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Chapitre 1 : LIMITES ET CONTINUITE
l. Limite d’une fonction

I; — Limites de références

Soit a, b et c des nombres réels et n un entier naturel non nul. On a:

limc= lim ¢= lim c=c¢

lim(x—a)"=0

x—-a X—+o00 X—>—00 x—-a
; n _ —00r i ]
xl_lgloox =t lim x™ = ’ Sl.n est palr )
X— 00 +o0; sinestimpair
limvx =0 lim Vx =+ o
x—-0 X—+00
lim x™ = im 400 sinestpair
x—0 im———= : Si i
R —a)n ; p
.1 . . .
lim —=0 lim — = +o0; si n est pair
x—+oo xN x—-0xM
, 1 lim x?" = 4
lim —— =+ Y00
. 1 lim x?" 1 = —
lim —n-1 = —00 X——00
x—0~ x4N—
. sinx ) 1
lim—=1 lim —=20
x>0 X x—>+oo xN
. coss—1 ) 1
lim— =0 lim —=0
x—0 X X—>—00 xn
lim — = +o0; sinest pair lim — = —oo0; si n est pair
x—0t xM ’ p x—0~" xN ’ p

NB : Les fonctions cosinus et sinus n’ont pas de limite en l'infini.

1.2—Les limites et opérations sur les fonctions

Dans le tableau suivant, x,, [ et I’ désignent des nombres réels.

Les résultats essentiels ci-dessous concernent les limites de la somme, du produit et du

guotient de deux fonctions.




(+00) + 1 = 400 [X(+e0) =40 | L _ e

+00 L
Si: 1>0

(—00) + 1 = —oo l [X(-0) == | L _, e
— o [

(+00) + (+0) = 4+ I X (+00) = —00 L—o +—oo=—00
+oo L

(=) + (=) = —0 St:l<0 [ X (—0) = o0 L:O ﬁ:"’oo
oo !

1.3—Les Les formes indéterminées

Les symboles (4+c0) désigne un élément non réel et supérieur a tout réel et (—o0) désigne

un élément non réel et inferieur a tout réel. Il existe donc quatre (4) types de formes

indéterminées énumérées ci-dessous.

(1) + 00 — Forme indéterminée : On ne 0 Forme indéterminée : On ne
peut conclure directement (3) 0 peut conclure directement

(2) © Forme indéterminée : On ne (4) OX ( +oo) Forme indéterminée : On ne
o0 peut conclure directement peut conclure directement

Attention: L'obtention d’une forme indéterminée ne permet pas de conclure directement. Il

faut donc lever cette indétermination:

- Soit en factorisant la fonction ou en séparant une fraction en plusieurs parties;

- Soit en faisant I'expression conjuguée de la fonction.

1.3—Limite en 'infini des fonctions polyn6mes et rationnelle

Propriétés

Soient a et b (b # 0) des nombres réels et n, m des entiers naturels non nuls, on a:

o [limy o @pXx™ + ap_1 X" 1+ ap_px" % + -+ ay = lima,x"
X—00

On dit que la limite d’une fonction polyndme en I'infini est égale a la limite en I'infini de son

mondéme de plus haut degré.

lim
°

An X +an_1x" 1 +ap_x" % ++ag

_ lim anx"
X=00 by XM +bpy 1 XM 14+by _oxM~24..4by XD pp x™

On dit que la limite d’une fonction rationnelle en I'infini est égale a la limite en I'infini de son

mondéme de plus haut degré du numérateur et du dénominateur.

Exemple :

Calculons les limites suivantes:
e lim (5x3 —x+1)= lim 5x3 = 4+

X—+00 X—+00
= lim 5x3—x+1) =4+
xX—+00
e lim (5x3—x+1)= lim 5x3 = -
X—>—00

X——00




= lim 5x3—x+1=—o

X—>—00
) 7x5—2x3+1 ) 7x5 ) 7
e lim ———= lim — = lim -~x =+
x—+00 3x4—x+1 x—+o0 3X x—>+00 3
7x5-2x3+1
= lim ———— =+
x—>+4o00 3x°—x+1
. 2x%2-1 ) 2x?
e lim = lim — =2
x——00 X2+2x+1 x——o00 X2
2x2-1
= lim

xXx—>— oox2+2x+1
1.4—Propriétés de comparaison
1) Soit f et g deux fonctions et I = |4; + oo[, un intervalle donné:
oSif = gsurletsi lirP g(x) = +oo, alors lirP gx) = 4o
X—>+00 X—+00
oSif < gsurletsi lirp g(x) = —o0, alors lir}l g(x) = —oo
X—+ 00 X—>+ 00
oSif < gsurletsi lirp glx) =let liE_II gx)=1U,alorsl <
X—+00 X—>+00
2) Soit f, g et g trois fonctions. ] = ]A; + 00[, un intervalle donné:
e Sig<f<hsurjetsi lim g(x) = lim h(x) =, alors lim f(x) =1
Xx—+00 X—+00 X—+0
e S’il existe un nombre réel [ tel que: lir}l g(x) = 0et pourtoutxdel = ]A; +xo],
X—400

G =l < g(x), alors lim f(x) =1

Exemple

On considére la fonction f définie par: f(x) = 2x + 1 — 3sinx

Déterminer la limite de f en —oo et en +oo0.

Solution:

f(x) = 2x + 1 — 3sinx, la fonction f est définie sur R.

VxXER, -1<sinx<le -1<-sinx<1
& —3<—-3sinx <3
=2x+1-3<2x+1-3sinx <2x+1+3
S 2x—-2<f(x)<2x+4

On a:
1) f(x)=2x—2et llm 2x — 2 = —o, alors llm f(x) = —
2) f(x) <2x+4et llgl 2x + 4 = 4o, alors 11rn+f(x) =+
3) 2x —2 < f(x) <2x + 4:
» lim 2x—2 = lim 2x + 4 = —oo, alors lim f(x) = —00
X——00 X——00
. 11111 2x — 2 = 11111 2x + 4 = +oo0, alors hm f(x) = 400
X—+ 00 X—+ 00
Application :
Montrons que : V x € ]R,x—_l < xtsinx < 2
X X X

Ona:Vx€E R,-1<sinx<1

Sx—1<x+sinx<x+1

x—1 x=sinx x+1
= —< <




. -1 ) 1
e Calculons lim (x—) et lim (1)
X—+oo X X—>+oo X
On a: lim (E) = lim (f) =1let lim (x—H) = lim (f) =1
X—>+oo X X400 \X X—>+oo X X—>+oo \X
x+sinx

Déduisons-en lim
X—+oo X

x—1 x+sinx x—1 . x+1
— < —et comme lim (—) = lim (—) =1
X X X—>+oo X X—>+oo X

Ona:

IA

Alors d’apres le théoreme de gendarme (théoreme de comparaison) :

lim =1
X—+oo X

1.5 —Limites de la composée de deux fonctions :

x+sinx

Propriété :
Soit g o f, la composée de deux fonctions et a un élément ou une borne de d’un intervalle
sur lequel g o f est définie.
Silimf(x) =bet limg(y) =1[,alorslimg o f(x) =1
x-a y-b x-a
NB : cette propriété reste valable pour les limites en I'infini.
Exemple :

Calculer les limites suivantes :

1) }CI_I)I} (sin :iz)

+1

2) lim < 2x_1>
xX—+00 x+1

. L1
3) lim xsin-
X—>+o00 X

Solution :
Calculons les limites suivantes :

1) lim (sm —2)

x—>1 1

2
On pose : u(x) = mtelle que sin% = sin(u).

X T
Ona: hmu(x) 161_13} (x+1) =3

= lim (sin —2) = limsin(u)

x-1 x+1 u-7

. T
=sin-=1
2

= &1_1)111 (sin ”—xz> =1

x+1
. 2x—1
2) lim
X—+00 x+1

Soit f(x) = =+/x
Ona: hm f(x) = 1_1)+00 (2xx+11) =2

= ;/ILT%\/; =2
= lim < 2x_1> =2

x—+00 x+1




3) lim xsin S
X

X—+00

o1 sin%
Ona: xsin— = —z
x

Onpose X = i lorsque x = +o0; X — 0.

. .1 . sinX
Alors : lim xsin= = lim =1
X—+00 X X-0 X

= xl_i)l}looxsini =1
1.6 —Limites d’'une fonction monotone sur un intervalle ouvert :
Propriété 1:
1) Soit f une fonction croissante sur un intervalle ouvert |a; b[ ; (a < b).
e Sif est majorée sur |a; b[, alors f admet une limite finie a gauche en b et on note :
xlirtr)l_f(x) = [; (I est une limite finie en b a gauche).
e Sif est minorée sur |a; b[, alors f admet une limite finie a droite en a et on note :
Jirerllj(x) = [; (L est une limite finie en a a droite).

|
> .
0 ﬂ: P b 1

| |
2) D’une maniere analogue ; pour une fonction f décroissante sur un intervalle ouvert

la;b[; (a < b).Ona:

e Sif est majorée sur |a; b[, alors f admet une limite finie a droite en a et on note :
lim f(x) =1;
x—at

e Sif est minorée sur ]a; b[, alors f admet une limite finie a gauche en b et on note :
lim f(x) = L.
x—-b~

Propriété 2 :



Soit f une fonction croissante sur un intervalle ouvert ]a; b|[ ;

e Si f est non majorée sur |a; b[, alors f a pour limite +co a gauche en b ; c'est-a-dire :
lim f(x) = +oo.
x-b~

e Si f est non minorée sur |a; b[, alors f a pour limite —co a droite en a ; c'est-a-dire :

lim f(x) = —oo.
x—at

1.7 — Calculs de limites des formes indéterminées :
Pour procéder au calcul d’'une limite dans le cas ou les opérations nous conduisent a une

forme indéterminée, on peut effectuer :
a — Une factorisation :

Exemple :
Calculons les limites suivantes :

a) lim (x — \/})

X—>+00

Ona: lirp (x - \/E) = 400 — 0?7?77, (on ne peut conclure directement) ;
X—>+ 00

En effet, x — Vx = \/E(\/E — 1)
= dm, (=) = Jim Vx(Vx —1)

= 40o(+0) = 400
= lim (x —Vx) = +o

X—+00
3x—1
b) lim ——
) x—+oo Vx3+x2+8
Ona: lim ——t_ =¥ 777 ; (on ne peut conclure directement) ;
x—400 Vx3+x2+8  +o0
1 1
3x-1 (35 x(3)

En effet = =
"Vad+a?es XZ(X+1+E) x| [x+1+->
x2 x2

1
— X|3—=
x1 lim M;car |x| = x lorsque x - +0;

= lim ——==
x—+00 VX3+x2+8 X—+00 8
X X+1+X—2
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= lim

x>+t /x+1+%
X

3

=—=00
+ 00

= lim ——— =0
x—>+00 Vx3+x2+8
b — Expression conjuguée :

Exemple :
Calculons les limites suivantes :

a) lim+vVx+1—+vVx—-1

X—+00

Ona: lim Vx+1—+vx—1=+00—00???; (on ne peut conclure directement) ;

X—+00
_ — _ (Vx+1-Va-1)(Vx+1+Vx-1)
Eneffet, Vvx + 1 —vVx—1 = s P

_ o x+1-(x-1)
T VaFi+Va-1

2
\/x+1—\/x—1 _—'ml-x—l

= lim Vx+1-vx—1 = lim —="rs
2

+ o0

= limVvx+1—-vVx—-1=0

X—+00

b) lim v9x2%2 + 7 + 3x

X—>—00

Ona: lim v9x2 + 7 + 3x = 400 — 00 ???; (on ne peut conclure directement) ;

X——00

En effet, 9xZ 77 4+ 3x = (Vox2+7+43x)(Vox2+7-3x)

Vox2+7-3x

_ 9x%+7-9x?

T VoxZ+7-3x

2 -7
V9x +7+3x—m_3x

i JOx2 - lim —
= MM VOxt+ 74 3x = I

= Loo carlimv9x2 + 7 — 3x = 4+

+ xX——00

= lim Vv9x2+7+4+3x =0

X—+00
¢ — Combinaison de I’expression conjuguée et d’une factorisation :

Exemple :
Calculons: lim vx2 +3x—2 +x

X——00

Ona: lim Vvx?2 4+ 3x —2 4+ x = 400 — o ???; (on ne peut conclure directement) ;

X——00

En effet VX2 + 3x — 2 + x = (VxZ+3x—2+x )(VxZ+3x—2-x )

x2+43x—2—-x

_ x243x-2-x2
Vx243x—2-x

_ 3x-2
Vx243x—2-x



)
x2(1+%—xz—2)—x

_2
N oy L Co) B

3 2
|x| 1+;—x—2—x

2
x|3—
= lim Vx?+3x—2+x = lim % ;car |x| = —x lorsque x > —;
X——00 X——00 3 2
—x< 1+;—x—2+1>

2
— lim -3+ -3+0 3

X——00 1+§_12+1 1+1 2
\I x x

= lim Vx? +3x—2+x = —=

X——00 2
d — Utilisation du taux de variation
Exemple :
2 1
. cos“x—
Calculons : lim —==*
x—m XT3
3
. coszx—% 0 .
Ona: lmngT =5 ??7?; (on ne peut conclure directement) ;
X 3
3

En effet, coszfr—% _ (cosx—%)(cosx+% )

x—7 x—=
3 3
cosx—= 1
= =2 (cosx + = )
x—; 2

COSX—COS% 1
= |—= (cosx +E )

= [cosx]’ (cosx +% )

1
cos?x—=

. 1
—— = —sinx (cosx + - )
x—= 2
3
. coszx—% ) . 1
= lim——— = lim [—Slnx (cosx + = )] ;
xoT X—3 x—oZ 2
3 3
. T T 1
= —sm—(cos—+— )
3 3 2
V3f1 o1
--2G+1)
2 \2 2
 cos?x—= V3
= lim—72=——
Tox—7 2
X—= 3
3
e — Un changement d’écriture :
Exemple :
Calculons :
. sinx sinx _ xxsinx
a) lim—— e b
) lim == En effet, = .
. sinx 0 i i
Ona:lim=— == ???; (on ne peut smx — (%)
lim === =2 227 ( p = Vx .
conclure directement) ; . sinx _ sinx
= lim— = limVx(— | =0x1 =
x—0 \/E x-0 X



— lim sinx _ -0 sinx _ 1 % (sinx)
*90 VE x3  x? x
b) l sinx sinx 1 sinx 1
m—= = lim——=lim—=X|— | =-x1
sinx 0 X0 x x=0X x 0
Ona:lim == ???; (on ne peut sinx —o0: x <0
o ectem = lim=={ o x>0
. oo
conclure d|rectement)' x>0 X +oo; stx >
sinx sinx
En effet, =—=X—
x X

il Etude d’une branche infinie
De fagon générale, on parle d’'une branche infinie d’'une fonction de domaine de définition

Dy et de courbe représentative (Cf) dans les cas suivants :
e lim f(x) =oco0u 11m f(x) =1[;

x—+00
o xlimwf(x) = 00 ou xl_l)moof(x) =
e Ilim f(x) =ocoou lim f(x) =00
x-xgt x-Xx9~
NB:oo =t et (I € R)
II; —Les asymptotes :
a — Asymptote paralléle a I'un des axes
Définition :
Soit f une fonction et (Cy) sa courbe représentative.
e Lorsque f admet une limite finie [ en 40 ou en —oo, c'est-a-dire : xl_i){fﬂ@f(@ =lou

lim f(x) = [, alors la droite d’équation y = l est dite asymptote horizontale a
X——00

(3F
e Lorsque f admet une limite infinie a droite ou a gauche en x,, c'est-a-dire :

lim f(x) = oo ou llm | f(x) = oo, alors la droite d’équation x = x est dite
x-xgt

asymptote verticale 3 (Cf).
Exemple :
a) Soit f(x) = \/%
XEDF&Sx+1>0
Sx>-1
S x €]-1; +oof
Donc Dy = ]—1; +oo[

X €Df; ona:
11m J) = 2 2o
_) 1+\/m 0+
= lim f(x) = —
x—--1t

Alors, on n’en déduit que la droite d’équation x = —1 est asymptote verticale a (Cf).

