑀 d’affixe Ƶ tels que : 

a) Ƶ soit un nombre réel  

En effet,  Ƶ =
𝑧+3−2𝑖

𝑧−2+𝑖
,  𝑒𝑡 𝑧 = 𝑥 + 𝑖𝑦 

 Ƶ =
𝑧+3−2𝑖

𝑧−2+𝑖
=

𝑥+𝑖𝑦+3−2𝑖

𝑥+𝑖𝑦−2+𝑖
  

   =
𝑥+3+𝑖(𝑦−2)

𝑥−2+𝑖(𝑦+1)
  

   =
((𝑥+3)+𝑖(𝑦−2))((𝑥−2)−𝑖(𝑦−2)(𝑥−2)+(𝑦−2)(𝑦+1)

(𝑥−2)2+(𝑦+1)2
  

   =
𝑥2+𝑥−6−𝑖𝑥𝑦−𝑖𝑥−3𝑖𝑦−3𝑖+𝑖𝑥𝑦−2𝑦𝑖−2𝑥𝑖+4𝑖+𝑦2−𝑦−2

(𝑥−2)2+(𝑦+1)2
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          Ƶ =
𝑥2+𝑥+𝑦2−𝑦−8

(𝑥−2)2+(𝑦+1)2
− 𝑖

3𝑥+5𝑦−1

(𝑥−2)2+(𝑦+1)2
  

Ƶ ∈ ℝ  ⟺ 𝐼𝑚(Ƶ) = 0 ⟺  3𝑥 + 5𝑦 − 1 = 0  

Donc l’ensemble des points 𝑀 cherché est une droite d’équation : 3𝑥 + 5𝑦 − 1 = 0, privé 

de point 𝐵(2; −1) 

b) Ƶ soit un imaginaire pur 

Ƶ =
𝑥2+𝑥+𝑦2−𝑦−8

(𝑥−2)2+(𝑦+1)2
− 𝑖

3𝑥+5𝑦−1

(𝑥−2)2+(𝑦+1)2
  

Ƶ ∈ 𝑖ℝ   ⟺ 𝑅𝑒 = 0   

  ⟺ 𝑥2 + 𝑥 + 𝑦2 − 𝑦 − 8 = 0  

  ⟺ (𝑥 +
1

2
)2 −

1

4
+ (𝑦 −

1

2
)
2

−
1

4
− 8 = 0  

  ⟺ (𝑥 +
1

2
)2 −

1

4
+ (𝑦 −

1

2
)
2

=
1

2
− 8  

  ⟺ (𝑥 +
1

2
)2 −

1

4
+ (𝑦 −

1

2
)
2

=
17

2
 : c’est une équation d’un cercle (𝐶) de 

centre 𝐼(−
1

2
;   
1

2
) et de rayon √

17

2
 . Donc l’ensemble des points 𝑀 est un cercle (𝐶) de centre 

𝐼 et de rayon 𝑟 = √
17

2
 

 

 

 

 

 

 

   Fin 
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Chapitre 8 : SIMILITUDES 

I. Similitudes directes du plan : 

I1 −Définition et propriété 

1.1- Définition : 

Soit 𝑘 un nombre réel strictement positif. 

On appelle similitude 𝑆 de rapport 𝑘, toute application 𝑓 du plan qui, à tous points 𝐴 et 

𝐵 d’image respectives 𝐴′ et 𝐵′, on ait : 𝐴′𝐵′ = 𝑘𝐴𝐵. 

Une similitude est directe si elle conserve le sens des angles orientés. 

Propriété :  

Toute similitude directe du plan a une écriture complexe de la forme : 𝑍′ = 𝑎𝑧 + 𝑏;  

avec (𝑎 ∈ ℂ∗, 𝑏 ∈ ℂ).  

 Si 𝑎 = 0 𝑒𝑡 𝑏 = 0, alors 𝑆 = 𝐼𝑑 ( S est une identité) ;  

 Si 𝑎 = 1 𝑒𝑡 𝑏 ≠ 0, alors 𝑧′ = 𝑧 + 𝑏 donc 𝑆 est une translation de vecteur 𝑢⃗⃗(𝑏) 

 Si 𝑎 ≠ 1, alors 𝑆 est la compose de l’homothétie ℎ de centre Ω d’affixe 𝜔 =
𝑏

1−𝑎
 et de 

rapport 𝑘 > 0 et de la rotation de centre Ω(𝜔) et d’angle 𝛼 = arg (𝑎).  

On dit alors que 𝑆est une similitude directe du plan de centre Ω(𝜔), de rapport 𝑘 et d’angle 𝛼. Le 

centre Ω(𝜔), le rapport 𝑘 et  l’angle 𝛼 sont appelés éléments caractéristiques de 𝑆. 

La composée commutative : 𝑆 = ℎ ∘ 𝑟 = 𝑟 ∘ ℎ d’écriture :  𝑧′ = 𝑘𝑒𝑖𝛼(𝑧 − 𝜔) + 𝜔 est appelée 

forme réduite de S . 

La formule : 𝑧′ = 𝑘𝑒𝑖𝛼(𝑧 − 𝜔) + 𝜔 permet de déterminer l’écriture complexe d’une similitude 

directe du plan. 

Remarque : 

Soit S une similitude directe du plan de centre Ω(𝜔), de rapport 𝑘 et d’angle 𝛼 ; 

 Si 𝑘 = 1, alors S est une rotation de centre Ω(𝜔) et d’angle 𝛼 d’angle 𝛼 ; 𝑆 = 𝑟(Ω; 𝛼) 

 Si 𝛼 = 0[2𝜋], alors S est une homothétie de centre Ω(𝜔) et de rapport 𝑘; 𝑆 = ℎ(Ω; 𝑘) 

 Si 𝛼 = 𝜋[2𝜋], alors S est une homothétie de centre Ω(𝜔) et de rapport −𝑘; 𝑆 = ℎ(Ω;−𝑘) 

Exemple : 

Soit 𝑆 une similitude directe de centre 𝜔(1, 1), de rapport 𝑘 = 2 et d’angle 𝛼 = −
𝜋

3
. 

Donnons l’écriture complexe de 𝑆. 

𝑘 ≠ 1, donc 𝑆: 𝑧′ = 𝑘𝑒𝑖𝛼(𝑧 − 𝜔) + 𝜔 

  ⟺ 𝑧′ = 2𝑒−𝑖
𝜋

3(𝑧 − (1 + 𝑖) + 1 + 𝑖  

   = 2𝑒−𝑖
𝜋

3𝑧 − 2𝑒−𝑖
𝜋

3(1 + 𝑖) + 1 + 𝑖  

   = 2(cos
𝜋

3
− 𝑖 sin

𝜋

3
)𝑧 − 2(cos

𝜋

3
− sin

𝜋

3
)(1 + 𝑖) + 1 + 𝑖  

   = (
1

2
− 𝑖

√3

2
) 𝑧 − 2 (

1

2
− 𝑖

√3

2
) (1 + 𝑖) + 1 + 𝑖  

   = (1 − 𝑖√3)𝑧 − (1 − 𝑖√3)(1 + 𝑖) + 1 + 𝑖 

                                    = (1 − 𝑖√3)𝑧 − 1 − 𝑖 + 𝑖√3 − √3 + 1 + 𝑖 

  ⟹ 𝑧′ = (1 − 𝑖√3)𝑧 − √3(1 − 𝑖)  

Exemple 2 :  

Soit 𝑆 une similitude directe du plan d’écriture complexe 𝑧′ = (1 + 𝑖)𝑧 − 2𝑖 

Déterminons les éléments caractéristiques de 𝑆 
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 Son centre : 𝜔 =
𝑏

1−𝑎
 

 𝜔 =
−2𝑖

1−(1+𝑖)
=

−2𝑖

1−1−𝑖
= 2 ⟹ 𝜔 = (2;   0)  

 Son rapport 𝑘 = |𝑎| 

 𝑎 = 1 + 𝑖 ⟺ |𝑎| = |1 + 𝑖| = √1 + 1 = √2  

  ⟹  𝑘 = √2  

 Son angle 𝛼 = arg (𝑎) 

On a : {
cos 𝛼 =

1

√2
=

√2

2

sin 𝛼 =
1

√2
=

√2

2

⟹ 𝛼 ≡
𝜋

4
[2 𝜋]. 

Donc l’ensemble des éléments caracteristiques de 𝑠 est noté :  𝜑 = {𝜔(2; 0);  𝑘 = √2;  𝛼 =
𝜋

4
} 

Autre propriété : 

Si 𝑎 = −1, alors 𝑆 est une symétrie de centre Ω(
b

2
) ou une rotation centre Ω(

b

2
) et d’angle 

𝛼 = 𝜋 ou encore une homothétie de centre Ω(
b

2
) de rapport 𝑘 = −1. 

𝑰𝟐 − Composée de similitudes directes du plan 

Propriétés : 

Soit 𝑆 une similitude directe de rapport 𝑘 et d’angle 𝛼 et 𝑆′ une similitude directe de rapport 

𝑘′ et d’agnle 𝛼′. 

La composée 𝑆′ ∘ 𝑆 est une similitude directe de rapport 𝑘′𝑘 et d’angle 𝛼′ + 𝛼.  

La reciproque de 𝑆 noté 𝑆−1 est une similitude directe de rapport  
1

𝑘
 et d’angle –𝛼. 

On en déduit que pour toutes similitudes directes d’écritures complexes 𝑆 ∶ 𝑧′ = 𝑘𝑒𝑖𝛼𝑧 + 𝑏 et 

𝑆′ ∶ 𝑧′ = 𝑘′𝑒𝑖𝛼
′
𝑧 + 𝑏′, 

On a : 𝑆′ ∘ 𝑆 = 𝑆′[𝑆] = 𝑘′𝑒𝑖𝛼
′
(𝑘𝑒𝑖𝛼𝑧 + 𝑏) + 𝑏′ 

 = 𝑘′𝑘𝑒𝑖(𝛼+𝛼)Ƶ + 𝑘′𝑒
𝑖𝛼′

𝑏 + 𝑏′ 

   Donc : 𝑆′ ∘ 𝑆 = 𝑘′𝑘𝑒𝑖(𝛼+𝛼)𝑧 + 𝑘′𝑒
𝑖𝛼′

𝑏 + 𝑏′   

La reciproque S−1 a pour écriture complexes S−1 ∶  z′−1 =
1

𝑘
𝑒𝑖𝛼z + 𝑏 

Exemplexe : 

Soit 𝑆 et 𝑆′ d’écriture complexes : 𝑆: z′ = 2𝑒𝑖
𝜋

3z + 2𝑖 et 𝑆′: z = 3𝑒𝑖
𝜋

6z − 5 

Déterminons la composée 𝑆′ ∘ 𝑆, on a : 

𝑆′ ∘ 𝑆 = 3𝑒𝑖
𝜋

6 (2𝑒𝑖
𝜋

3z + 2𝑖) − 5  

 = 6𝑒𝑖(
𝜋

6
+
𝜋

3
)z + 6i𝑒𝑖

𝜋

6 − 5  

            = 6𝑒𝑖
𝜋

2z + 6𝑖𝑒𝑖
𝜋

6 − 5  

 = 6𝑖z + 6𝑖 (
√3

2
+
1

2
𝑖) − 5  

 = 6𝑖z + 3𝑖√3 − 3 − 5  

⟹ 𝑆′ ∘ 𝑆 = 6𝑖𝑧 − 8 + 3𝑖√3  

La composée 𝑆′ ∘ 𝑆 est une similitude directe de rapport 6 et d’angle 
𝜋

2
. 

𝐼3 − Exemples d’étude de similitudes directes 
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3.1- Similitude direcete déterminée par son expression analytique. 

Méthodes :  

Pour déterminer l’écriture complexe d’une application du plan dans lui-meme d’expression 

analytique donnée, on peut proceder de deux manières suivantes : 

 Soit : {
𝑥′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐   (1)

𝑦′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐    (2)
 

Ecrire 𝑧′ = 𝑥′ + 𝑖𝑦′ et remplace 𝑥′ et 𝑦′ en fonction de 𝑥 et 𝑦. 

Remplacer 𝑥 par : 
𝑧+𝑧̅

2
 et 𝑦 par : 

𝑧+𝑧̅

2𝑖
  et développer l’expression obtenue en fonction de 𝑧 et 𝑧̅. 

 Soit : {
𝑥′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐   (1)

𝑦′ = 𝑎𝑥 + 𝑏𝑦 + 𝑐   (2)
 

On multiplie l’équation (2) par 𝑖 

On additionne les deux équations (1) + (2) et en suite on regroupe la partie entier et 

imaginaire afin d’obtenir l’écriture complexe. 

Exemplexe : Ssoit 𝑓 l’application du plan lui-même d’expression analytique : 

{
𝑥′ = 𝑥 + 𝑦 + 2

𝑦′ =′ 𝑥 + 𝑦 − 1
 

1) Déterminer l’écriture complexe de 𝑓 

2) En déduire la nature et les éléments caratéristiques de 𝑓 

3) Déterminer la nature, les éléments caractéristiques et l’écriture complexe de 𝑓−1. 

Résolution : 

On a : {
𝑥′ = 𝑥 + 𝑦 + 2   

𝑦′ = −𝑥 + 𝑦 − 1    
 

1) Déterminons l’écriture complexe de 𝑓 

Méthode 1:  

𝑧′ = 𝑥′ + 𝑖𝑦 et 𝑧 = 𝑥 + 𝑖𝑦 

 On a: {
𝑥′ = 𝑥 + 𝑦 + 2          (1)

𝑖𝑦′ = −𝑖𝑥 + 𝑖𝑦 − 𝑖    (2)
 

𝑥′ + 𝑖𝑦′ = 𝑥 − 𝑖𝑥 + 𝑦 + 𝑖𝑦 + 2 − 𝑖  

  ⟺ 𝑧′ = 𝑥(1 − 𝑖) + 𝑦(1 + 𝑖) + 2 − 𝑖  

 ⟺  𝑧′ =
𝑧+𝑧̅

2
(1 − 𝑖) +

𝑧+𝑧̅

2𝑖
(1 + 𝑖) + 2 − 𝑖  

   =
1

2
(𝑧 − 𝑖𝑧 + 𝑧̅ − 𝑖𝑧̅) +

1

2𝑖
(𝑧 + 𝑖𝑧 − 𝑧̅ − 𝑖𝑧̅) + 2 − 𝑖  

   = 
𝑧

2
−
𝑖𝑧̅

2
+

𝑧̅

2
+
𝑖𝑧̅

2
+

𝑧

2𝑖
+

𝑧

2
−

𝑧̅

2𝑖
−

𝑧̅

2
+ 2 − 𝑖  

   =
𝑧

2
+

𝑧

2
− 𝑖 (

𝑧

2
+

𝑧

2
) + 2 − 𝑖  

   = 𝑧 − 𝑖𝑧 − 2 − 𝑖  

    ⟹ 𝑧′ = (1 − 𝑖)𝑧 + 2 − 𝑖 est criture complexe 𝑓 cherchée. 