—2x+5
x2+1

b) Soit f(x) =

f est définie sur R. Calculons les limites de f aux bornes de son Dy.



2 2
—2x+5 . X 1

) llm x) = lim = lim —=-
f( ) x——00 2x2+1 x——o00 2X2 2

= lim f(x) = 2
xX——00 2

e lim f(x) = l fo2xs lim X1

X—+00 —>+400 2x2+1 X—+00 2x2 2

= lim f(x) ==
X—+00

= lim f(x) = lirP fx) = %, alors la droite d’équation y = % est asymptote horizontale
X—>—00 X—4 00

3 (Cr) en —o eten +oo.

b — Asymptote oblique

Définition :

Soit f une fonction et (Cf) sa courbe représentative.

On dit que la droite d’équation y = ax + b est une asymptote oblique a (Cf) lorsque :

li{rn [f(x) —(ax+ b)] =00u lim [f(x) — (ax+ b)] =0

X—+0o X—>—00

Méthode :

Pour étudier les branches infinies de la courbe représentative d’une fonction rationnelle

h(x) = f(x) ou (d°f = d°g) en —oo et en +0, on peut effectuer la division euclidienne de f

parg.

Exemple :

Smtf(x) =x—-2+

2+1
Démontrons que la droite d’équation : y = x — 2 est asymptote oblique a (Cf) en en —oo et

en +oo,
En effet, f(x) —y = x — 2)
fG) -y ==
o Jim [£() - - 2= im (55)=15=0

2 2
A g
D’ou la dr0|te d’équation : y = x — 2 est asymptote oblique a (Cf) en en —oo et en +o0o.
Propriété :
Soit f une fonction et (Cf) sa courbe représentative.
la droite d’équation y = ax + b est une asymptote a (Cf) si et seulement si: lim f@ _

x—>+oo X
et lim (f(x) — ax) =.
x—+oo

Remarque :

Les courbes représentatives de deux fonctions f et g sont asymptotes lorsque :
Jim ()~ g()) = 0ou lim (£(x) ~ g(x)) = 0.

II; — Directions asymptotiques

Soit f une fonction de courbe représentative (Cf) dans le plan muni d’un repére
orthonormé (0; 7; ).

10



Supposons que lilll f(x) = %00 ; ce qui confirmerait I'existence des branches infinies.
X—>100

Lorsqu’on étudie la limite en 4o ou en —oo de @ on distingue trois cas :

1°" Cas :

Si lim [ _ +ooou lim [ _ +o00o, alors on dit que (Cf) admet une branche

x—+o00 X x——00 X
parabolique de direction celle de I'axe (0)).
2°Cas:
Si lim f& _ aou lim [ _ a, alorsona:

x—>+00 X x—-—o00 X

e Sia=0, lim o _ Oou lim [ _ 0, alors (Cf) admet une branche parabolique
xX—+00 X x——o0 X

de direction celle de I'axe (0I) ;
e Si= 0,dans ce cas, on calcule lir+n [f(x) —ax] ou lim [f(x) — ax] et on distingue
X—+00 X——00
trois possibilités :
- Si liIIl [f(x) —ax] = bou lim [f(x) — ax] = b, alors la droite (D)
X—+00 X—>—00

d’équation y = ax + b est appelée asymptote oblique a () ;
- Si lirp [f(x) —ax] = £ ou lim [f(x) —ax] = +oo, alors (Cf) admet une
X—+ 00 X—>—00

branche parabolique de direction celle de la droite d’équation y = ax ;
- Si liIIl [f(x) — ax] n’existe pas ou lim [f(x) — ax] n’existe pas, alors
X—+00 X—>—00

(Cf) n’a ni asymptote, ni branche parabolique mais elle admet une direction
asymptotique celle de la droite d’équation y = ax.
3°Cas:

Si lim fx) n’existe pas ou lim % n’existe pas, alors (Cf) n’a ni asymptote, ni branche

xX—>+00 X X—>—00

parabolique, ni direction asymptotique, on ne peut conclure.
IllIl. Continuité d’'une fonction
III; — Continuité sur un intervalle
1.1 — Définition :
Soit K un intervalle de R. Une fonction f est continue sur K si elle est continue sur en tout
élément de K.
Exemple :
e Toute fonction mondme est continue sur R ;
e Les fonctions sinus et cosinus sont continues sur R.
Propriété :
Soit f et g deux fonctions continues sur un intervalle K.
e Lesfonctions f + g, f X g, kf ; (k € R) et |f| sont continues sur K;

. 1 .
e Si g nes’annule pas surK, alors 7 et 5 sont continues sur K ;

e Sif est positive sur K, alors \/7 est continue sur K ;
e Lacomposée de deux fonction continues sur leur ensemble de définition est continue
sur son ensemble de définition ;
III, — Image d’un intervalle par une fonction continue
Propriété :
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Soit f une fonction continue.

e L'image par f d’un intervalle est un intervalle ou un singleton ;

e L'image par f d’un intervalle fermé est un intervalle fermé ou un singleton
Remarque :

e Vx € [a;b],m < (x) <M, alors f est bornée sur [a; b],

e met M ont un antécédent dans [a; b] par f, on dit que f atteint ses bornes ;

e Lesvaleurs de m et M ne sont pas forcement celle de f(a) et f(b). m et M sont le

minimum et le maximum de f sur [a; b]

2.1 — Théoréme des valeurs intermédiaires

Soit f une fonction continue sur un intervalle K et a et b deux éléments de K.

Tout nombre compris entre f(a) et f(b) a au moins un antécédent compris entre a et b.
Remarque :

Pour qu’un nombre réel compris entre f(a) et f(b) ait un antécédent par f dans [a; b], il
faut nécessairement que f soit continue sur [a; b].

Conséquence :

Soit f une fonction continue sur un intervalle K.

S’ils existent deux éléments a et b (a < b) de K tels que f(a) et f(b) soient de signe
contraires, alors I’équation f(x) = 0 admet une solution unique dans I'intervalle [a; b].
NB : Si f ne s’annule pas sur K, alors f garde un signe constant sur K.

Exemple :

Démontrer que I'équation cos % = x admet au moins une solution dans [0; 1].

La fonction x +— cos %x est définie et continue sur R, or [0; 1] € R, d’ol cos%x est continue
sur [0; 1].
Alors la fonction f(x) = cos% — x est continue sur [0; 1].
Ona:f(0)=1etf(1) =—1,alors f(0) X f(1) < 0 et I'équation f(x) = 0 admet une
solution dans [0; 1] et on en déduit que I"équation cos% = x admet au moins une solution
dans [0; 1].
III; —Fonction continue et monotone
3.1 — Bijection réciproque d’une fonction continue et monotone

Toute fonction f continue et strictement monotone sur un intervalle K détermine
une bijection sur un intervalle f(K).

La bijection réciproque f 1 est continue sur l'intervalle f(K). Elle est strictement
monotone et a le méme sens de variation que f.

Exemple :

.. fi[1; +o[—R
Soit x—f(x)=x2-2x

1) Montrer que f est continue et strictement monotone de [1; +oo[ sur R.
2) Démontrer que f réalise une bijection de [1; +oo[ vers un intervalle que I'on
déterminera.
Solution :
Soit f(x) = x? — 2x
Df =R, or [1; +oof € R, d’ol f est définie et continue sur [1; +oof.
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Ona: lin}f(x) =—1let liI-El f(x) = +o0
X— X—+00
f est dérivable sur Retona: f'(x) = 2x — 2
ffx)=0=2x-2=0

Sx=1
x 1 +oo
f'x) +
flx) +0o

1) f est continue et strictement croissante de [1; +oo[ +— R.

2) f réalise une bijection réciproque de [1; +oo[ vers [—1; +oo].
3.2 — Image d’un intervalle par une fonction continue et monotone
Lorsque f est strictement monotone et continue un intervalle K, alors f(K) est un intervalle
de méme nature.

Intervalles K f(K)
f est strictement croissante f est strictement décroissante
[a; b] [f(@); f(b)] [f(b); f(a)]
[a; [ [F(@; lim £ |lim £ (0); f(@)]
Jas bl Jtim £ Go; lim £ Jlim £GO; lim £ (o]
Jos 4ol |im,r: Jim, /0| | i, f G Jim rea)|
: | im G tim £ G0 | im0 Jlim, £ G0
Exemple :
Soit g IR'_>H§;+1

x'—>g(x)=ﬁ

1) Montrer que g admet une bijection de ]1; +oo[vers un intervalle que I'on précisera.
2) En déduire que g admet une application bijective réciproque .

3) Donner la forme explicite de g™ 1.

Solution :
+1

Soit g(x) = %

Dy = ]—00;1[ U ]1; +oo[, or [1; +oof € R, d’ol f est définie et continue sur ]1; +oo[

Ona: limg(x) =4+wet lim g(x) =1

x—-1t x—+00

2

(x—-1)%’

1) g est continue et strictement décroissante sur |1; +oo[, donc g réalise une bijection
de |1; +oof vers g(]1; +oo[) = ]1; +oo].

2) g réalise une bijection de ]1; +oo[ vers |1; +oo], alors elle admet une bijection
réciproque ;

3) Laforme explicite de g™ 1.

g est dérivable sur Retona: g'(x) = alors g'(x) < 0.
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Ona:g(x)zy(:)i—j:y
Sx+1=y(x—-1)
Sx+l=xy—y
Sx—xy=-1-—y
Sxy—x=1+y
ex(y-1)=1+y

__1+y
= 1

S x
1+x
Donc g 1(x) = —
g7 () =—
3.2 — Fonction racine n-ieme
Définition :
Soit n un entier naturel supérieur ou égal a 2. On appelle fonction racine n-iéme, la bijection

. . 'R R
réciproque de la fonction x™ eton a: 4 M
X—y=x

Notation :

y est un nombre réel, 'antécédent de y par f est noté /v et se lit « racine n-iéme de y ou
1
encore yn,

Propriété de la racine n-ieme :

Soit x et y deux réels strictement positifs et n un entier naturel supérieur ou égal a 2.
1

° xnzyﬁxszuxzyZ
e Yy=0
\n
o () =1yr=(y) =vy
Exemple :
Démontrons que : V8 =2.

143
Ona:¥8=7327 = (2) =2

Calcul avec les racines n-iemes :

Va; b € R, et m et n deux entiers naturels avecn > 2.

e Yaxb="%ab = (ab)r

)
e "V¥a="Ya = (a)m

m m

n—m 1 m

e (V)" =(ar) =an
1.1 n+m
° %Xnazmn\/amnzaﬁ"?:amn

FIN
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Chapitre 2 : DERIVATIONS ET ETUDE DE FONCTIONS
I Dérivations

I; — Dérivabilité en un point x,.

Soit f une fonction définie sur un intervalle | et x, un élément de I.

FO)~f(x0)

_ g
s f'(xg). Le nombre

On dit que f est dérivable en x, si et seulement si : lim,_,

réel f'(x,) est appelé nombre dérivé de f en x,.

Lorsque f est dérivable en x, alors la courbe (Cf) admet une tangente au point M, de
coordonnées (xy; f (xg) ).

L’équation de cette tangente est de la forme : (T):y = f'(xo) (x — x0) + f(x0)-

f'(x,) est le coefficient directeur de cette tangente.

Exemple :

Soit f(x) = (x —3)Vx+1

f est-elle dérivable en 3 ? Déterminer une équation de la tangente au point d’abscisse 3.
Solution :

lim,, 5 fQ)-f(3) — lim (x—3)Vx+1
- x-3 x-3
= lirr?l’\/x +1=2.
X—
— lim f)-f3) _ 2

x—»3 Xx=3

Don f est dérivable en 3.
L’équation de la tangente est (T):y = f'(3)(x —3) + f(3)

y=f'3)x-3)+f(3)

=y=2(x—3)+0

= [T):y=2x—-6
I, — Dérivabilité sur un intervalle
Une fonction f définie sur [a; b] est dérivable sur [a; b] si est dérivable sur |a; b[, dérivable
a droite en a et a gauche en b.

On écrit :
e lim,,> % = f'(a); (f'(a) est le nombre dérivé a droite)
e lim, < % = f'(b); (f'(b) est le nombre dérivé a gauche)
Exemple :
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Soit f(x) = (x —DVx—1eth(x)=vV3—x+1
Etudier la dérivabilité de f sur [1; +oo[ ; puis celle de h sur | —o0; 3].
Solution :
e f estdérivable sur[1;+o[etona:
fO-f@ _ lim (x—1)Vx—1

x-1>  x-1
= limvx—1=0.
x—1>

fO-1) _
x-1

limx_)1>

= lim,_ >
Donc f est dérivable sur [1; +oo].
e hestdérivable sur |—o; 3] etona:

. h(x)-h . Bex+1-
lim, _ ;< hGI—h() _ lim Y3oxrl-l
- x-3< x-3
V3—x
= lim
x—3< x=3
x—3< (x—3)V3-x
53< (x-3)V3—-x
. -1
A
=
. h(x)—h(3)
= hmx_,3< 3 =
Donc h n’est pas dérivable sur |—oo; 3].

Remarque :

Une fonction est dérivable sur un ensemble E lorsqu’elle est dérivable en tout élément de E.
Une fonction dérivable sur un ensemble E est continue sur cet ensemble.

I3 — Dérivées usuelles

3.1 — Dérivées des fonctions usuelles

Tableau récapitulatif des dérivées des fonctions élémentaires

Fonction Fonction dérivée Ensemble de dérivabilité
f(x) =k;(k €R) f'(x)=0 R
f(x)=x fllx)=1 R
fx)=x"(n€Z) fl(x) =n.x"1 R*, sin < 0
R,sin>0
f(x) = cosx '™ = —sinx R
f(x) = sinx f(x) = cosx R
1 ) 1 R*
G0 == _ﬂ@=—?
flx) = Vx ' _ R
f'(x) = ﬁ
f(x) = tanx f'(x) =1+ tan’x R—{%+kn;kez}

3.2 —Derivée et opérations sur les fonctions
Tableau récapitulatif

16



Dans ce tableau u et v sont des fonctions dérivables sur un intervalle ouvert K.

Operations sur les fonctions Fonctions Dérivées des fonctions
Dérivée de la somme de deux fonctions u+v u + v
Dérivée du produit de deux fonctions u.v u'v+v'u
Dérivée de la puissance d’une fonction u™; (neN),n=>2 nou . u™?!
Dérivée de I'inverse d’une fonction 1 v

v 2
Dérivée du quotient de deux fonctions u u'v—v'u

v )
Dérivée de la racine carrée d’une fonction Ju u’

2vu

Dérivée de la fonction : x = u(ax + b) u(ax + b) au'(ax + b)
Dérivée de cos o (u) cos(ax + b) —a.sin(ax + b)
Dérivée de sin o (u) sin(ax + b) a.cos(ax + b)
Dérivée du produit d’une fonction par un kv; (k € R) kv’
scalaire

Exercice d’application :

Dans chacun des cas suivants, étudions la dérivabilité de f sur son ensemble de définition,

puis calculons sa fonction dérivée.

a) f(x) =x?|x|
f est définie et dérivable sur Retona:
x3,six>0 , {
= e =
f@) {—x3,six <0 fex)

b) f(x)=&x—-2)V2—x

3x2,six >0
—3x2%,six<0

f est définie sur | —oo; 2] et dérivable sur |—oo; 2[ eton a:

lim, < f-F2) _ lim (x—2)v2-x
-2 x—>2< x—2
= limv2 —x=0.
x—2<
. fG)-f(2)
= hmx_>2< Tz =0
Donc f est dérivable sur son domaine de définition Dy = ]—o0; 2].
() =7 — % — — L _
Vx € |—0; 2], f'(x) =V2 —x 2\/mx(x 2)
_2(2=x)—x+2
T 22—x

6—3x

= f'(x) = i
c) f(x) =v2x+5

f est définie sur [—g; +00[et dérivable sur ]—;; +00[ etona:
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2vV2x+5

= lim
5> 2x+5
x—>—=
2
= lim 2 — 400
- 5> \/2x+ o0t
X—>—
5
, FO)-f(—
= lim 5( 2) = 400
x—>—2 +

Donc f n’est pas dérivable sur son domaine de définition Dy = [—g; +00[

, 2 1
vx € [__ Oo[ f1Gx) _2\/2x+ T V2x+5

=) =5=

d fx)=(+1Vx2-3x—4
fX)Iex?-3x—420
S@x+DHx—-4)=0

V2x+5

x —o0 -1 4 + oo
x +1 - o) + +
x—4 — — 0 +
flx) + - +

Dy =]—00,—1] U [4; +oo]
f est dérivable sur | —oo,—1[ etona:

—f(— 2_ —
lim f)—-f(=1) — lim (x+1)Vx2-3x—4

x_>_1< x+1 x—)—1< x+1
= lim Vx2—-3x—4 =0.
x——1<
— lim - _

x>—1% x+1
Donc f est dérivable a gauche en —1, alors elle est dérivable sur |—o0; —1].
f est dérivable sur [4; +o[etona:
fO-F® _ i (x+1)Vx2-3x—4
x—4 x—4> x—4
o e+ DY+ D(x—4)
= lim

x—4> x—4
x+ D+ 1)(x—4)

= lim
X=47 (x — 4)\/(x +1)(x—4)
_ e+ 1) (x+1)

ey ey

25

lim,_,,

+ 0
fO)-f@) _

x—4
Donc f n’est pas dérivable a droite en 4, alors elle n’est pas dérivable sur [4; +oo .
On en déduit que f n’est pas dérivable surson Dy = |-, —1] U [4; +oof .
Vx € |—0,—1] U [4; +oo[,0na:

fl)=vxZ—3x—4+

= lim,_,,

2\/ﬁ><(x+1)
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_ 2(x2-3x—4)+(2x—3)(x+1)

- 2VxZ—3x—4

204D (-4 +(2x—-3)(x+1)

- 2V/x2—3x—4

e+ D[2(—4)+(2x-3)]

- 2VxZ—3x—4
(x+1)(4x-11)

f'®) = e

Exemple :
Déterminons la dérivée de f dans les cas suivants :

a) f(x)=ﬁ

Ona:f'(x) = ——[((22111))3]
3(2x)(x2+1)2
- (x2+1)6
= f (x) (x2+1)3
b) f(x) = (x*+1)3
[(x +1) ]
Ona:f'(x) = N CZEIE
_ 3(2x) (x2+1)°
2213

3x(x%+1)

= f'(x) = ﬁ
) fO)=VaZTI=(2+1)s
Ona:f'(x) = % X 2x(x? + 1)§_1
= %x(x2 + 1)_2

zx
— 3

2
(x2+1)§

( xz+1)2
3.3 —Derivée de la fonction composée
Soit f une fonction dérivable sur un intervalle K et g une fonction définie sur f(K).
La fonction g o f est dérivable surKetona:

(gof)'(x)=f(0).g9F)

= f'(x) =

Exemple :
Déterminons la dérivée de la fonction f définie par f(x) = cos(x? + 1).
En effet, f est la composée des fonctions g(x) = cosx et h(x) = x? + 1
fx) =geoh(x)= f'(x) =h(x).g'(h(x))
= 2x[—sin(x? + 1)]
= f'(x) = —2xsin(x? + 1)

3.4 —Derivée de la réciproque d’une fonction
Soit f une fonction dérivable et strictement monotone sur un intervalle K telle que pour tout
élément x de K, f'(x) # 0.
La fonction f réalise une bijection de réciproque de K vers f(K).
La bijection réciproque f 1 est dérivable sur f(K) et sa dérivée est :
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1
freft

f =
Exemple :
:10; 400 — |0; 400

f:[0; +x |[_> f(ECO)’ :xn[' avecn € N.
a) Montrer que f est une bijection et déterminer I'ensemble de dérivabilité J de f 1.
b) Définir f ! et sa fonction dérivée.
Solution :
flx) =x"

a) Montrons que f est une bijection et déterminons I'ensemble de dérivabilité J de f 1.
Dy = [0; +oof
limf(x) =0et lim f(x) =4+
x—0 X—+00
x € [0; +oo[; f est dérivable et f(x) = n.x™ 1.
Donc f est continue et strictement croissante sur [0; +oo], alors elle réalise une bijection de
réciproque de /] = [0; +oo].

b) Définissons f ! et sa fonction dérivée.

Soit

1
La bijection réciproque f Y est: f71(x) = Vx = xn
La dérivée de f~1 est :

-1 r_ 1 — 1
@) = Fme n (V%)

_ ’ 1
(1)) =—=
nx n
3.5 — Inégalité des accroissements finis

Soit K un intervalle et a et b deux éléments de K tels que : a < b.

e S'il existe deux réels m et M tels que pour tout x € [a; b]; m < f'(x) < M, alors on
I'inégalité : m(b — a) < f'(x) < M(b — a).
e S'il existe un nombre réel M positif tel que pour tout x € [a; b]; |f'(x)| < M, alors
ona: |f(b)=f(a)|<M|b—al.
Cette derniere inégalité est dite inégalité des accroissements finis.
I, — Application de la dérivée
4.1 — Sens de variation d’une fonction
Soit f une fonction dérivable sur un intervalle I.
e Sif' est strictement positive sur |, alors f est strictement croissante sur .
e Sif’ est strictement négative sur |, alors f est strictement décroissante sur I.
e Sif'estnullesurl, alors f est constante sur I.
4.2 — Extremum
On dit que f admet un extremum en X, si f’ s’annule en x, et change de signe.

Tableaux de variations

x a X b
() + P -
7 M ()




f admet un maximum M relatif en x

@) - P +

f(x) /

n
m (flixnﬁ)

f admet un minimum m relatif en x,
4.3 — Dérivées successives et applications
Soit f une fonction définie et dérivable sur I.
Si f' est dérivable sur I, on dit que f est deux fois dérivables sur I.
On appelle fou f @ la dérivée seconde ou dérivée d’ordre 2.
Par itération, sin € N* tel que n = 2, alors la fonction dérivée n-ieme ou dérivée d’ordre n
est : fMW = (F-DY,
Exemple :
Soient f(x) = x° + 2x3 + 3x + 7 et g(x) = cosx
Déterminons les dérivées successives de f et g.
1) f(x)=x°+2x3+3x+7, alorsona:
- f'(x) =5x*+6x% +3
- f"(x) = 20x3 + 12x
- fO®x) = 60x2 4+ 12
- fW(x) =120x
- O =120
- fO@=0
2) g(x) = cosx,alorsona:
- g'(x) = —sinx = cos (x + g)
- g"(x) = —cosx = cos (x +2X g)
- g® ) = sinx = cos (x +3 % g)
- g® () = cosx = cos (x + 4 % g)
- g® ) = —sinx = cos (x +5x g)
D’une maniére générale ; ona: g™ (x) = cos (x + %)

4.3 — Dérivées successives et applications
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Méthode :

Pour déterminer la position relative d’une courbe par rapport a ses tangentes, il suffit
d’étudier le signe de la dérivée d’ordre 2.

Si f""(x) > 0, alors (C) est au-dessus de la tangente. On dit que la fonction est convexe.
Si f""(x) < 0, alors (C) est en dessous de la tangente. On dit que la fonction est concave.
Si f'(x) s’annule en changeant de signe en x, alors (C) traverse sa tangente en un point
M, appelé point d’inflexion.

il Etude de fonctions
II; — Fonctions polynémes, fonctions rationnelles
Plan d’étude d’une fonction
Pour étudier une fonction dans le cas général, on adopte le plan suivant :
1) Déterminer I'ensemble de définition ;
2) Déterminer les limites aux bornes du domaine de définition ;
3) Déterminer la dérivée et le sens de variations ;
4) Points et droites remarquables : asymptotes et tangentes;
5) Construire la courbe.

Exemple d’étude de fonctions
Exemple 1:
Soit f la fonction définie par : f(x) = x3 — 3x + 2, (Cr) sa représentation graphique
1) a) Déterminer I'’ensemble de définition de f
b) Calculer les limites de f aux bornes de son D
2) a) Déterminer la fonction dérivée f’ de f en déduire le sens de variation de f
b) dresser le tableau de variation de f
3) a) Déterminer une équation de la tangente (T) au point A d’abscisse x, = 0
b) Etudier la position de (Cf) par rapport a (T) ;
4) Construire(Cr).

5) Démontrer que le point A (30/) est un centre de symétrie de (Cy).
Exemple 2 :
I- Soit la fonction f définie par f(x) = ax® + bx? + c ol a, b et ¢ sont des nombres réels.
1) Calculer f'(x);
2) Déterminer les réels a, b et c sachant que f admet 1 pour extremum en x = 0 et —3 pour
extremum en x = 2.
3) Etudier la fonction f. Montrer que I'’équation f(x) = 0 admet une solution unique « dans
[—1; 0], une solution unique B dans [0; 1] et une solution unique y dans [2; 3].
4) Tracer la courbe (Cf) de f.
II- Soit la fonction f définie par f(x) = x3 —4x%2 + x — 5
1) Montrer que f est continue sur R.
2) Démontrer que I'équation f(x) = 0 admet une solution unique a € [4;5].
Déterminer un encadrement de a 8 1072 prés
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Exemple 3 :

ax?+bx+c .

A) Soit f la fonction définie par : f(x) = — -, oua,b et csont des réels et (Cf) sa

courbe représentative. Déterminer les réels a, b et ¢ pour que (C f) passe par les points
A(—2;0), B(3;10) et admette au point E d’abscisse x = —2 une tangente paralléle a
I’axe (0; 7).
B) Dans la suite du probléme, on prendraa = 1,b = letc = —2
1) Déterminer trois réels a, § et y tels que f(x) = ax + f + ﬁ .En déduire que (Cf)
admet une asymptote oblique (A) dont on déterminera une équation.
2) Etudier les variations de f.
3) Montrer que le point d’intersection des asymptotes est centre de symétrie de (C f).
4) Déterminer une équation de la tangente (T) a (Cf) au point d’abscisse x, = 3.
5) Tracer (Cf)
6) Soit h la restriction de f a ’intervalle [4 ; +00[
a) Montrer que hréalise une bijection de [4 ; +00[ sur un intervalle J a préciser.
b) Calculer h(5), (h™1)'(10) pour x € [4; +oo|
¢) Tracer (Cp-1) dans le méme repére que (Cf).
7) Discuter graphiquement, suivant les valeurs du paramétre réel m, le nombre et le signe
des solutions de I’équation : x> + (1 —m)x +2m —2 =10
Exemple 4 :
1) Soit g la fonction definie par : g(x) = xV1 + x2 — 1
a) Etudier les variations de la fonction g.
b) Montrer qu’il existe un réel unique @ a 10~ prés tel que g(a) = 0

¢) En déduire le signe de g sur son ensemble de définition.