Méthode 2 : {
𝑥′ = 𝑥 + 𝑦 + 2       (1) 

𝑦′ = −𝑥 + 𝑦 − 1     (2)   
 

On a : (1) + (2) × 𝑖 ⟹ 𝑥′ + 𝑖𝑦′ = 𝑥 + 𝑦 + 2 − 𝑖𝑥 + 𝑖𝑦 − 𝑖   

⟹ 𝑥′ + 𝑖𝑦 = 𝑥 + 𝑖𝑦 − 𝑖(𝑥 + 𝑖𝑦) + 2 − 𝑖  

   ⟹ 𝑧′ = 𝑧 − 𝑖𝑧 + 2 − 𝑖  

⟹ 𝑧′ = (1 − 𝑖)𝑧 + 2 − 𝑖  
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2) Déduisons-en la nature et les éléments caractéristiques de 𝑓. 

 Nature : 

𝑓 ∶  𝑧′ = 𝑎𝑧 + 𝑏; (𝑎 ∈ ℂ∗, 𝑏 ∈ ℂ) donc 𝑓 est une similitude directe du plan. 

 Elements caractéristiques : 

- Centre : 𝜔
2−𝑖

1−1+𝑖
=

−(2−𝑖)𝑖

(−𝑖)𝑖
= −2𝑖 − 1 ⟹  𝜔 = −1 − 2𝑖 

Donc 𝜔 = (−1; −2). 

- Rapport 𝑘 = |1 − 𝑖| = √1 + 1 = √2 ⟹ 𝑘 = √2 

- Angle :  

Soit 𝜃 cet angle, on a : {
cosθ =

1

√2
=

√2

2

sinθ = −
1

√2
= −

√2

2

;  ⟹ θ =
7π

4
+ 2kπ, k ∈ ℤ  

Donc 𝑓 ∶ 𝑆 = {𝜔(−1
−2
);   𝑘 = √2;   𝜃 =

7𝜋

4
} 

3) La nature, les éléments caractéristiques et l’écriture complexe de 𝑓−1. 

𝑓−1 ∶
1

√2
𝑒𝑖

𝜋

4𝑧 + 2 − 𝑖 donc 𝑓−1 est une similitude directe de centre Ω(−1; −2), de rapport 

𝑘 =
1

√2
 et d’angle  

𝜋

4
. 

Ecritue complexe : 𝑓−1 ∶  𝑧′ =
1

𝑘
𝑒𝑖𝜃(𝑧 − 𝜔) + 𝜔 

⟹ 𝑓−1: 𝑧′ =
1

√2
𝑒𝑖

𝜋

4(𝑧 − (−1 − 2𝑖) + (−1 − 2𝑖)  

  =
1

√2
𝑒𝑖

𝜋

4𝑧 +
1

√2
𝑒𝑖

𝜋

4(1 + 2𝑖) − 1 − 2𝑖  

  =
1

√2
(cos

𝜋

4
+ 𝑖 sin

𝜋

4
) 𝑧 +

1

√2
(cos

𝜋

4
+ 𝑖 sin

𝜋

4
) (1 + 2𝑖) − 1 − 2𝑖  

  =
1

√2
(
√2

2
+ 𝑖

√2

2
) 𝑧 +

1

√2
(
√2

2
+ 𝑖

√2

2
) (1 + 2𝑖) − 1 − 2𝑖  

  =
1

√2
(
√2

2
+ 𝑖

√2

2
) 𝑧 +

1

2
(1 + 𝑖)(1 + 2𝑖) − 1 − 2𝑖  

  =
1

2
(1 + 𝑖)𝑧 +

1

2
(1 + 3𝑖 − 2) − 1 − 2𝑖  

  =
1

2
(1 + 𝑖)𝑧 −

1

2
+
3𝑖

2
− 1 − 2𝑖  

  =
1

2
(1 + 𝑖)𝑧 −

3

2
−
1

2
𝑖  

⟹ 𝑓−1: 𝑧′ =
1

2
(1 + 𝑖)𝑧 −

1

2
(3 + 𝑖)   

3.2- Similitude directe déterminée par son écriture complexe 

Application :  

Soit 𝑆 l’application du lan dans lui-même d’écriture complexe 𝑧′ = 3𝑖𝑧 − 1 − 7𝑖 

1) Justifier que 𝑆 est une similitude directe et préciser ses éléments caractéristiques ; 

2) Déterminer l’expression analytique de 𝑆. 

Résolution : 

Soit 𝑧′ = 3𝑖𝑧 − 1 − 7𝑖 

1) Justifions que 𝑆 est une similitude directe et précisons ses éléments caractéristiques. 

En effet ; 𝑆 est de la forme 𝑧′ = 𝑎𝑧 + 𝑏; (𝑎 ∈ ℂ∗, 𝑏 ∈ ℂ), donc 𝑆 est une similitude directe. 

Ses éléments caractéristqiues : 
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 Centre 𝜔 =
𝑏

1−𝑎
=

−1−7𝑖

1−3𝑖
 

  =
(−1−7𝑖)(1+3𝑖)

1+9
  

  =
−1−10𝑖+21

10
  

  𝜔 = 2 − 𝑖  ⟹ Ω(2; −1)  

 Rapport 𝑘 :𝑎 = 3𝑖 ⟹ 𝑘 = 3  

 Angle : 𝑎 = 3𝑖 est un imaginaire pur donc 𝜃 =
𝜋

2
 

𝑆 est une similitude de centre Ω(2; −1); de rapport 𝑘 = 3 et d’angle 𝜃 =
𝜋

2
 

L’ensemble de éléments caracteristiques de S est : 𝜑 = {Ω(2; −1);    𝑘 = 3;   𝜃 =
𝜋

2
} 

2) Déterminons l’expression analytique de 𝑆.  

Soit 𝑧′ = 3𝑖𝑧 − 1 − 7𝑖 

En posant 𝑧′ = 𝑥′ + 𝑖𝑦′  et 𝑧 = 𝑥 + 𝑖𝑦, on a : 

     𝑧′ = 3𝑖𝑧 − 1 − 7𝑖 ⟺ 𝑥′ + 𝑖𝑦′ = 3𝑖(𝑥 + 𝑖𝑦) − 1 − 7𝑖  

   ⟺ 𝑥′ + 𝑖𝑦′ = 3𝑖𝑥 − 3𝑦 − 1 − 7𝑖    

   ⟺ 𝑥′ + 𝑖𝑦′ = −3𝑦 − 1 + 𝑖(3𝑥 − 7)  

   ⟺ {
𝑥′ = −3𝑦 − 1

𝑦′ = 3𝑥 − 7
 

L’expression analytique de 𝑆 est : {
𝑥′ = −3𝑦 − 1

𝑦′ = 3𝑥 − 7
 

3.3- Exemple d’une similitude directe qui transforme un point en unautre 

Application 1 : 

Les points 𝐴, 𝐵, 𝐶 et 𝐷 ont pour affixes respectives 2; −2𝑖;  −2 et 2𝑖. 

Déterminer la forme réduite de la similitude 𝑆 telle que : 𝑆(𝐵) = 𝐶 et 𝑆(𝐶) = 𝐷 

Résolution  

On a : 𝑧𝐴 = 2; 𝑧𝐵 = 2𝑖 ; 𝑧𝐶 = −2  et 𝑧𝐷 = 2𝑖 

Déterminons la forme réduite de 𝑆 telle que : 𝑆(𝐵) = 𝐶 et 𝑆(𝐶) = 𝐷 

  {
𝑆(𝐵) = 𝐶
𝑆(𝐶) = 𝐷

 ⟺ {
𝑎𝑧𝐵 + 𝑏 = 𝑧𝐶
𝑎𝑧𝐶 + 𝑏 = 𝑧𝐷

  

    ⟺ {
𝑎(−2𝑖) + 𝑏 = −2
𝑎(−2) + 𝑏 = 2𝑖

  

    ⟺ {
−2𝑎𝑖 + 𝑏 = −2  (1)
−2𝑎 + 𝑏 = 2𝑖   (2)

  

De l’équation (1), 𝑏 = −2 + 2𝑎𝑖  et en remplacant dans  (2), on a :  

  −2𝑎 − 2 + 2𝑎𝑖 = 2𝑖 ⟹ −2𝑎(1 − 𝑖) = 2(1 + 𝑖) 

       ⟹ 𝑎 =
1+𝑖

−1+𝑖
=

(1+𝑖)(−1−𝑖)

2
=

−2𝑖

2
= −𝑖  

       ⟹ 𝑎 = −𝑖  

 𝑏 = −2 + 2𝑎𝑖 ⟹ 𝑏 = −2 + 2(−𝑖)(𝑖) = −2 + 2 = 0 

    ⟹ 𝑏 = 0  

Donc la forme réduite de 𝑆 est :  𝑧′ = −𝑖𝑧 

Application 2 : 

Soit 𝐴, 𝐵 et 𝐶 les points d’affixes respectives : 𝑖; 1 + 𝑖 et 2 + 2𝑖 
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1) Déterminer l’affixe du barycentre 𝐺 des points ponderés (𝐴, 2), (𝐵,−2) et (𝐶, 1). 

2) Démontrer que la similitude directe 𝑆 qui transforme 𝐴 en 𝐵 et 𝐵 en 𝐶, à pour centre 

le point 𝐺. 

3) Déterminer l’angle et le rapport de 𝑆 

Résolution : 

On a : 𝑧𝐴 = 𝑖 ; 𝑧𝐵 = 1 + 𝑖 ; 𝑧𝐶 = 2 + 2𝑖 

1) Déterminons l’affixe du barycentre 𝐺 des points ponderés (𝐴, 2), (𝐵,−2) et (𝐶, 1). 

𝐺 = 𝑏𝑎𝑟{(𝐴, 2); (𝐵, −2); (𝐶, 1)} ⟺  2𝐺𝐴⃗⃗⃗⃗⃗⃗ − 2𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐺𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗  

     ⟺ 2𝑧𝐺𝐴⃗⃗ ⃗⃗ ⃗⃗ − 2𝑧𝐺𝐵⃗⃗ ⃗⃗ ⃗⃗ + 𝑧𝐺𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗  

     ⟺ 2(𝑧𝐴 − 2𝑧𝐺) − 2(𝑧𝐵 − 𝑧𝐺) + 𝑧𝐶 − 𝑧𝐺 = 0  

⟺ 2𝑧𝐴 − 2𝑧𝐺 − 2𝑧𝐵 + 2𝑧𝐺 + 𝑧𝐶 − 𝑧𝐺 = 0   

     ⟺ 2𝑧𝐴 − 2𝑧𝐵 + 𝑧𝐶 − 𝑧𝐺 = 0  

     ⟺ 𝑧𝐺 = 2𝑧𝐴 − 2𝑧𝐵 + 𝑧𝐶   

⟺ 𝑧𝐺 = 2𝑖 − 2 − 2𝑖 + 2 + 2𝑖   

⟺ 𝑧𝐺 = 2𝑖  

𝑧𝐺 = 2𝑖 donc 𝐺 est d’affixe 2𝑖. 

2) Démontrons que la similitude 𝑆 qui transforme 𝐴 en 𝐵 et 𝐵 en C a pour centre le point 

G. 

On a :  {
𝑆(𝐴) = 𝐵
𝑆(𝐵) = 𝐶

⟺ {
a𝑧𝐴 + 𝑏 = 𝑧𝐵
a𝑧𝐵 + 𝑏 = 𝑧𝐶

  

     ⟺ {
ai + b = 1 + i                 (1)

a(1 + i) + b = 2 + 2i  (2)
  

           (2) − (1) ⟺ {
−𝑎𝔦 − 𝑏 = −1 − 𝔦

𝑎(1 + 𝔦) + 𝑏 = 2 + 2𝔦
 

   ⟺ 𝑎 = 1 +  𝑖 

En remplaçant a dans (1),  

On a : (1 + 𝑖)𝑖 + 𝑏 = 1 + 𝑖 ⟺ 𝑏 = 1 + 𝑖 − 𝑖 + 1  

              ⟺ 𝑏 = 2   

L’écriture complexe de S  est : 𝑧’ =  (1 + 𝔦) 𝑧 + 2. 

G est le centre S si et seulement si : 𝐺 =
𝑏

1−𝑎
= 2𝑖 

On a : 𝐺 =
𝑏

1−𝑎
=

2

1−1−𝔦
=

2

−𝑖
= 2𝑖, alors 𝐺 = 2𝑖, donc S est une similitude directe de centre 

G d’affixe 2𝑖. 

3) Déterminons l’angle et le rapport de S  

L’angle de S  c’est donc un argument de 1 + 𝑖 ; le rapport 𝑘 est 𝑘 = |1 + 𝔦 | = √1 + 1 = √2 

Soit 𝜃 cet angle ; on a :{
cos 𝜃 =

√2

2

sin 𝜃 =
√2

2

;  ⟹ 𝜃 ≡
𝜋

4
[2𝜋]. 

Donc S a pour  angle 
𝜋

4
 et le rapport 𝑘 = √2 

Application :  

Dans le plan complexe rapporté au repère orthonormé direct (0; 𝑢⃗⃗; 𝑣⃗), on désigne par A ; B ; 

C les point d’affixe respectives : 𝑖, 2 + 3𝑖  𝑒𝑡 2 − 3𝑖. 
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Soit 𝑟 la rotation de centre 𝐵 et  d’angle  
𝜋

4
.  

a) Déterminer l’affixe du point 𝐴’ image du point A par la rotation 𝑟.  

b) Démontrer que les point A’ ; B et  C  Sont alignés et  déterminer l’écriture complexe 

de l’homothétie de centre B qui transforme C en A’.  

Résolution : 

On a : 𝑧𝐴 = 𝑖 , 𝑧𝐵 = 2 + 3𝑖 et 𝑧𝐶 = 2 − 3𝑖 et r (𝐵; 
𝜋

4
) : 𝑧′ − 𝑧𝐵 = 𝑒

𝔦𝜋

4 (𝑧 − 𝑧𝐵) 

a) Déterminons l’affixe du point 𝐴’ image du point A par la rotation 𝑟. 

r (𝐵; 
𝜋

4
) : 𝑧′ − 𝑧𝐵 = 𝑒

𝔦𝜋

4 (𝑧 − 𝑧𝐵)  

    ⟺ 𝑧′ = 𝑒
𝔦𝜋

4 (𝑧 − 𝑧𝐵) + 𝑧𝐵  

    ⟺ 𝑧𝐴′ = 𝑒
𝔦𝜋

4 (𝑧𝐴 − 𝑧𝐵) + 𝑧𝐵  

    ⟺ 𝑧𝐴′ = 𝑒
𝔦𝜋

4 𝑧𝐴 − 𝑒
𝔦𝜋

4 𝑧𝐵 + 𝑧𝐵  

 𝑧𝐴′ = (cos
𝜋

4
+  𝑖 sin

𝜋

4
) × 𝑖 − (cos

𝜋

4
+  𝑖 sin

𝜋

4
) (2 + 3𝑖) + 2 + 3𝑖  

    = (
√2

2
+ 𝑖

√2

2
) × 𝑖 − (

√2

2
+ 𝑖

√2

2
) (2 + 3𝑖) + 2 + 3𝑖  

    =
√2

2
𝑖 −

√2

2
− (√2 +

3𝔦√2

2
+
2𝔦√2

2
−
3√2

2
) + 2 + 3𝑖  

    =
√2

2
𝑖 −

√2

2
− √2 −

5𝔦√2

2
+
3√2

2
+ 2 + 3𝑖  

    = −
3√2

2
+
3√2

2
+
√2

2
𝑖 −

5𝔦√2

2
+ 2 + 3𝑖  

     𝑧𝐴′ = 2 + 3𝑖 − 2𝑖√2  

   ⟹ 𝑧𝐴′ = 2 + 𝑖(3 − 2√2  

b) Démontrons que les points A’, B et C sont alignés. 