3
2) Soit f(x) = % —V1+x2et (Cf) sa courbe représentative.
a) Etudier les limites de f sur son domaine de définition.

b) Montrer que VE Dy, f'(x) = _xfi’;)z

c) En déduire le tableau de variation de f.
3) Représenter (Cf).
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FIN

Chapitre 3 : PRIMITIVES ET FONCTIONS LOGARITHME NEPERIEN
l. Primitive d’une fonction :

I; — Définition :

Soit f une fonction continue sur un l'intervalle K,

On appelle primitive de f sur K, toute fonction F dérivable sur K telle que : F '(x) = f(x),

VxekK.

Exemple :

La fonction F(x) = x? est une primitive la fonction f(x) = 2x;

1
2vx ’
La fonction H(x) = 1 — cosx est une primitive la fonction h(x) = sinx.

La fonction G (x) = 3x + v/x est une primitive la fonction g(x) = 3 +

Propriété :

Si est une f une fonction continue sur un I'intervalle K, alors f admet une primitive sur K.
La continuité est suffisante mais n’est pas nécessaire. C'est-a-dire qu’une fonction peut
admettre une primitive sur K sans étre continue sur K.

1.1 — Ensemble des primitives d’une fonction:

Soit f une fonction admettant une primitive F sur un intervalle K. La fonction f a au moins
une primitive F sur K. L'ensemble des primitives de la fonction f sur K est I'ensemble des
fonctions définies sur Kpar:u— F(x) + C,oluc € R.

Réciproquement, toute primitive de f sur K est sous la F(x) + C ou c ne dépend pas de x.
Exemple :

Soit f(x) = 2xet g(x) =1+ x2

Déterminer les primitives de f et g.

Solution :

f(x) =2xet g(x) =1+ x?

Déterminons les primitives de f et g.

f et g Sont définie et continue sur R.

Ona:F(x) =x*>+cet G(x) =x+§x3+c;(ce R).

NB : La constante c peut étre déterminée si des conditions supplémentaires figurent sur
I’existence de F.

1.2 — Propriété :

Soit f une fonction admettant une primitive sur un intervalle K, y, est un nombre réel et
Xo un élément de K. Il existe une primitive de f sur et une seule qui prend la valeur y, en x,.
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La constante c a pour valeur ¢ = —F'(x,) + v,

Exemple :

Déterminons la primitive F sur R de la fonction f défini par : f(x) = cosx qui prend la

T
valeur —1 en >

Une primitive F de f est F(x) = sinx + ¢; (c € R).
s . T
De plus, F(E) =-le sin— +C =-1

S140=—-1C0C=-2
Donc F(x) = sinx — 2 est la primitive recherchée.

I, — Calculs de primitives

2.1 — Primitives de fonctions élémentaires :

Fonction f Primitives de f Sur l'intervalle
x—a;a€R x—ax+c R
x—x";neN X"t R

X — +c
+1
1 1 R*
x——;(meN—-{1 X— ——————+¢
x™ ( ) (n—1)x"1
x—x";r€Q—{1} xTH1 R,,sir > 0;
X R% sir <0
1 "
Y x— 2\Vx+c R
Vx
X — sinx X — —conx+c R
X — conx x—sinx +c¢ R
x+— 1+ tan’x = ! X tanx+c ](Zk—l)g: (2k+1)§[;k €Z
cos?x

Exemple :

Dans chacun des cas suivants, déterminons une primitive de f.
1
a) f(x) =x, alors F(x) = ;x7 +c

b) f(x) =5,alors F(x) =5x+c¢

1

c) f(x) ==, alorsF(x) = —$+c

x3’

2.2 — Recherche pratique de la primitives d’une fonction

a — Somme et produit par un réel de deux fonctions :

Soit f et g deux fonctions admettant pour primitives respectives F et G sur un intervalle K.

- Lafonction f + g admet pour primitive sur K la fonction F + G ;

- Pour tout nombre réel k, la fonction k. f admet pour primitive la fonction k. F.

Exemple :

Dans chacun des cas suivants, déterminons une primitive de f.
a) f(x) =1+ x,alors F(x) =x+%x2 +c

b) f(x) =3x+ 1, alors F(x) =%x2 +x+c

c) f(x) =1+ sinx,alorsF(x) =x—cosx +¢

d) f(x) = 2cosx + sinx, alors F(x) = 2sinx — cosx + ¢
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b — Primitive de u'(v' o u)
Si u est une fonction dérivable sur un intervalle K et v une fonction dérivable surun
intervalle
contenant u(K). La fonction v o u est une primitive sur K de la fonction u'(v' o u).
Exemple :
Déterminons une primitive de des fonctions suivantes :

a) g(x) =3sin(3x — 2),alors G(x) = —cos(3x — 2) + ¢,

b) h(x) = xcos (3x2 - %) alors H(x) = %sin (3x2 _ g) te

b — Primitives et opérations sur les fonctions

Fonction f Une primitive de f commentaire
u'u™; (n eN) untt Sur tout intervalle ou u est dérivable
n+1
u' 1 Sur tout intervalle ou u est dérivable et
— meN-{1} — 1 ,
u n—1Du ne s’annule
u Sur tout intervalle ou u est dérivable et
Vu 2\u strictement positive
Sur tout intervalle ou u est dérivable et
uu"; reQ-1{1}) T positive (strictement positive si 7 < 0)
r+1
u'cosu sinu Sur tout intervalle ou u dérivable
u'sinu —cosu Pour tout intervalle ou u est dérivable
Exemple :
1) Dans chacun des cas suivants, déterminons une primitive de f.
a) f(x) = conxsin3x, alors F(x) = sin’x +c,
b) 900 = =

La fonction g a pour primitive sur chacun des intervalles |—co; —2[,]—2;0[ et

sur ]0; +oo[, la fonction g(x) = arEreeE

En effet, g est sous la forme :Zi%; avecu = x%+ 2x
2) Dans chacun des cas suivants, déterminer une primitive de la fonction f sur [
1 1
a) f)=5+5,1=]-2;0]
b) f(x) =5x(5x2—-7)*;I =R

2x-3
c) f(x)=m;1=R
2.3 — Primitives et continuité
Application :
Soit F et G deux fonctions définies par :

il. Fonction logarithme népérien
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II; —Définition et propriété
1.1- Définition :
On appelle fonction logarithme népérien, notée In, c’est la primitive de la fonction x — %

sur ]0; +oo[ quis’annule en 1.
Le logarithme népérien de x est noté : Inx
Vx € ]0; +oo[, (Inx)’ =§ etinl = 0.
Inx est définie sur |0 ; + oo
1.2 - Propriétés fondamentales
Va,b€eR,,ona:

- In(ab) = lna + Inb

Va,beR,etVreQ ona:

- In:=-lna
a

- ln% = lna — Inb

- Ina" =rlna

- Inva= %lna
1.3- Domaine de définition de fonctions composes In
Exemple :
f=R->R
Déterminer 'ensemble de définition de f dans chacun cas suivant :

a) f(x) =In(—2x-1)
b) f(x) =In(3x% + 5x — 2)

-x+1

0 fG) =G

0 19 = ]
Résolution

a) f(x)=In(-2x-1)
Soitx € R

xEDf & -2x+1>0,
<:>x<%
Donc: Df = ]—00;%[,
b) f(x) =1In(3x? + 5x — 2)
XxEDf & 3x2+5x—2 >0
=3x+2)(x-3)>0

x —oo —32 ? + oo

fix) + — +

Donc:Df = ]|—o0; —2[UE; +oo[
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c) f(x)=In (_x+1)

7x-3
—-x+1

7x-3

Xx€EDf & >0

x —on 1

Fo | - T -

-1 |3

Donc: Df=]§' 1:

d) f() =in|=]
xEDf &0 & —x+1#0et7x—3#0
Donch]OO[] [1+00[
Remarque :

La fonction Inx est définie et dérivable sur |0 ; +oo[ et sa derivee est :(Inx)’ ==

1 .4- Propriété
Va,b€eR] ona
- Ima=mnbsSa=>»b
- lmna<lnb&ea<b
Cas particulier : on a
- hx=0sx=1
- Ihnx<0es0<<x<1
- x>0 x>1
1.4.1- Limite de référence

Nous devons mémoriser les limites fondamentales suivantes :
. Inx
1) lim — =1
) x-1, g
In(1+x)
X

3) lim Inx = 4o

2) limy_ e =1

x>+
4) hm xlnx =0
x—0t
5) limx = —oo
n-ot
6) lim ZX=0
n-+oo X
1.4.2- Preuve:

Nous allons démontrer ces limites selon I'ordre suivante : @ ;0 ;0 ;0 ;0et®
(1) llInx—>1 =1

lnx __Inx-In1
En effet — =
-1 x—1

1
= (Inx)" ==
= (I’ =2

Inx . 1
Donc: llmx_,la = hmn_)1 =1,
PN s Inu _
D’ou :lim,,_ i 1

In(1+x)

=1

(2) : limy, 4o
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ln(1+x) 1n(1+x)—ln(1+0)
x—0

= (ln(l +x)) =—

. In(1+x) . 1

lim ——= lim —=1,
x—-+0 X x—+oc0 1+x
In(1+x)
—F =1

X

En effet,

D'ou: limy_ 40

(3): lim Inx = +
X—+o0

En effet, la fonction In est une fonction croissante sur]0; +oof .
D’apres la propriété de la limite d’'une fonction monotone sur un intervalle ouverte K, si

Inx est majorée, alors lim lnx =1
X—+00

Cependant, si on pose u = 2x,0n aura:
lim Inu=1(1)

Or hm Inu = lim In2x = hm (ln2 +Inx) =In2+1(2)

X—+00 X—+00

MD=Q)=l=In2+1 ﬁ ln2 = 0, contradiction car In2 > 0, donc on en déduit que la
fonction [nx est croissante et non majorée sur ]O ; +00[, par conséquent ; lir+n Inx = o0
X—>+00

(5): 11m>EH=0+—oo

x—0,
u—->+oo

1 1
Ona:lnx = — (ln;) , en posantu = = (qd
On obtient : limlnx = limlnx = — (lnu) = —(+o ) = —©
x>0t u—+0o
D'oU: lim lnx = —o0
x—07
Inx

(6): lim —=0

n->+oco X
. © ,. , . .
Nous remarquons que : lim — = . 77, donc nous allons lever I'indétermination en

encadrant l%xsur]o; +00[;
Ona:0<lnx<x

=>0<ln\/_<\/_
=>0< lnx<\/_

2
=0 <—[—lnx] <£

l e
S0<2< —, en passant a la limite, on a :
x Vx
2
lim 0= lim ==0,
n—-+oo n—>+oo\/_
D’ou lim m—x—O

n-+o X

(4) :xlirggrxlnx =0
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En effet, lirréxlnu = (0 X )?? alorsona:
X—

1
—lnu —ln; 1 x—0t
xlnx = T— =1 etenposantu = = (qd x_)oo)
b b
—Ilnu . . —linu
xlnx = — = limxIlnx = lim = 0.
u x-0 u—>+oo u

D’ou lim xlnx =0
x—0t

1.1- Lenombre«e»:
- La fonction In est continue et strictement croissante sur ]0 ; +00[, de plus

lim é@x = —oo et lim Jlrnx = 4o00. Donc la fonction In est une bijection de
X— X—+00

0; +oof, vers R
- Onnote e I'unique nombre réel tel que Ine = 1. e est appelé base du
logarithme népérienete = 2,718 281 ...
- Pourtout nombreréel ,ona:lne” = rine =r;
1.2- Courbe de représentation de la fonction In
Soit f(x) = Inx définie sur]O; +00[,

D’apres le paragraphe ci-dessous, ona :limInx = —o et limInx = 4o
x—-0 X—+00

La fonction dérivée de fest f'(x) = (Inx)’ = i

f'x) = i, donc f'(x) > 0 sur ]0; +00[,
Tableau de variation

X 1 —+ o0

((nx)’ GP
(nx /

-0

Au point A et B d’abscisse let e, on obtient les tangentes suivantes :
(T):y=x—1et (T.):y=-x

(T,) passe donc par I'origine du repére

Construction de Cy, -

fX)=0eoshx=hlex=1

Donc (C;, ) coupe (0D enx =1

L

g 59
N
N A
A
//
-
-
!__/' e
e
/ [\ T
- e
A i)
e
e
- i
| B # k
* se | "x



1.7- Equations et inéquations
1.7.1- Résolution d’équation du type :In(u(x)) = In(v(x))
Application :
Résoudre dans ,R les équations suivantes
a) In(—2x+1) =In(x +4)
b) In(2x —3) + 2In(x + 1) = In(6x — 3)
c) In(x+2)=1+1In(x—3)
d) (Inx)®2—6lnx+5=0
e) (Inu)®—-7lnu—6=0

H m(=)=1
x—1
Résolution:
Résolvons dans R les équations suivantes:
a) In(—2x+1) =In(x + 4)
Contraintes sur I'inconnue :

—2x+1>0 x<§ )
Ona: et = et <=>xe]—4; E[’
x+4>0 x> —4

Donc Vx € ]—4; %[, ona:In(—2x+1) =In(x + 4)