Vérifions que : 
𝑍𝐶−𝑍𝐴′

𝑍𝐵−𝑍𝐴′
∈ ℝ∗  

𝑍𝐶−𝑍𝐴′

𝑍𝐵−𝑍𝐴′
=

2−3𝑖−(2+𝑖(3−2√2 )

2+3𝑖−(2+𝑖(3−2√2 )
  

    =
2−3𝑖−2−3𝑖+2𝑖√2

2+3𝑖−2−3𝑖+2𝑖√2
  

    =
−6𝑖+2𝑖√2

2𝑖√2
   

    =
(−6𝑖+2i√2)(−2𝑖√2)

8
  

=
−12√2+8

8
= −

3√2

2
+ 1 ∈ ℝ∗   

𝑍𝐶−𝑍𝐴′

𝑍𝐵−𝑍𝐴′
= −

3√2

2
+ 1 ∈ ℝ∗ , alors les points A’ ; B et C sont alignés.  

 Ecriture de l’homothétie de centre B qui transforme C en A’. 

 ℎ: 𝑧′ − 𝑧𝐵 = 𝑘(𝑍 − 𝑧𝐵)  ⟺ {
ℎ(𝐵) = 𝐵

ℎ(𝐶) = 𝐴′
⟺ {

𝑎𝑧𝐵 + 𝑏 = 𝑧𝐵
𝑎𝑧𝐶 + 𝑏 = 𝑧𝐴′

   

    ⟺ {
𝑎(2 + 3𝑖) + 𝑏 = 2 + 3𝑖                        (1)

𝑎(2 − 3𝑖) + 𝑏 = 2 + 𝑖(3 − 2√2)     (2)
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    ⟺
{
𝑎(2+3𝑖)+𝑏=2+3𝑖                

−𝑎(2−3𝑖)−𝑏=−2−𝑖(3−2√2)

6𝑎𝑖=2𝑖√2
  

 ⟺ 𝑎 =
2√2

6
  = 

√2

3
 

   ⟹ 𝑘 = |𝑎| =
√2

3
  

  ⟹ k =
√2

3
  

Donc  ℎ: 𝑧′ − (2 + 3𝔦 ) =
√2

3
(𝑧′ − (2 + 3𝔦 )) 

   ⟺ 𝑍′ =
√2

3
𝑧 −

√2

3
(2 + 3𝑖) + 2 + 3𝑖  

   ⟺ 𝑧′ =
√2

3
𝑧 −

2√2

3
− 𝑖√2 + 2 + 3𝑖  

   ⟺ 𝑧′ =
√2

3
𝑧 −

2√2

3
+ 2 + 3𝑖 − 𝑖√2  

   ⟺ 𝑧′ =
√2

3
𝑧 +

6−2√2

3
+ 𝑖(3 − √2)  

L’écriture complexe de cette homothétie est : 𝑧′ =
√2

3
𝑧 +

6−2√2

3
+ 𝑖(3 − √2) 

II. Similitudes indirectes. 

𝐈𝐈𝟏 −Définition et propriété 

1.1- Définition :  

On appelle similitude indirecte, toute similitude qui transforme tout angle en son opposé. 

Elle est donc la composée d’une homothétie et d’un antidéplacement (symétrie orthogonale 

ou symétrie glissée). 

Remarque :  

Un antidéplacement est appelé : 

 Réflexion = symétrie d’axe (D) : si 𝑎𝑏  +  𝑏 = 0 ; (isométrie indirecte) ; 

 Symétrie orthogonale ; 

 Symétrie  glissée : si l’expression 𝑎𝑏 + 𝑏 ≠ 0, ou si 𝑘 = 1 il s’agit d’un symétrie 

glissée. 

1.2-   Théorème :  

Soit S la transformation du plan dans lui-même .Si S est une similitude indirecte de rapport 

𝑘, alors S admet une écriture de la forme : 𝒛′ = 𝑎𝒛̅ + 𝒃;  (𝒂 𝝐 ℂ∗;  𝒃 𝝐 ℂ). 

Comme pour une similitude directe, l’écriture complexe d’une similitude indirecte permet de 

déterminer ses éléments caractéristiques. 

1.3- Nature et élément caractéristiques 

La nature et les éléments caractéristiques d’une similitude indirecte sont déterminés suivant 

le module de a ; c’est-à-dire 𝑘 = |𝑎|. 

- Si 𝑘 = 1, il s’agit d’une symétrie orthogonale ou soit d’une symétrie glissée ; 

- On calcule 𝑎𝑏  +  𝑏 et on distingue deux cas : 

1er cas : si 𝑎𝑏  +  𝑏 = 0, alors S est une symétrie d’axe (D). (D) étant la droite passant par un 

point 𝐴 (
𝑏

2
) et dirigé par le vecteur  𝑢⃗⃗(1 + 𝑎). 
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2e cas : si 𝑎𝑏  +  𝑏 ≠ 0, alors S est une symétrie glissée: 𝑓: 𝑠Δ∘𝑡𝑢⃗⃗⃗ = 𝑡𝑢⃗⃗⃗ ∘ 𝑆Δ ; de vecteur 

𝑣 ⃗⃗⃗ ⃗ (
𝑎𝑏 + 𝑏

2
) et d’axe passant un point 𝐵 (

𝑏−𝑎𝑏̅

4
) et de direction   𝑢⃗⃗(1 + 𝑎) ou 𝑢⃗⃗(𝑖) si 𝑣⃗ = 0⃗⃗. 

- Si 𝑘 ≠ 1,S est la composée d’une homothétie de centre 𝐼 (
𝑎𝑏 + 𝑏

1−|𝑎|2
) et d’une symétrie 

orthogonale (réflexion) d’axe (D) passant par 𝐼 et de direction 𝑢⃗⃗ (1 +
𝑎

|𝑎|
). 

On écrit :  𝑆 = ℎ ∘ 𝑠𝛥 = 𝑠𝛥 ∘ ℎ. 

Propriétés : 

 La composée de deux similitudes indirectes est une similitude indirecte ; 

 La composée d’une similitude directe et d’une similitude indirecte est une similitude 

indirecte ; 

 La réciproque d’une similitude indirecte est une similitude indirecte. 

1.4- Point invariant ou point fixe 

Définition :  

On appelle point invariant ou point fixe par une transformation, tout point qui a pour image 

lui-même. C’est-à-dire pour tout point M du plan ; 𝑓(𝑀) = 𝑀. 

Remarque : 

Pour démontrer qu’une application est un point invariant, il suffit tout simplement de 

résoudre l’équation : 𝑧’ = 𝑧. 
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Chapitre 9 : DENOMBREMENT ET PROBABILITES 

I. Analyse combinatoire 

I1 –Notation factorielle 

𝐈𝟏.𝟏 − Definition:  

Soit n un entier naturel non nul. 

On appelle factorielle de n, le produit des entiers positifs de 1 à n noté par :  

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) × …× 2 × 1  

On lit «  factorielle n ». 

Exemple : 

3! = 3 × 2 × 1  

4! = 4 × 3 × 2 × 1  

Par convention : 0! = 1 

𝐈𝟐 –Permutation : 

𝟐. 𝟏 − Definition:  

Soit E un ensemble non vide de cardinal n ; ( un est un entier naturel). 

On appelle permutation de n éléments de E, toute suite ordonner formée à partir de de n 

éléments distincts de E.  

On la note :𝑃𝑛 = 𝑛(𝑛 − 1)(𝑛 − 2) × …× 2 × 1 = 𝑛!  

Exemple :  

Soit 𝐸 = {𝑎; 𝑏; 𝑐}  

Le nombre de permutation des éléments de E est :  

𝑃3 = 3! = 3 × 2 ×= 6  

Les permutations des éléments de E sont : 𝑎𝑏𝑐; 𝑎𝑐𝑏; 𝑏𝑎𝑐;  𝑏𝑐𝑎; 𝑐𝑎𝑏 𝑒𝑡 𝑐𝑏𝑎. 

𝐈𝟑 – Arrangement  avec répétition :  

𝟑. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle arrangement avec répétition de k éléments parmi les n éléments de E, toute suite 

ordonnée de  k éléments de E distincts ou non ( non nécessairement distinct).  

Le nombre est noté :  𝑨𝒏
𝒌 = 𝒏𝒑. 

𝐈𝟒 – Arrangement  sans répétition : 

𝟒. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle arrangement sans répétition de k éléments de E, toute suite ordonnée de  k 

éléments de E distincts deux à deux (𝑝 < 𝑛). 

On le note 𝑨𝒏
𝒌 =

𝒏!

(𝒏−𝒑)!
 

Exemple : 

On peut placer de 74 façons différentes 4 lettres  distinctes dans 7 boites aux lettres. 

Exercice d’application:  

1) De combien de façons différentes, peut-on placer 4 lettres distinctes dans 20 boites aux 

lettres ? 



111 
 

2) A Partir de 3 lettres a, b et c, combien de mots de 2 lettres non nécessairement distincte 

peut-on former ? 

3) De combien de façon différentes peut- on ranger 7 livres : 

a) Dans n’importe quel ordre ? 

b) Si 3 livres particuliers doivent rester ensemble ? 

c) Si 2 livres particuliers doivent prendre les positions extrêmes ? 

4) Une classe comporte 9 garçons et 3 filles. De combien de façons peut-on faire un choix 

de 4 élèves. 

a) Quelconques ? 

b) Comprenant au moins une fille ? 

c) Comprenant exactement une fille ? 

𝐈𝟓 – Combinaison : 

𝟓. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle combinaison de k éléments de E, toute partie de E à  k éléments. 

On le note 𝑪𝒏
𝒌 =

𝒏!

𝒑!(𝒏−𝒑)!
 

Exemple : 

De combien de façons peut-on former un comité de trois personnes dans une assemblée de 

10 hommes et 6 femmes ? 

C’est une combinaison de 3 personnes sur un total de 16. 

On a : 𝑪𝟏𝟔
𝟑 =

𝟏𝟔!

𝟑!(𝟏𝟔−𝟑)!
= 𝟓𝟔𝟎 

Il y a donc 560 façons différentes de former un comité de 3 personnes dans cette 

assemblée. 

Quelques valeurs particulières : 

𝑨𝒏
𝟎 = 𝟏  

𝑨𝒏
𝒏 = 𝒏!  

𝑨𝒏
𝟏 = 𝒏  

𝑪𝒏
𝟎 = 𝑪𝒏

𝒏 = 𝟏  

𝑪𝒏
𝟏 = 𝑪𝒏

𝒏−𝟏 = 𝒏  

Propriété : 

Pour tous entiers naturels n et p tel que p soit inférieur ou égal à n, on a : 

𝑪𝒏
𝒏−𝒑

= 𝑪𝒏
𝒑
  

Si de plus 𝟎 < 𝒑 < 𝒏, alors : 𝑪𝒏−𝟏
𝒑−𝟏

+ 𝑪𝒏−𝟏
𝒑

= 𝑪𝒏
𝒑
 

Résumé : 

Types de 
tirages 

Ordre Répétitions d'éléments Dénombrement 

Successifs 
Avec remise  On tient compte 

de l'ordre  

Un élément peut être 
tiré plusieurs fois  

𝑛𝑝 ( p-uplets) 

Successifs 
Avec remise  Un élément n'est tiré  

qu'une seule fois 

𝑨𝒏
𝒌 =

𝒏!

(𝒏−𝒑)!
  (arrangement) 

Simultanés  
L'ordre 
n'intervient pas 

𝑪𝒏
𝒌 =

𝒏!

𝒑!(𝒏−𝒑)!
  (Combinatoires) 
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II. Calcul de probabilité : 

𝐈𝐈𝟏 – Eventualité, Univers, Evènement 

𝟏. 𝟏 − Definition 1:  

On appelle Eventualité, une épreuve donnant un nombre fini de résultats. L’ensemble de 

toutes les éventualités est appelé l’Univers. 

Exemple :  

Le lancer d’une pièce de monnaie, le lancer d’un dé … sont des expériences aléatoires, car 

avant de les effectuer, on ne peut pas prévoir avec certitude quel en sera le résultat, résultat 

qui dépend en effet du hasard. 

A cette expérience aléatoire, on associe l’ensemble des résultats possibles appelé univers. 

Ses éléments sont appelés éventualités. 

𝟐. 𝟏 − Definition 2: 

On appelle évènement, toute partie de l’univers des cas possibles Ω. 

Les sous-ensembles de l’univers Ω sont appelés événements. 

♦ Les événements formés d’un seul élément sont appelés événements élémentaires. 

♦ Etant donné un univers Ω, l’événement Ω est l’événement certain. 

♦ L’ensemble vide est l’événement impossible. 

♦ L’événement formé des éventualités qui sont dans A et dans B est noté :  𝐴 ∩ 𝐵. 

𝐴 ∩ 𝐵  se lit «  A inter B » 

♦ L’événement formé des éventualités qui sont dans A ou dans B est noté : 𝐴 ∪ 𝐵. 

𝐴 ∪ 𝐵 se lit «  A union B » 

♦ Etant donné un univers Ω et un événement A, l’ensemble des éventualités qui ne sont pas 

dans A constitue un événement appelé événement contraire de A, noté 𝐴  appelé 

complémentaire de A. 

♦A et B sont incompatibles si et seulement si 𝐴 ∩ 𝐵 =  ∅. 

Pour décrire mathématiquement une expérience aléatoire, on choisit un modèle de cette 

expérience ; pour cela on détermine l’univers et on associe à chaque événement 

élémentaire un nombre appelé probabilité. 

𝐈𝐈𝟐 – Calcul de probabilités d’un évènement 

𝟐. 𝟏 − Definition:  

Ω est l’univers des éventualités d’une expérience aléatoire. 

Une probabilité sur l’univers Ω est une application 𝒫 de 𝒫(Ω) ⟶ [0; 1] qui, à toute partie A 

de Ω associe le nombre réel 𝑃(𝐴) appelé probabilité de l’évènement A et qui vérifie les 

conditions suivantes : 

- 0 ≤ 𝑃(𝐴) ≤ 1 ;  

- 𝑃(Ω) = 1, (probabilité de m’évènement certain) ;  

- 𝑃(∅) = 0, 

𝟐. 𝟏 − Propriété : 

Soit P une probabilité définie sur l’univers Ω et A et b deux évènements, on a : 

- 𝑃(𝐴 ∪ 𝐵 ) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵 ) 

- Si 𝐴 ∩ 𝐵 = ∅, alors 𝑃(𝐴 ∩ 𝐵 ) = 0, donc :  𝑃(𝐴 ∪ 𝐵 ) = 𝑃(𝐴) + 𝑃(𝐵) 
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- 𝑃(𝐴 ∩ 𝐵 ) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∪ 𝐵 ) 

- 𝑃(𝐴) + 𝑃(𝐴) = 1 ⟹ 𝑃(𝐴) = 1 − 𝑃(𝐴) 

- Si tous les évènements élémentaires de Ω ont la même probabilité, alors : 𝑃(Ω) =
𝑐𝑎𝑟𝑑𝐴

𝑐𝑎𝑟𝑑Ω
  

𝐈𝐈𝟑 – Indépendance des évènements 

𝟑. 𝟏 − Definition:  

Soit P, une probabilité définie sur un univers Ω. 