S 2x+1=x+4
& —3x =3
<=>x=—1e]—4;3[,
2
Donc S = {1}
b) In(2x —3) + 2In(x + 1) = In(6x — 3)
Contraintes sur I'inconnue :
Ona:2x—3>0;x+1>0;et6x—3>0
(:>x>§;x>—1 etx>1<=>xe]§; +00[,
2 2 2
Vx EE; +o0 [, ona:In(2x —3) + 2In(x + 1) = In(6x — 3)
< In(2x — 3) + In(x — 1)2 = In(6x — 3))
& In[(2x — 3)(x + 1)?] = In(6x — 3))
e 2x-3)(x+1)%?=6x-3
& 2x—3)(x>+2x+1)=6x—-3
& 2x34x2—4x—-3—-6x+3=0
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& 2x34+x2—-10x=0
©x(2x2+x-10)=0 ©x; =00u2x>+x—10=0
2x2+x—-10=0:

A= b? — 4ac
A=81>0

-1-9 5 -1+49
Xp=—— =5 etxz3=—, =2

5 . 3
Ona: x1=0;x2=—5 et x3 = 2 mais seule x; = 2 E]E; +00[

Donc S =1{2}

c) In(x+2)=14+1In(x—-3)
In(x+2)=1+In(x —3)existe ©x+2>0etx—3>0
o x>—-2etx >3
<=>x€]3; +00[
Donc:VxE]B; +00[,ona:ln(x+2)=1+ln(x—3)
©hn(x+2)—-Inx—3)=1

X+ 2
(:)ln( 3)zlne

x+2 _

x—3
& x+2=xe—3e
ox(1-—e)=—-(2+3e)
o x(e—1)=2+3e)

2+3e€]3; -|-OO[

e—1

e X =

Donc § = {2;318}

d) (Inx)?—6lnx+5=0
Contraintes sur I'inconnue : x E]O; +00[
VxE]O; +00[, ona:(lnx)> —6lnx +5=0
Posons: X = Inx © X?> —6X +5
A'=9—-1%x5=4>0
X, =3-2=1letX,=34+2=5

Inx =1 xX=e
orX =lhx et @{ ou

Inx =5
Donc:S = {e; e°}
e) (Inx)?—7lInx—6=20
(Inx)3—7lnx—6 3ex>0x€]0; +o],
VxE]O; +00[,onpose:X=lnx X3 -7X—-6=0
Cette équation a purracines: —1; —2et 3
=X3-7X—-6=X+1)X+2)(X-3)
= (Inx+ 1) (Inx + 2)(lInx —3) =0
= Inx=-1oulnx =—-2oulnx =3

1 1 3
=S X=-o0uXx=—o0ux=e
e e
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Donc : Sz{eiz;é;eﬂ
f)ln(i—j)zl
ln(x—+1)=1a=> >0,

Ona:Vx € |—o0;—-1[U]|1; +oo|
Vx € |—0;—-1[U]1; 4 [, ona:
ln(%) =1l ln(%)=lne

PR
Sx+1—xe=—e
Sx(l-e)=-e—-1
Sx(e—1)=e+1
@nge]—m;—l[u]l; +00[
Dou § = {£=}

1.7 .2- Inéquation du type : In(u(x)) < In(v(n)
Application :
Résoudre dans R les inéquations suivantes :
a) In(x+2)+In(x+4) <In(x + 8)
b) (Inx)?+2ln—15<0
Résolution:
Résolvons dans R les inéquations suivantes :
a) In(x+2)+In(x+4) <In(x +8)
Contraintes sur I'inconnue :
Inx+2)+In(x+4)<In(x+8)3IJ=x+2>0x+4>0etx+8>0
Sx>—-2;x>—4,etx > -8
Sx € |-2; 4o
= §;=]-2; too|
Donc: Vx E]—Z; +o0 [,ona :In(x +2) +In(x + 4) <In(n + 8)
S n[(x+2)(x+4)] <In(x +8)
S x+2))(x+4)<x+8
S x2+6x+8—x—-8<0
& x?+5x<0
S x(x+5)<0
S x<0oux< -5
= -5<x<0
=S,=]-5;0]
=5=5NnS5,=]1-20]
b) (Inx)?+2ln—15<0

Contraintes sur I'inconnue : x € ]O; 400 [
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VxE]O; +00[, ona:(Inx)?+2lnx—15<0
Onpose:X =Ilnx & X?+2X —-15<0.
Le polynéme : X2 + 2X — 15 a pour racines —5 et 3, doncon a :
X?+2X-15=X+5X-3)<0
S (Inx+5)(lInx—3) <0
©Inx < -5oulnx <3
oS x<eloux<ed
Se < x<ed
Donc: S = [e~>; €3]
1.8- Autres limites
1) lim L x(Inx)? = 0
2) hmxln( . )— 1

xX—>+00

3) lim Lln(x -1)=2

4) 11mxln—=
X—>+00
. 2\ _
) ill‘léi‘“( +2)=2
6) limvVxinx =0
x—0
Preuve :

1) J}lrgl+x(lnx)2 =0

x € Ry ;x(Inx)? = (Vx Inx)?
= (2VZ Invx)?
= 4(Vx Inv/x)?,

En posant:u =+u,ona:
lim x(Inx)? = lim 4(ulnu)?2 =4x0 = 0.
x—07t u—-0%t

D’ou lim x(Inx)? =0
0+

2) llmxln( . )—1

X—+0o
Soit € [0; +oo |
L x+1\ _ In(1+3)
On a: )lcl_l)‘rlggln(7> = T,
On pose : v = % (qd ’;:B‘f
Ona: limxIn (x+1) i ln(HU) =1.
n-+oo v—>0+ v
x+1
D’ou: )lcl_r)l}ro)gln( ~ ) 1
3) lim —ln(x -1)=2
x—>+2X-2

X
En effet, xTZln(x -1) = x_1+1ln(x —1).

x—-2
u-1

Onpose:u =x —1; (qd

. X . u+1l
Alors lim—In(x — 1) = lim—1Inu
x—2X—2 u—-1u—1
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Inu

—llm(u+1)><—
=2X1=2
D’otr: lim —=In(x — 1) = 2
x—>+2 X2

4) llmxln—l—l x—><—_0><1—0

X—+00 X—>+4+o00 X

D’ou : llmxln— =0
xo>+0o x—1

5) hmxln(1+ )= (0 x0)??

X—+00

2
Vx € R}, xln (1 + %) =2X 1n(1+"> ,

RN

2
On pose:uz;;quandx—>+00,al0rs:u—>0

Donc :limx In (1 +3) =2X limln(Hu) =2Xx1=2
X—+4+00 X u-0

D’ou : 1imx1n(1+3) =2
xX—+o0 X

6) lirr(l)\/z Inx =0 X (=) ??
X—
En effet ,Vx € R}, Vx Inx = 2v/x Inv/x,
On pose : X = +/x
On a: limVxinx = limXinX =0
x-0 X-0
D’ou lin(l)\/f Inx=0
X—
illl. Fonction comportant n

III; —Fonction lnou
1) Lafonction In: x — Inx est définie, dérivable et strictement croissante sur

]O; 400 [
vx €0; +oo [, (Inx)' =
2) Lafonctionlnou: x — In o u(x) est définie pour tout x de R tel que u(x) > 0.
- Siu est une fonction strictement positive et dérivable sur un intervalle I, alors

In o u est dérivable surl et (Inou)’ =—

- Siu est une fonction dérivable sur un intervalle I sur lequel elle ne s’annule pas,

!
alors In o |u| est dérivable sur I et (In o |u])’ = u:

!

. . ;. . . . u
- Siu est une fonction dérivable et qui ne s’annule pas sur un intervalle I et si "

!
. . u ey .
est continue sur I, alors la fonction - admet pour primitive sur I, la fonction

Ino|ul.
III, —Exemple d’étude de fonctions
Application 1:
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On consideére la fonction f definie par par f(x) = —§+ In (x7—1) et (Cf) sa representation

graphique
1) a) Déterminer les limites de f aux borne de son ensemble de définition ;
b) Justifier que (Cf) admet une asymptote verticale a préciser ;

2) Etudier les variations de f ;
3) a) Montrer que la droite (D) d’équationy = —%x est asymptote, oblique a la courbe
€f);
b) Etudier la position de (Cf) par rapporta (D) ;
4) Tracer(Cf) et ses asymptotes dans un méme repére ;
5) Démontrer que F est la primitive de la fonction f definie sur |1 ; +oo[ par :
2
F(x) = —xz + (x — 1) In(x — 1) — xIn + 1 prenant la valeur—In2 en 2.

Résolution

=32

1) Domaine de définition

floae xx;l >0

x —o0 0 1 + oo
x—1 - - +

x — + +
x—1 + — +

x

a) Limites de faux bornes de son Df

lim f (x) =(—;+ln(x;1))

X——00

1
=400 + lim ln(l——)
b

X——00

= +00+1In(1—-0) = +

lim f (x) =400
X—>—00
I _ X l x—1
xl»rgl‘f(x) h xl)rgl‘ (_E + n( X ))
1
=0+ lim ln(l——)
x—0" X
=In(1 + o)
= 4+

lim f(x) = 400
x—0~

Donc la droite d’équation x = 0 est asymptote verticale a (Cf)

lim £ () = lim, (— ; +n (x - 1))

x—1% X
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= —~+1n(0%)
1

= —=—00 = —00
2

Donc: lim f (x) = —o0
x-1t

lim f (x) = lim_ (‘% +In (x - 1))

xX—+00 X

=—0+4+(0=—-
Donc: lim f (x) = —

X—400

b) Justifions que (Cf) admet une asymptote verticale apréciser.
lirﬁf(x) = —oo, donc la droite d’équation x = 1 est une asymptote verticale a (Cf)
X—

2) Etudions les variations de f
(x) = x_|_1 (x—l)
fe = 2 1 X

()

Vx € Df f'(x) = =5+~

®

, EED 11
— _ = x2 i, 1. x
T2 + "T‘l 2 + =X
__1 1
- 2 x(x-1)
__1 1
- 2 x(x-1)
, _ —x(x—1)+2
=>f (x) - 2x(x—1)
—x(x—1)+2
! = O [ —l =
f'e 2x(x —1)
& —x*+x+2=0
A=1-4(-1)%x2
A=9>0
-1-3 -1+3
X1 = _2 =2€tx2= _2 = —1
Tableau de signe de f’
x —0 —1 0 1 2 + oo
x+1 — & + + + +
x— 2 — — - — 'S +
(x+1)(x— 2) + — - - +
F(x) - - + + -

Vx €] —o0; —=1[U] 2; + oo [; f'(x) < 0, donc f est strictement décroissante sur cet
intervalle.
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Vx€]—1;0[U]0;1[U]1;2][; f'(x) > 0;donc f est strictement croissante sur cet
intervalle.

Tableau de variation

Tableau de signe de f'

x —o0 —1 0 1 2 + o0
i) ] - <J> + + + 39 -
4o +oo —1,69
f(x)
1,19 - —o

3) a) Montrons que la droite (D): d’équationy = —%x est asymptote, oblique a (Cf)

Eneffet; f(x)—y= —§+ln(x7_1)+§
x—1

fe)-y=m(37)

; — i x1
Alors: xl_l)rinoo[f(x) -yl = xl_l)ripoo [ln( - )]
: 1
= Jim In(1-2)
=In(1-0)=0
lirp [f(x) —y] = 0donc (D): d’equation = —%x est asymptote oblique a (Cf).
xX—+o0o

b) Position de (Cf) par rapporta (D) : f(x) —y =1In (1 — i)

f(x)—y3de x7—1 >0

= Vx € ]—; 0[U]1l; +o,f(x)—y > 0; donc (Cf) est au dessus de (D).
Vx €]0;1[, f(x) —y < 0; donc (Cf) est en dessous de (D).

4) Tragons (Cf) et ses asymptotes dans un mémerepere

Voir ci-dessous (Cf).
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5) Démontrons que F(x) = —§+ (x —1)In(x —1) — xIn + 1 est une primitive

def et F(2) =—-2In2
F(x)=—2—2+(x—1)1n(x—1)—xlnx+1

() = — 2% _ _ 2 _ 1
= F'(x) = " +In(x —1) + (x 1)><x_1 Inx X X~
=—§+ln(x—1)+1—lnx—1

-1
=3+ () =0

F'(x) = f(x),d'ou F est une primitive de f et

F(2) =_72+(2—1)1n(2—1)—21n2+1

=—14+Imnl-2n2+1
Donc: F(2) = —2In2

Application 2 :
I —Soite g la fonction defrinie sur ] 0; +oo [ par:

2x% + 3 — 6lnx
gx) = e

1) Déterminer les limites de g en 0 et en + oo

2) Etudier les variation de g et dresser son tableau de variation et en déduire pour tout
x>0,9(x)>0.
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11 — Soit f la fonction de la variable reelle definie sur | 0; +oo [ par
flx) = 2943:;# et (') sa représentation graphique dans un repére orthonormé (0;7;7")
1) a)calculer la dérivée de f et préciser son sens de variation (on remarque que f'(x) =
g(x)
b) Calculer les limites de f en 0 et en + o

c) En déduire le tableau de variation de f
2) a) Démontrer que la droite (D) d’équationy = 2x est asymptote a la courbe de f et
préciser sa position par rapport a cette courbe

L . . , . 1
b) préciser les coordonnées des points d’abscisses 3 1;2;et3
c)Démontrer que I'équationf (x) = 0 admet une unique racine @ = E ; 1].

3) tracons (') et les droite d’équationx = letx =e

Résolution
2x3+3—6Inx
) gl =
Df =]0; +oo [
1) Déterminons les limites de g en 0 et en + oo
. . 2x%43-6lnx
lim g(x) = lim —=Z—
= lim (2+5-23) =2+ 0+
x—-0t X x

Donc: lim g(x) = 4+
x—-0t

. T 3 6lnx\ _ 0 —
Jim g(o) = lim (2+45-55F) =2+0-0=2

Donc: lim g(x) = 2
X—+ 00

2) Etudions les variations de g est dérivable comme somme des fonctions dérivables et

1.,.3_2,2
§(x) =3 (—3x2> i [xxx 3x anl

x6 x6
-9 1-3Inx
T oxt 6( x* )
, 18inx — 15
g'(x) = T A
gx)=018lnx—-15=0
15
o lnxy ==
18

& lnx=§@x=65/6= 1,8
Vx € ]—oo ; e5/6[g’(x) < 0,alors g est strictement decroissante

Vx € ]e5/6; +00[,g’(x) > 0,alors g est strictement croissante .

x 0 95.1"6 + o
g'(x) - ¢ +
g(x) + 2

F(e=r)




D’apreés le tableau de variation ,on en déduit :
V.x € Df,g(x) = 1,8 > 0,alors g(x) est du signe positif alors g(x) > 0

Inx

1) f(x)=2x+3x—2

1) a) Calculons la dérivée de f et précisons son sens de variations
1 2
=X X —2xlnx>

Fl(x) =2 +3<x .