Deux évènements A et B sont dits indépendants pour la probabilité P, lorsque :  

𝑃(𝐴 ∩ 𝐵 ) = 𝑃(𝐴 ) × 𝑃(𝐵). 

- Deux évènements sont dits indépendants lorsque la réalisation de l’un n’influe pas sur la 

réalisation de l’autre ;  

- Si n épreuves sont indépendants, alors pour évènements 𝐴1, 𝐴2, 𝐴3, … . , 𝐴𝑛  de chacun 

des univers associé à ces épreuves, on a :  

𝑃(𝐴1 ∩ 𝐴2 ∩ 𝐴3…∩ 𝐴𝑛 ) = 𝑃(𝐴1 ) × 𝑃(𝐴2) × 𝑃(𝐴3 ) × …× 𝑃(𝐴𝑛). 

 

Résumé : 

Parties de E  Vocabulaire des événements  Propriété 

𝐴 A quelconque  0 ≤ 𝑃(𝐴) ≤ 1  

∅ Evénement impossible 𝑃(∅) = 0 

Ω Evénement certain 𝑃(Ω) = 1 

𝐴 ∩ 𝐵 =  ∅ A et B sont incompatibles  𝑃(𝐴 ∪ 𝐵 ) = 𝑃(𝐴) + 𝑃(𝐵) 

𝐴 A est l’événement contraire de A  𝑃(𝐴) = 1 − 𝑃(𝐴) 

𝐴, 𝐵 A et B quelconques  𝑃(𝐴 ∪ 𝐵 ) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵 ) 
 

Exemple : 

On considère l’ensemble E des entiers de 20 à 40. On choisit l’un de ces nombres au hasard. 

 A est l’événement : « le nombre est multiple de 3 » 

 B est l’événement : « le nombre est multiple de 2 » 

 C est l’événement : « le nombre est multiple de 6 ». 

Calculer 𝑃(𝐴),  𝑃(𝐵) ,  𝑃(𝐶), 𝑃(𝐴 ∩ 𝐵 ), 𝑃(𝐴 ∪ 𝐵 ), 𝑃(𝐴 ∩ 𝐶) et 𝑃(𝐴 ∪ 𝐶). 

𝐈𝐈𝟒 – Equiprobabilité 

𝟒. 𝟏 − Definition:  

On dit qu’il y a équiprobabilité quand tous les événements élémentaires ont la même 

probabilité. 

Dans une situation d’équiprobabilité, si Ω a 𝑛 éléments et si E est un événement composé de 

m événements élémentaires : 𝑃(𝐸) =
card E

card Ω
  où cardE et card 

le nombre d’éléments de E et de Ω.  

On le mémorise souvent en disant que c’est le nombre de cas favorables divisé par le 

nombre de cas possibles. 

Remarque : 

Les expressions suivantes « dé parfait », « pièce parfaite », « cartes bien battues »,  « boule 

tirée de l’urne au hasard », «boule indiscernable au toucher», 
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« boules indiscernables » … indiquent que, pour les expériences réalisées, le modèle associé 

est l’équiprobabilité. 

Exemple 1 :  
On lance deux fois de suite un dé équilibré. 

1) Représenter dans un tableau les 36 issues équiprobables. 
2) Calculer la probabilité des événements : 

A : « on obtient un double » ; B : « on obtient 2 numéros consécutifs » 
C : « on obtient au moins un 6 » ; D : « la somme des numéros dépasse 7 ». 

Exemple 2: 
On lance 4 fois de suite une pièce équilibrée. 
1) Dresser la liste des issues équiprobables. 
2) Quel est l’événement le plus probable : A ou B ? 

A : « 2 piles et 2 faces » 
B : « 3 piles et 1 face ou 3 faces et 1 pile » 

𝐈𝐈𝟓 – Probabilité conditionnelle 
𝟓. 𝟏 − Definition 
Soit P une probabilité sur un univers des cas possibles Ω et soit a un évènement de 
probabilité non nulle.  
Pour tout évènement B, on appelle de A sachant B, le nombre réel noté :  

𝑃𝐴(𝐵) =
𝑃(𝐴 ∩𝐵 )

𝑃(𝐵)
  𝑜𝑢  𝑃(𝐴/𝐵) =

𝑃(𝐴 ∩𝐵 )

𝑃(𝐵)
   

Exemple : 
En fin de 1ere S, chaque élève choisit une et une seule spécialité en terminale suivant les 
répartitions ci –dessous : 
 
Par spécialité : 

Mathématiques Sciences physiques SVT 

40% 25% 35% 
 
Sexe de l’élève selon la spécialité : 

                Spécialité 
Sexe  

Mathématiques Sciences physiques SVT 

Fille 45% 24% 60% 

Garçon 55% 76% 40% 

 
On choisit un élève au hasard. 
1) Construire l’arbre pondéré de cette expérience aléatoire. 
2)  a) Quelle est la probabilité de chacun des événements suivants ? 

   F : « l’élève est une fille », M : « l’élève est en spécialité maths ». 
b) Quelle est la probabilité que ce soit une fille ayant choisi spécialité mathématiques ? 
c) Sachant que cet élève a choisi spécialité mathématiques, quelle est la probabilité que 
ce soit une fille ? 

On appelle probabilité de F sachant M cette probabilité (conditionnelle) et on la note 
𝑃𝑀(𝐹)ou 𝑃𝐹(𝑀). 
Quelle égalité faisant intervenir 𝑃(𝐹 ∩ 𝑀 ), 𝑃(𝐹) et 𝑃𝑀(𝐹) peut-on écrire ? 
Comparer 𝑃(𝐹) et 𝑃𝑀(𝐹) et en donner une interprétation. 
    d) Sachant que cet élève a choisi spécialité SVT, quelle est la probabilité que ce soit une      
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fille ? 
  e) Comparer 𝑃𝑆(𝐹)et 𝑃(𝐹), et en donner une interprétation. 
𝟓. 𝟐 − Arbres pondérés 
Règles de construction 
La somme des probabilités des branches issues d'un même nœud est 1. 
La probabilité de l'événement correspondant à un trajet est le produit des probabilités des 
différentes branches composant ce trajet. 
Exemple 
On jette une pièce. 
- Si on obtient pile, on tire une boule dans l’urne P contenant 1 boule blanche et 2 boules 

noires. 
- Si on obtient face, on tire une boule dans l’urne F contenant 3 boules blanches et 2 

boules noires. 
Représenter cette expérience par un arbre pondéré. 

Remarque : 
Si A et B sont tous deux de probabilité non nulle, alors les probabilités conditionnelles 
p(A/B) et p(B/A) sont toutes les deux définies et on a : p(A ∩B) = p(A/B)p(B) = p(B/A)p(A). 

𝐈𝐈𝟔 – Schéma de Bernoulli 
𝟔. 𝟏 − Definition : 
1- Une épreuve de Bernoulli est une épreuve ayant deux éventualités ; 
2- Un schéma de Bernoulli est une expérience aléatoire qui consiste à répéter n fois de 

façons indépendante une épreuve de Bernoulli. 
3- Soit un schéma de Bernoulli à n épreuves où pour chaque épreuve, la probabilité de 

succès est notée P et celle de l’échec est notée 1 − 𝑃. 
La probabilité d’obtenir exactement k succès (0 ≤ 𝑘 ≤ 𝑛) au cours de ces n épreuves 

est : 𝑃𝑘 = 𝐶𝑛
𝑘𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 
Exemple : 
Une maladie atteint 3% d’une population donnée. Un test de dépistage donne les résultats 
suivants : 
Chez les individus malades, 95% des tests sont positifs et 5% négatifs. 
Chez les individus non malades, 1% des tests sont positifs et 99% négatifs. 
On choisit un individu au hasard. 