=243 (1—2lnx)
x3
, 2x%+3—6In
f1) = "= = g(x)

= f'(x) = g(x)
D’apres ) ,g(x) >0; Vx>0
f'(x) = g(x) > 0,alorsf’(x) > 0 et donc f est strictement croissante sur son ensemble de
definition.
b) Calculons les limites de f en 0 et en +o0

lim, o+ f(x) = lim,_y+ (Zx + 3:;’6) =0+ oo(—) = —
Alors : lim,_ ¢+ f(x) = —c0
LMy, o £(2) =lim, 4o (2x + 3:;")

. ]
- ot 2(2)
=400 +0
Alors : lim,._, ., f(x) = 4

C) Déduisons-en le tableau de variation de f

(8]

xs 4

fxd “

Cxd gamee

2),Démontrons que la droite (D):y = 2x est asymptote a la courbe de f.
y = 2x est asymptote si et seulement silim,_,, ., (f(x) —y) =0
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On a: limx_m(f(x) - y) = limx—>+oo (ZX + 3oy _ ZX) = limx—>+oo§(ln_x) =0

x2 x
lim, ;0 (f(x) —y) = 0,alors(D):y = 2x est asymptote oblique a (cf).
Position de (cf) par rapport a (D)

3lnx
f) -~y ="
x 0 1 +oo
f(x)y - +

31In
fx)—y=0& =0lhx=0e=x=1

x2

Vx €]0;1[, f(x) —y < 0,alors (cf)est en dessous de (D
V x €]1;+00[,f(x) —y > 0; alors (Cf) est au dessous de (D).

- . . 1
c) précisons les ordonnées des d’abscisses > 1:2et3

X 1 1 2 3
2
fx) |-7.25 |2 4,5 6,36
1 2%x=+3In=
(—) =—2_ —2-1-12In2=-7.28
2 -
4
2+3In1
f == =
£(2) = 16+iln2 - 4+%ln2 — 45
2%x274+3In3 In3
f(3)= 9 =6+T=6,36

C) Démontrons que I'équation f(x) = 0 admet une unique racine a € [%; 1]

f est continue et strictement croissante sur son Df,donc elle realise une bijection de R}.
De plus f(%)f(l) <0,alorsa € [%; 1@]

3) Tangons (C)




Application 3 :
Le repére (0;7;7) est orthonormé.
Soit f la fonction définie par f(x)= %(x +1+4+3In |§—J_r;| ).On désigne par (C) la courbe
représentative de f.
1) Etudier les variations de la fonction f.

2) a) Démontrer que (C) admet un point d’inflexion Q et que Q est un centre de symétrie de
(C).

b) Déterminer I'asymptote oblique (D) de (C) et vérifier que ( appartient a (D).

c) Tracer (C).
Résolution

fx) = %(x +1+43In |§|)' une fonction et (C) sa courbe.

1) Etudions les variations de f.

- Domaine de définition

fx)3ex+1+0etx—3+#0
Sx+—letx+3

Donc|Df =R'{—1;1} = ]—o0; =1[U ]-1;3[ U ]3; +°°[|

- Limites aux bornes du Df.

limy_o f(x) = lim,_,_q (% (x +1+3in |x_+1 ))

x-3

=2 (=00 + 3In(1)) = —oo

Donc:lim,, . f(x) = —
lim,_ ;o f(X) = lim,_ 4 (% (x +1+43Iln |g ))

= %(+oo +3In(1)) = 4

Donc:lim,_ ., f(x) = +oo
limx—>—1_ f(x) = limx—>—1_ (% (x + 1+ 3In |x—+1 ))

x-3

1 0 1
= 2(=1+1+3In|=|) =3 3Inj0]) = oo
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Alors : lim,_,_¢- f(x) = —

De méme :lim,_,_;+ f(x) = —oo

Donc la droite (D;) d’équation x = 1 est une asymptote a (C).

. . 1 +1

lim,_3- f(x) = lim,_3- (5 (x +1+4+3In jz: ))
=2(3+1+3In[3| =2+ (+0) = +oo

lim,_3- f(x) = +oo,
De méme lim,_3+ f(x) = +o0

Donc la droite (D,) d’équation x = 3 est asymptote a (C).
- Sens de variation
La fonction f est dérivable sur son Df et sa dérivée est la fonction f’(x) tel que :

.

x-3

_1 x—3—(x+1) x-3

T2 [1 + 3( (x3)? X x+1)]
1 3 -4

=zt3 ((x—3)(x+1))

1 6 _ x"—2x-3-12

2 (x=3)(x+1)  2(x=3)(x+1)

, _ x%-2x-15
Done: f(x) = 2(x—3)(x+1)

ffx) =0 x>—-2x—15=0
A=1-1(-15)=16>0
xp=1—4=-3etx,=1+4=5

’ _ (x+3)(x=5)
fx) = 2(x—3)(x+1)

Vx € |—o0; =3[ U ]—1;3[ U]5; 4+, f(x) > 0,> donc f est strictement croissante;
Vx € |-3;—1[U ]3;5[ f(x) < O, donc f est strictement decroissante

Tableau de variation

x . 3

£ x) B 0 - + - +

2.6 +oal| +oo + 00

fix)

2a) Démontrons que (C) admet un point d’inflexionQ) et que Qest un centre de
symétrie de (C).
REMARQUE :
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f admet un point d’inflexion en x; si f est deux fois dérivable sur un intervalle I et si
f"(x0) = 0 et change de signe, alors la courbe (C) traverse sa tangente en un point
My(xo,f (xp)) est appelé extremum, un tel point s’appelle le point d’inflexion.
x?—2x-15
On a: f(x)_'ax:a@+n
, _ (2x-2)[2(x-3)(x+1)]-[2(x+1+x—3)](x2-2x—15)
= f'0) = 4(x=3)2(x+1)?
4(x—1)(x%2-2x-3)-2(2x—2)(x2—2x—-15)
4(x—3)%(x+1)?
4(x—1)(x%-2x-3)—4(x—-1)(x2-2x-15
4(x—3)*(x+1)?
4(x—1)[x*-2x—3-x2+2x+15]
4(x—3%(x+1)?
_ 12(x-1)
T (x-3)%(x+1)?

17 o 12(x-1)
fre) = (x=3)*(x+1)?

ffx)=012(x—-1)=0
ox=letf(1)=;(1+1+3In)=1
=f"(1) =1
Donc f”(x) change de signe en 1, alors (C) traverse sa tangente (T) au point Q(D et Q estun
point d’inflexion de (C) .
QG) est un centre de symétrie, siVx € R telque 1 —x € Df, 1+ x € Df et on vérifie

CfA=x)+f(1+x) -1

ue
q 2

1-x-1

fQ x)——(l—x+1+31n| D=1 __[

1+x+1

On a:

2+x

D=1 +1[x-3m |—|)

f=0+x)=3(1+x+1+3In |

FA-X)+f(1+x) 1——[x 3ln| ]+1+—[x+3ln‘x+2

2 2

fA-X)+f(1+x)
2

Donc QG) est un centre de symétrie de (C)

=1

b) Déterminons I"asymptote oblique (D) de (C) et vérifions que Q € (D).
. f(x) . —(x 1+3ln|x+1

Ona lemx_)ioo T =1 x+o00 f

. x+1

= llrnx_)ioo + ; + —l |E

fe) 1
limy 00— =

1
2
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x+1 1 ]
2

Alors : lim,._, 4o, (f (%) — %x = limy_ 40 Ex + % [1 + 3in |x_3 — X

Donc la droite (D) d’équation y = %(x + 1) est asymptote oblique de (C).
Q(i) doncpourx =1,y =1,alorsQ € (D)

d) Tracons la courbe (C)
Ona:(D;):x=-1,(D,):x =3

(O):y=s(x+1)

a7 1 n

-
-

5l a”r

[(Ty

Application 4 :
1 .
Le repere (O,1,J) est orthonormé soit f la fonction définie par : f(x) = {x -1+ X SEXS 1
1— (Inx)%,six>1
1a) Démontrer que f est continue et dérivable en 1
b) Calculer les limites de f aux bornes de son ensemble de définition et préciser les branches
infinie de la courbe représentative de la courbe représentative (C) de f .
c) Etudier les variations de f démontrer que le point d’abscisse e est un point d’inflexion de
(C) def.
d) Tracer (C)
2) Soit h la restriction de f a l'intervalle ]1; +oo]
a) Démontrer que h réalise une bijection de ]1; +oo[ ver un intervalle que I'on précisera.
b) En déduire que h admet une fonction réciproque h~! dont on précisera le sens de

variation
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C) Tracer la courbe représentative de h™1 .

Résolution
1
x—1+-,six<1
f(x) = { X ]
1—(Inx)?six>1

1)a) Continuité et dérivabilité en 1

lim, - = lim,p- (x = 1+3) = 1= f(1)

lim, .+ f(x) = lim,_+(1 — (Inx)?) =1 = f(1)

lim,_ - f(x) =lim,_+ f(x) = f(1) donc f est contunie en 1

f)-rfQ) _ li x—1+%—1 . x?-2x+1 x-1

—~ im,_ - = lim, - =lim,,;-— =0
x—1 x-1 x—1 X217 5 (x—1) o1y

lim,_,4-

. fO)-f(x) . x—1 '
llmx_,1+ T = llmx_,1+7 =0= f d(l)

Le nombre dérivé defest f’(1) =0

f(x)_f(l) — 1 n f(x;:{(l) — fl(l) — O

limx—>1‘ x—1 x—1
Donc f est dérivable en 1
c) calculons des limites et branches infinies

- Domaine de definition
f(x):{x—1+§,sixS1
1—(Inx)?six>1
f(x)3ex+#0oux>0
o x €R*ou x €0; +oo] = R}
& Df =R* U R, =R,
Donc: |Df =]—o0;0[ U ]O;+00[|

- Limites aux bornes de Df

elim,,_o f(x) =lim,,_,x—1+ % = —oo,
Donc: lim,_,_, f(x) = —
o lim,,_o f(x) =limy_o-(x— 1+ i) = —o,
Donc : limy_y- f(x) = —o0

elim, o+ f(x) = lim, o+ (x -1+ i) = 400,
Donc: lim,_,o+f(x) = +o0
elimy o f(x) = limy ;0 (1— (Inx)?) = —oo,
Donc: lim,_, ;o f(x) = 4+
- Branches infinies
elim,_t f(x) = oo, donc la droite (D)d'équation x = 0 est asymptote vertical a (C)
-1imx_,_oo(f(x) —(x - 1)) = limxﬁ_wi =0, donc (C) admet en — oo une asymptote

oblique d’équationy = x — 1

. f(x) . 1-(Inx)? . 1 (Inx)?
elim, o — = lim, 40 - limy ;0 o
Y 1 2inVx\ >
= lim, ;0 ol -
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. 1 Va2
= hmx_,+oo;—4(:l/;)
=——440=0

+ 00

f(x)

lim, ;o — = 0 donc en + o une branche parabolique de direction (OI).

D) variations et point d’inflexion
- Variation

f est dérivable sur son ensemble de définition et pour tout x € Df,on a:

2_
, 1—%=%;JMS1
f (X) = —2lnx .
,Six>1
x2 -1

=0ou—2lnx=0

Doncf'(x) =0 &

Sxt+tloux=1

Tableau de signe de f’

x —00 —1 0 +co
x—1 — + + +
x+1 — - — +
—2Inx + + + -
e + - - -

Vx € ]—oo; —1[ f'(x) > 0 donc f est strictement croissante ;
Vx € ]1-1; 0[ U ]0; 1] U ]1; +oo[ f'(x) < 0 donc f est strictement décroissante ;

Tableau de variation

X —o0 —1

f'(x) + Qo -




- Point d'inflexion
Le point d’abscisse e est un point de I'intervalle |1 ; +oo].

Ona:Vx>1,f'(x) = % e f'x) = Zzlnx _ 2<1lenx)
[0 = —2857
f'(x) =0 1—Inx =0

ehnx=1

SXx=e

Etf(e)=1—-(n,)*=1-1=0
f(e) =0, donc le point A(e, 0) est un point d’inflexion.
2) h est la restriction de f a ]1 ; +00[,
a) h est continue et strictement décroissante sur ]1 ; +00[.Donc h réalise une bijection de
11; +oo[ vers h (]1; +oo[) = ]—o0; 1[ car (h(]1; +o0[) = Jlimy 400 R(x); (D[ = ]—00; 1]
b) h étant bijective, h admet une fonction réciproque h™! definie de |—o0; 1[ —
]1; + o[, de méme sens de variation que h. C’est-a-dire h™! est strictement décroissante sur
]—o0; 1[. La courbe (C) de h™! se déduit de (C) par systéme orthogonale par rapport a la
premiere bissectrice d’équation (D) : y = x.
Tracons la courbe de (Cr) et (Cp,-1).
Ona:(D):x=0
M:y=x-1
(D):y=x

3 41:'. i
I .'!-'-j/ \'b':_".“
l."/_"\l- }
e
. ]
- A
g
o
* ¥y o,
iyl A
h i
2y

T

: '/""r /-

- |l P a R
0 1 N
i h 1EA
-
i ™ Y
-~ e
/o 1 "
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x—14+<=0
C =0 X
(CH)n(x) e f)=0s {1 =0

2
(:{x —x+1>0
nx=1ox=c¢

IV. Logarithme décimal
IV1- Définition et propriétés
1.1- Définition:

On appelle fonction logarithme décimal, la fonction notée log définie sur ]0; +oo[ par
Inx

par:log(x) = o

- ensemble de définition de la fonction log est ]0; + o] ;
-Ona:Vx € ]0; +oo[, (loge) = Wlm"
-logl = 0etlogl0=1etlog(e) =1
2.2- Propriétés :
Pour tous nombres réels a, et b strictement positif et pour toutreR,on a :
1) log(ab) = loga + logb ;
2) log% = —loga ;
3) log% = loga — logb ;
4) loga" =rloga
V. Fonction logarithme de base a
Vi_Definition et proprietes:
1.1-Definition :
Soit a un nombre réel strictement positifeta # 1.
La fonction logarithme de base a notée log, est définie sur ]O ; oo [ parlog,(x) = %lnx.
1.2 Propriétés :
Pour tous x,y € ]0; +[, on a:
1) loga(x-y) = loga(x) + logq(y)
2) loga3, = loga(x) = l0ga(y)

3) log,Vx = %logax
4) log,x™ =nlog,
pour tout a,b € ]0; +oo[,0n a:
5) log.x =log,b %X logpx
V1. Points et tangentes remarquables
1- Point d’inflexion :
Soit f une fonction.
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Si f est deux fois dérivables sur un intervalle |, et si pour tout x, de I, f"'(x,) = O et change
de signe, alors la courbe (C) de f traverse sa tangente en un point Q(x,, f(x,)) appelé
extremum ,un tel point Q s’appelle point d’inflexion .
2- Point d’arrét
Les points dont I’abscisse x, est une borne d’un intervalle de continuité |, si x, € I, on est en
présence d’un point d’arrét.
3- Points anguleux et point de remboursement
Les points ou la fonction est continue, mais non dérivable :
- Sile taux de variation en x, admet une limite infinie, la tangente a la courbe est
paralléle a (oy), la courbe traverse sa tangente.
- Sif' (xo) # f’g(xo) = [ # (), on a un point anguleux ;
- Sif',(x) = toet f’g (xy) = t o0, on est en présence d’un point de
remboursement, la tangente a ce point parallele a (0Oy).
4- Fonction convexe, fonction concave
- Une fonction f est dite convexe ou f est définie sur un intervalle | de
R,siV xq,x, €1,(xq,< x3), tout point M de la courbe I d’équation y = f(x)
d’abscisse x tel que x € |xy, x,[ est au-dessus de la droite (M;, M) ol
M, et M, désignent respectivement les points de I" d’abscisse x; et x,.
- Elle est dit concave sur | si —f est convexe sur |.

FIN
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Chapitre 4 : FONCTIONS EXPONENTIELLES ET FONCTIONS
PUISSANCES
l. Fonction, exponentielle.
[; —Définitions et propriétés.
1.1 —Définition :
La fonction exponentielle népérienne notée exponentielle, est la bijection réciproque de la
fonction logarithme népérienne. La fonction In est une bijection de R’} sur R ; donc
exponentielle est une bijection de R sur R%. D’ou exponentielle est définie sur R et pour
tout réel x, exp(x) >0
Notation :
V x €ER, exp(x) est noté €~.
1.2 —propriétés fondamentales :
- Pourtout xde R, pourtouty €E R}, Iny =x &y = e*;
- Pour tout x de R, Ine* = x, pour tout réel x de R}, e!™* = x.
-Pourtousa,bde R, e =e? @ a=be*<el @ a<h.
1.3- Propriétés algébriques :
Pour tous nombres réels a et b et pour tout nombre rationnel r,on a:
1) ea+b — ea.eb

a-b _ €°
2) e _e_b

3) e%= eia ;
4) e’ = (ea)r
I, —Etude de la fonction exponentielle.
ffR-> R}
x —e*
1) Sens de variation
Les fonctions In et exp étant des bijections réciproques, leurs tableaux de variation se
déduisent I'une de 'autre.

inx e




2) Les droites remarquables de e*

On en déduit que e* admet :

- Une tangente au point J (0 ; 1) de coefficient directeur 1, 1(1,0) ;

- Une tangente au point F(1,e) passant par le point 0, E(e,1) ;

- Une asymptote horizontale, la droite d’équation (o I). (A.V— (0J) In;

3- Branches infinies en +oo de e”*.

On a vu que la courbe de In admet en +<° une branche parabolique de direction (0l).

On en déduit que la courbe de e* admet une branche parabolique de direction (O J) en +oe.
3) Construction de la courbe de e* et ses droites remarquables.

On désigne par (c) la courbe de e* et par (C’) celle de Inx, par (D) la droite d’équation y = x.
(C) se déduit de (C’) par la symétrie orthogonale d’axe (D) .

(C’) est située en tout point au-dessous de la tangente et (C) au-dessus de celle-ci en J donc
Vx€ER e*>x+1.

2.1 —Derivée et conséquences :

(%Oepr

Propriétés :
La fonction exponentielle est dérivable sur R et pour tout nombre réel x, (e*)" = e*.
La fonction e*est dérivable en 0 et son nombre dérivée est 1.

i ex—l
On a: lim,._,, — = 1
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2.2 —Limites aux bornes de I’ensemble de définition.
Propriétés :

1) lim,_ye* = 4oo

2) lim,,_..e*=0

3) limx_,+‘x,e? = foo

4) lim,,_..xe* =0
I; —Résolution d’équations et d’inéquations
Applications

1) Résolvons dans I'équations: e?* + e¥ —2 =0

Posonse* =X o X?+X-2=0

A= 9 xjetx, =1

X2 +X-2=("+2)(e*—-1)=0

e* + 2 n’a pas de solution,donce* -1 =0 x =0

Alors: S = {0}.

2) Résolvons dans R I'inéquation : 3e* —7e ™ + 20 <0
3e* —7e7*+ 20 = Sex—elx+20

=3e?*+20e*-7<0
Posons X =e* & 3X2+20X—-7<0
AN =121
-10-11 =21

=TT T 3
=3 +7) (e¥-3) <0,
e* + 7 < 0n’apasdesolution, alors: e* < % o x < —In3
Donc: S = |—o0; —In3]
Calculs de limites :
Calculons les limites suivantes :

-10+11 1
3 3

=—7etx, =

a) lim se7-2
X2+ 5exy3
Onpose: e* = X,quand x —» +o0, X — Foo
Donc lim 32 _ lim 3X-2 _ 3
X2+ 5yi3 T Xotu<sxi3 T 5
. 3e*-2 3
Alors : lim -——— = =
X2+ goxy3 5
. In(1+e*)
b) lim,y,_o pra

Onpose: e* = X,quand x » —oo,x - 0

. In(1+e* . In(1+4x)
Donc : lim,_,_.. (ex ) — lim,_,, ——= 1
. In(1+e%)
Alors : lim,_,_.. —— = 1
c) limy,,.(x—e%)
x e*
Ona:x—e =x(1—;),
. e* . . e*
Or: llmx_,+<x,7 = +oo, alorslim,_,;..(x —e*) = lim,_ ;.. x(1 — ?) = —oo
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Donclim,_, ..(x —e¥) = —oo

. sin2x
d) lim —
) x—0 1—eX
sin2x sin2x 2x
On a: =
1—eX¥ 2x 1—e*
__ sin2x ( —-2x )
T o2 e*—1
sin2x 1
= Ty Xew
X
. sin2x . e¥—1
Or: lim,,,—— =1et lim —=1
x=0 5 x=0
, . . sin2x
On en déduit que : lim,._, Tor = -2

il. Fonction comportant exponentielle
11, —Dérivée et primitives
1.1 — Propriétés :
Soit u une fonction dérivable sur intervalle K.
1) Lafonction exp o u est dérivable surKetona: (expou) =u'(expou).
exp o u est aussi notée e* et sa dérivée est u'e®.
2) Lafonction u'e* admet pour primitive sur K la fonction e%
Exemples :
—x*+x ast dérivable sur R et sa dérivée est : (—2x + 1)e X *¥;
est derivable sur R et sa dérivé est : cosxeS"*.

- Lafonctionx — e
- La fonctionx — eSin¥
1 1

. 1 L. e x-1 2
- La fonction x = xex est dérivable sur R* et sa dérivé est i ex

ey . —x2 . 1 _,2
- Une primitive sur R de la fonction x — xe™*" est la fonction x — —se x

tanx

- La primitive sur ]—1[ de la fonction x — ceoszx est la fonction x — et
11, —Exemples d’études de fonctions :
Applicationl
1 1
Soit f la fonction définie par : f(x) = 2 xe” six# 0
fx)=0

1) Déterminer I'’ensemble de définition de f. vérifier si f est continue et dérivable en O.
Déterminer les limites aux bornes du Dy.

2) Déterminer le sens de variation de f. En déduire le tableau de variation de f.

3) Déterminer les branches infinies si elles existent .

4) Tracer la courbe def et ses a asymptotes

Solution :
1 2
flx) = Exex , Six#0
flo)=0
1) Ensemble de définition.

- Continuitéen O.
. . | |
o lim,_ - f(x) = lim,_o- SXxex =-X Oeo~ = 7 X 0 x=0
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limyo- f(x) =0
Donc lim,_,o-(x) = f(0) = O, f est continue en gauche en 0.

2)

. . 1.1 s
o lim, o+ f(x) =lim,_,+ SXxex =-X0xeot =0X+e0???

On pose X = i, alors quand :x » 0%, X - +eo
1

. 1 L 1|e2 . 1 (eX 1
=lim,_ o+ Sxex = lim,_, o+ > ITl = llmx_,+m5 (7) =3 (+00) = oo
X

lim, o+ f(x) = 420, f n’est pas continue a droite en O, donc f n’est pas continue
en O.
- Dérivabilité en O.

Comme f n’est pas continue en O, donc elle n’est pas dérivable en O.
1

1 1

A cet effet,ona:lim,_- % = lim,_o- Exe:_o = lim,_o- %ei =0

Donc f';(0) = 0, donc (€) admet une demi —tangente en O de support (Ol)
- Limites:

limy e f(x) = —o0 etlim,_ o f(x) = 400

Déterminons le sens de variation de f.
f est dérivable sur R* et sa dérivée f’ est :

f1(6) = (ex = rxen)

1,01 1 1
=—(ex——ex)
2 X

11
xex—ex

- 2x
x-1 1

= —ex
2x

7 _ x—1 l
Donc f'(x) = — €%
1
f'(x) =0=(x—1)ex=0

1
ox=1etex >0

ffx)A3e2x+ 0o x+0

Tableau de signe de f’

x —0 0 1 + oo
x—1 — - +

2x — + +
f(x) + — +

Vx € ]—o0; O[ U 1; 4+oo[; f'(x) > 0, donc f est strictement croissante ;
Vx € ]10;1[; f'(x) < 0, donc f est strictement décroissante ;
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Déduisons en le tableau de variation de f.

}7, -co () 1 +oo

ff(  + =G

()

i,
e 7
3) Déterminons les branches infinies si elles existent.

On a:lim,_, .. f(x) = teo, alors la courbe admet des branches infinies en too;

- Branches infinies en +oo :
1

1 =
. x . Zex
Ona :llmx_)JmM = lim,_, .. 2—
- X X

.11

= lim-ex ==

x> 2 2

1 11
f() =Zx =Zxex —-x

-2a(-1)

o0 - 2x =3

1
X

1 1 1 (eX-1
Posons.X—;::»f(x)—Ex——( )

2\ x
Quandx = 40, X - 0

= lim, ;e (f(x) = —%x) = limy_,, z (ﬁ) = % x 1.

2\ x
lim,_, ;. (f(x) - %x) = %, donc la droite (A) d’équationy = %(x + 1) est a asymptotes
oblique a (C) en oo,

- Branches infinie en —eo

. 1

. (x) . Sxez
Ona:lim,__.. fT = lim,_,_.. 32—

m R

= lim ! ex = !
—pPx _
X—>—o00 2 2

Donc: lim,_,_.. % = %

Fo - Lx =12

2 X

Onpose: X = ietquandx - 400, X =50
. 1 . 1 (e*-1 1
= lim,,_. (f(x) - Ex) = limy_,o 5 (eT) =X 1.
Alors : lim,._,_.. (f(x) - %x) = % donc la méme droite (D) :y = ;(x + 1) est aussi

asymptote oblique a (C) en -oo,
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De ce qui précede, on a vu que lim, _,,+ f(x) = 4e<, donc la droite (0J) est aussi
a asymptotes horizontale a(c)

4) Tragons la courbe (c )de f ses asymptotes on a:(4):y = %(x + 1); (D):y=0

Application 2 :

x2
Soit f la fonction définie par: f(x) ={€*-* ,six € R{-1;1}
fCD=fD=0
On désigne par (C) la courbe représentative def.
1) Démontrer que f est dérivable a droite en -1 et a gauche en 1.

2) Etudier et tracer (C)

Solution :

%2

fG) = { e
fCED)=f1)=0
1) Démontrons que f est dérivable a droite en -1 et a gauche en 1.
Vx € RY{-1;1},
x2
CfO)-f(-1) _ ex?-1
a: x+1 T ox+1

On
1 x?
= ex2—1
x+1

x% -1 x? ;fz
= x“—=1
x%(x+1) xz—le
x—1( x? ;Z
T x2 xz—lex B
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fo-fen _x-1f 22
x+1 x2 \x2-1

_f(— _ 2 x?
Donc lim,,_,_4+ fe-r-1) _ lim,_,_4+ x—1< ad ex2—1>

x+1 x2 \ x%2-1

Ji x-1 _ _x x - — 1t
On a :lim,_,_4+ — = —2 etenposant X = = tel que quand {x oo
x2 x2
limx_,_lz mexz—l = limX_>+erX = 0,
Donc: lim,_,_4+ [CO-/ED —
x+1
Deméme,Vx #letx + —1,ona:
xZ
fO)-f(1) _ ex?-1
x-1 x—1
x? x?  x?
T x2(-D) (x2—1 ex2—1)
i1 2 %
(A
_ 2 X
f@-r@ _ ﬂ( x ex2_1>
x—1 x2 \x2-1
— 2 XZ
Alors : lim,_ - % = lim,_- xx—+21 <x:_1 ex2—1>.
. x—1 x2 X = 1
Ona: lim,_4- — = 2 etenposant X = 1 tel que quand [X o

. x+1 ;C— . X
lim, ;- —zext= limy_,_..Xe® =0

[0 _ o
x—1

On en déduit que f est dérivable a droite en -1 et a gaucheenlet f’'d(—1) = f'd(1) = 0.
2) Etudions et tracons( Cf.) .
Df =R

Donc : lim,_,4-

x2
My oo £ () = limy 4o 0321 = e

lim, 40 f(x) =€
x2
- limx_)_1+ f(x) = ]imx_)_1+ ext-1 = ¢~

+o00

oo

=0= lim,,_;+f(x) =0etlim,,_;- f(x) =

X2

-limy - f(x) = ex? T =e7® =0 = limy_- f(x) =0 et lim,_+ f(x) = +oo

Donc la droite d’équation y = e est asymptote horizontale a (Cf) et les droites d’équations
x = 1 etx = —1 sont asymptotes verticales a (Cf).