1) Construire l’arbre pondéré de cette expérience aléatoire. 
2) Quelle est la probabilité 

a) qu’il soit malade et qu’il ait un test positif ? 
b) qu’il ne soit pas malade et qu’il ait un test négatif ? 
c) qu’il ait un test positif ? 
d) qu’il ait un test négatif ? 

3) Calculer la probabilité 
a) qu’il ne soit pas malade, sachant que le test est positif ? 
b) qu’il soit malade, sachant que le test est négatif ? 

4) Interpréter les résultats obtenus aux questions 3a et 3b. 

III. Variables aléatoires : 

𝐈𝐈𝐈𝟏 – Notion de variable aléatoire 

𝟏. 𝟏–Définition : 



 

116 
 

On appelle variable aléatoire X sur un univers Ω, toute application de Ω vers ℝ. 

Vocabulaire et notation : 

L’ensemble des valeurs prises par X noté 𝑋(Ω) = {𝑥1, 𝑥2, … , 𝑥𝑛} est appelé univers image de 

Ω par X. 

𝐈𝐈𝐈𝟐 – Lois de probabilité 

𝟐. 𝟏–Définition : 

Soit P, une probabilité définie sur l’univers Ω. 

La Loi de probabilité d’une variable aléatoire X sur Ω est l’application qui, à toutes valeurs 𝑥𝑖  

prises par X, associe 𝑃(𝑋 = 𝑥𝑖). 

Généralement, on la représente sur un tableau.  

𝑥𝑖  𝑥1 𝑥2 …. 𝑥𝑛 
𝑃(𝑋 = 𝑥𝑖) 𝑃(𝑋 = 𝑥1) 𝑃(𝑋 = 𝑥2)  𝑃(𝑋 = 𝑥𝑛) 

 

𝟐. 𝟐–Propriété : 

Pour toute variable aléatoire X prenant les valeurs 𝑥1, 𝑥2, …, 𝑥𝑛, on a : 

𝑃(𝑋 = 𝑥1) + 𝑃(𝑋 = 𝑥2) + ⋯+ 𝑃(𝑋 = 𝑥𝑛) = 1  

On écrit : ∑ 𝑃(𝑋 = 𝑥𝑖)
𝑛
𝑖=1 = 1 

𝐈𝐈𝐈𝟑 – Fonction de répartition 

𝟑. 𝟏–Définition : 

Soit X une variable aléatoire définie sur Ω muni d’une probabilité P. 

La fonction de répartition de X est l’application de ℝ vers [0; 1] définie par :  

𝐹(𝑋) = 𝑃(𝑋 ≤ 𝑥𝑖)  

𝐈𝐈𝐈𝟒 – Espérance mathématique, variance et écart-type 

𝟒. 𝟏–Définition : 

On appelle respectivement espérance mathématique de X, variance de X et écart-type de X , 

les nombres suivants : 

- L’espérance mathématique est le nombre E(X) défini par :  𝐸(𝑋) = ∑ 𝑥𝑖𝑃𝑖
𝑛
𝑖=1  . 

- La variance est le nombre V défini par :  𝑉(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
. 

- L’écart - type est le nombre défini par : 𝜎(𝑋) = √𝑉(𝑋) 

Exercice d’application : 

Une boite contient 4 boules rouges ,3 boules vertes et 𝑛 boules jaunes (𝑛 ∈ ℕ et 𝑛 ≥ 2). On 

tire simultanément 2 boules de la boite et on suppose que les tirages sont équiprobables. 

1) Exprimer en fonction de 𝑛, les probabilités des évènements : 

𝐴 : « Les deux boules sont jaunes » 

𝐵 : « Le tirage est unicolore » 

𝐶 : « Le tirage est bicolore » 

2) On suppose que  𝑃(𝐴) =
3

13
 ; déduire 𝑛, puis P(B) et P(C). 

3) On suppose que 𝑛 = 7. On répète 10 fois l’expérience en remettant dans la boite après 

chaque tirage, les deux boules tirées.  𝑋 est la variable aléatoire qui comptabilise le 

nombre de réalisation de l’évènement  𝐵. 

a) Calculer la probabilité des évènements (𝑋 = 2) et (𝑋 ≥ 9). 

b) Calculer l’Esperance mathématique de 𝑋 et donner une interprétation du résultat. 



 

117 
 

𝐈𝐈𝐈𝟓 – Loi de Binomiale 
Propriété : 
On considère un schéma de Bernoulli à n épreuves. On note P la probabilité de succès, X est 
variable aléatoire qui prend pour valeurs le nombre de succès obtenu au cours de ces n 
épreuves.  

La loi de probabilité de x est : 𝑷𝒌 = 𝑪𝒏
𝒌𝒑𝒌(𝟏 − 𝒑)𝒏−𝒌, 𝟎 ≤ 𝒌 ≤ 𝒏.  

Elle est appelée loi Binomiale de paramètre (𝑛; 𝑝) 

 
Exemple : 

Une urne contient  quatre boules rouges, trois boules vertes et 𝑛 boules jaunes ; 𝑛 étant un 

entier naturel supérieur ou égal à 2. On tire simultanément deux boules de l’urne et on 

suppose que tous les tirages sont équiprobables. 

c) Calculer  en fonction de 𝑛, la probabilité des événements suivants : 

A « Obtenir deux boules de même couleur » 

B « Obtenir deux boules de couleurs différentes » 

d) On suppose que la probabilité d’obtenir deux boules jaunes est de 
3

13
. Déterminer 𝑛 ; 

puis 𝑃(𝐴) et 𝑃(𝐵). 

e) On suppose que 𝑛 = 7. On repère cinq fois l’expérience en remettant dans l’urne après 

chaque tirage, les deux boules tirées. Soit  𝑋 le nombre de fois où l’événement 𝐴 est 

réalisé au cours de ces cinq répétitions. Déterminer la loi de probabilité de X. 

Théorème :  

Pour une loi Binomiale de paramètres (𝑛; 𝑝) : 

𝐸(𝑋) = 𝑛𝑝 et 𝜎(𝑋) = 𝑛𝑝𝑞 

 

 

 

 

  



 

 
 

 

Bibliographie 

 

 Bampena Youg E, Terminale SM, Analyse et probabilité, volume 1, Collection Maths 

faciles, Edition Sopecam 2012, paru en 2013.  

 

 C. Gauthier, Ph. Roger, C. Thiercé,  Analyse Terminale (Cet E) nouvelle édition, 

Hachette, septembre 1986, parue en Août 1988 

 

 C.Talamoni, V. Brun, JP. Beltramone, J. Labrosse, A.Truchan, O.Sidokpohou, C. 

Merdy, Déclic Maths Terminale S spécifique, Edition Hachette Education 2012, Paru 

en mai 2012 Scolaire / Universitaire    

 

 CIAM, Mathématiques Terminale SM, Edition Edicef 1999, paru en novembre 2004 ; 

CIAM, Mathématiques Terminale SC, Edition Edicef 1999, paru 2013 

 

 Nana Léopold, Mathématique Terminale D, Collection  Le Zénith, Edtion N.A.G 

 

 V.Tégninko, D.Sielinou, A.Bouda, R.Pokam, R.Boudy, C.Fouodji, L’Excellence en 

mathématiques Terminale(D), Edition NMI Education, 1
ere

 Edition, parue en 2014 

 

 

  



 

 
 

 

 