Pourtoutx € R {—1;1};

’ 2

Ona:f'(x)z(x2 ) ex2=1

x2-1
_2x(x?-1)-2x(x?)
T (x2-1)2
-2x x?

Donc: f'(x) = mem

x2-1
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xZ
f(x) =0 —2xex*1=0
x2
o —2x=0etex*1>0
x2

S x=0etex?*1>0

Tableau de variation

x co 5 16, 1 +o0
FOxD + + o -
oo e
f(x)
es (@] o &

Représentation graphique de (cf)

Représentation graphique

k4
v

ll5- Fonctions exponentielles de base a (a > 0)
3.1- Définition et propriétés
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1.1- Définition.
Soit a un nombre réel strictement positif et différent de 1.
@ Pour tout nombre réel x,on a : a* = e*"x
@ On appelle la fonction exponentielle de base a, I'application
exp, : R—->RY
x - a*
Donc: Vx € R,exp,(x) = a* = e* (a > 0;a # 1)
Ainsi e* est appelé exponentielle de base e.
1.2-propriéeté :
1) Pour tous nombre réel a > 0 et pour tout réel x,on a :
Ina* = xlna;
2) Pourtousa>0etb >0etVx,y€ R ona:
@ a**Y = a*.a”
@av=2
X
@arr =2
@ (ab)* = a*b*
a* a*
© ) =3
® (@) =a”
Application 1:
Considere la fonction de R — R définie par: f(x) = x37* et (c¢) sa courbe représentative
dans le plan muni du repére (0,1,]).
1) a) Déterminons la limite de f en —o0
b) Déterminons la limite en +e<< de la fonction g definie par g(x) = f(x) X [n3. En
déduire la limite en 4= de la fonction f
2) Etudier les variations de f sur R
3) construire la courbe (cf)de f
Application 2 :
On considére dans la fonction numérique définie par : f(x) = (ax? + b)e'** (C) sa courbe
représentative dans un repere orthogonal, unité 2 cm.
1) Déterminer les réels a, b et ¢ pour que la courbe (C) :
- Admet un minimum relatif au point O ;
- Passe par le point AG) et qu’en ce point, elle admet une tangente de coefficient directeur

égalal.
2) Les réels a, b et ¢ étant déterminés, justifier que f est dérivable sur R et que sa fonction
dérivée est f'(x) = —(x? — 2x)el™>.

3) Etudier les variations de f et tracer la courbe (C) de f.
4) Soit n un entier naturel non nul, on considére I’intégrale I, = | 01 x"el™*dx.
a) Etablir une relation entre I, et [,.
b) Calculer I, et donner une interprétation graphique du nombre I,.
5) a) Démontrer que pour tout x réel de [0; 1] et pour tout n € N* :
On a l’inégalité suivante : x™ < x"el™* < x"e.
b) En déduire un encadrement de I,,, puis la limite de I,, quand x tend vers +oo.

61



Application 3 :

Partie A : Soit la fonction définie sur R par : f(x) = %xze_x . On note (C) la courbe
représentative de f dans un plan P rapporté a un repere orthogonal (0; I;J) unité graphique lcm
sur (Ox) et 10 cm sur (0y).

1) a) Déterminer la limite de f en —oo.

b) Déterminer la limite de f en 400 (on pourra noter que f(x) = 2 Ee_g]

¢) Expliciter la dérivée f” de f et étudier, ¢’est a dire signe de f'(x).

d) Etudier les variations de f.

¢) Construire la courbe(C) de f dans le plan.

2) On consideére la fonction F définie sur [0 ; +oo[ par F (x) = | (jc f()dt

a) Utiliser une intégration par partie pour calculer : I(x) = | Ox te~tdt

2
b) Montrer en utilisant a) et une nouvelle intégration par partie que F(x) =1 —e~¢ (1 +x + %)
c) Montrer que F est une fonction strictement croissante telle 0 < F(x) < 1 pour tout x.

d) Montrer en utilisant 1-b), que F admet en +o00 une limite que 1’on déterminera. En déduire
que I’équation F(x) = c, avec 0 < ¢ < 1 admet une solution et une seule dans [0; +oo].

Partie B : Dans cette partie, on se propose de résoudre 1’équation F(x) = 0,95. pour cela,

2
on introduit la fonction auxiliaire : g(x) = In (1 +x+ %) + n20

1) Montrer que ’unique réel a tel que F(a) = 0,95 est aussi I’unique solution de g(x) = x.
2) Montrer que g est une fonction strictement croissante sur R. en déduire que 1I’image
g([5; 10] est incluse dans [5; 10]

3) a) Justifier que |g'(x)|< %pour tout x € [5; 10]

b) En déduire |g(v) — g(w) |£ él v — u| pour tout x € [5;10]
c¢) Montrer que a € [0; 10].

4) On considere la suite (U, ) de nombres de I’intervalle [0; 10] définie par Uy = 5 et U,y q = g(Up).
a) Utiliser la question 3. ¢) par récurrence sur n que : |U, — a| < 3%;
b) Déterminer ng tel que |U,y — a| < 1072
c¢) Donner une valeur décimale approchée 10~2 prés de a.
Remarque :
fa x = a* = exlna
©pf =R
Qf.(x) = (exn?) =Ina@*"® v x e R, f, est dérivable sur R

faestdusignedelna :
On a deux cas:
1% cas : O<a<1

1) limy,,..a* =0

2) lim,,_.a* = +4oo

3) limy,_e s = —eo
2°cas: a>1

1) limy,_..a*=0

62



2) limy_ oa”* = 4oo
3) limyeye ™ = +oo
3 .2-Résolution d’équation
Exemples :
Résolutions dans R
(E) :22x+3 —3X 2x+1 =0
Ona:22*t3 —3x 2%t + 1 =22 x23 -3 x2*x2+1
8x2%* —6x2*+1
En posant X = 2% ,on réecrit et de la forme :
8X2—6x +1=0=A=9-8x1=1>0
3-1 1 341 _ 1

ShET =L hm =y

e L R R

1 1
S 22X =ou2¥ ==
4 2

1 1
PR eXan ==-ou eXan — E

4
< xln2=-1n40UxIn2=—-1In2

In4 In2
Sx=——oux =——=-1

In2 In2
S x —lelnzzoux= —1lex=—-2o0ux=-1
S={-2;-1}

Ill. Fonctions puissances :
lll.,. Etudes des fonctions puissances.
1.1- Définition :
soit & un nombre réel.
On appelle fonction puissance d’exposant «, la fonction x — x?2.
Vx> 0,0na: x% = eanx
La fonction x — x%est définie sur ]0; +o<[ et b sa fonction dérivée est la fonction x —
Eealnx
X
1.2-Fonction u*(a € R)
Propriétel :
Soit @ un nombre réel et U une fonction dérivable et strictement positive sur un intervalle K.
la fonction x = u(x)* est la composée des fonctions x = u(x) et x%.Elle est dérivable sur k
etona (u%) = auu®d
De plus, on a :u(x)% = @*nux)
Propriété 2 :

Soit &« un nombre réel différent de -1, u une fonction dérivable strictement positive sur un

u0(+1

intervalle K. la fonction u’u? admet pour primitive sur K la fonction

o«+1"
Exemple :
La fonction f(x) = 2x(1 — xz)‘/E admet pour primitive sur |—1; 1[ la fonction
_ (1—362)‘/m
fO ==
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lll,- Croissance comparée de Inx ,e* et x*
2.1- Limites de référence :

Propriétés :

Soita € R;.ona:

1) lim,_ e T—: =0 3) lim,_, ;e Z_‘x = oo 5)lim,_,_..|x|? e*=0
2) lim,_,+x%lnx =0 A)lim, 4. x?e™* =0 6)1imx_,+°<,l:—: =
Remarque :

Lorsqu’on ne peut conclure directement, on peut conjoncture la limite d’une fonction
comportant des fonction logarithme ou expo en remarquant que :

- La fonction expo soit plus vite que la fonction puissance ;

- La fonction soit plus que la fonction logarithme népérien

Application 1:
f(x)=|%1\/% , Six #1
f)=0
On désigne par (c) la courbe représentative de f.
1) Etudier la continuité et la dérivabilité defen 1
2) Etudier et tracer (c).
Résolution :
x—11 1
=5 -
f(=0
1) Continuité et dérivabilité en 1 de f
- Continuité en 1,

Foo =

Soit f la fonction définie par : {

six#1

X

; jme#in(222) = e =0
= 2 = =
xl_r)r%f(x) lim ev2In ~ e

lim,_; f(x) = f(1) =0.
Donc f est continue en 1.
- Dérivabilitéen 1

F@-f) e

xh—>r{1+ x—1 x-1r x—1
. e%ln(xT_l)
= lim,,_,+ EATe=
— lim,_+ e(\/%_l) ln(x—l)—\/%lnx = Joo
Alors : lim,_, f—(xi:{(l) = +oo
. FO-F@ . )
lim, _- — = lim, - —

| A
=limyy- | ———
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1 1—Xx
N )

. eV2
= hmx—)l_ eln(1-x) = —o°
: fO)-f(@) . f)-r@)
llmx_,1+ T = tooet llmx_,l— T =
1

2) Df =]-00;0[U] 0; +eoo[
lim,_,_..(fx) =1let lim, . f(x) =1.
lim, o<(fx) = lim,_o> f(x) = +ee.
Sens de variation
la fonction f est dérivable sur Df et sa derivée est :
1

[l = \/Eli—u X

f)=0e=2=0

Jim f(x) = lim f(x) = +ee

x-1|v2

x P 0 1 4o
x=T- F F

x _ » ¥
f(x) — — +

Tableau de variation

—oo, donc f n’est pas dérivable en

' (x) + ~

 (xd /
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(D)

X

Fin
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Chapitre 5 : SUITES NUMERIQUES
l. Etude globale d’une suite numérique

[, -Definition d’une suite numérique

I; 1 — Definition:

On appelle suite numérique, toute fonction de N vers R généralement notée(u,,),, n € N
ou tout simplement(u,,).

e Une suite peut étre définie par une formule explicite qui permet de calculer u, en
— R
n—u,=n+ (1"

e Une Suite peut-étre définie par son premier terme et une formule de récurrence telle

fonction de n telle que :

u, =1
ue: 1 :VneN
q {un+1=EUn+3

I, —Suites minorées, majorées et bornées.
I, 1 — Définition : Soit(u,),, Une suite numérique.
® (uy)q, estdite minorée, s’il existe un nombre réel m tel que : pour tout entier
naturel n,ona:m < u, ;
o (uy)q, est dite majorée, s'il existe un nombre réel M tel que : pour tout entier
natureln,ona:u, < M;
® (uy)n, estdite bornée, si elle est a la fois minorée et bornéei.e: m < u, < M.
Les nombres réels m et M sont respectivement appelés minorant et majorant de(U,,),-

Exemple :
i i 4fi n(-1)"+cosn
Soit (Uup)n; 1 € N, la suite définie par:u, = %
Démontrons que u,, est bornée.
n(-1)"+cosn
n+1

En effet, |u,| = |
=X (=1
—n=1|( 1)" X n+ cosn|

< ﬁ(l(—l)”l. In| + |cosn|) car |x + b| < |x + b| (inégalité triangulaire)

< ﬁ(lnl + | cosn|)or |cosn| < 1let|n|=n
1
< — <
= |Upl <= (4 1) = Jugl <1
Donc U,, est minorée par —1 et majorée par 1, d’ou (u,,) est bornée.
I, , — Théoréme :

En général, pour démontrer qu’une suite (U,,) est bornée, I'un des procédés ci-dessous
est utile.

e Encadrer le terme général de la suite (U, ) par deux nombres réels.
e Etudier la fonction f lorsque (U,,) est du type U,, = f(n).
e Faire un raisonnement par récurrence.

I3 —Sens de variations

I3 1 -Théoréme :
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Pour étudier le sens de variation d’une suite Numérique, I'une de méthodes suivantes est
admise.

e Comparer u,et u,,1, cecirevient a étudier le signe de : u,,1 — u,
U . N .
o ComparerZ—Jr1 et 1 pour une suite a terme positif.

n

e Raisonner par récurrence lorsque u,, est définie par une formule de récurrence

(ie Upyq = f(un)
Exemple 1 :
3n+2
2n-1

Etudier le sens de variation de la suite (u,),, définie par: u,, =

Procédons par deux méthodes différentes :

Méthode 1 : comparons u, 1 — Uy
_ 3(n+1)+2  3n+2

T 2(n+1)-1  2n-1
__3n+5 3n+2

T 2n+1 2n-1
_ (3n+5)(2n-1)-(2n+2)(3n+2)

(2n+1)(2n-1)
__ 6n*-3n+10n—5-6n2-4n—3n—2
- 4n’~1
<0=upy —u, <0,

Ona:u,,q — Uy

-7
4n2-1
Donc V n € N, donc U,, est strictement decroissante.

Méthode 2 : posons u,, = f(n)

Upy1 —Up =

. fIN—R
On a: x*f(x)=§f_rf
_ 3x+2 , _ 3(2x-1)-2(B3x+2) _ -7
fix) = 2x—1 = ()= (2x-1)2 T (2x-1)2 <0,

f'(x) <0,f eststrictement decroissante, donc u,, est decroissante.
Exemple 2:

. . e . Lpe s 1
Etudions le sens de variation de la suite (v,) définie par v, = pe

v,
Comparons : 22 et 1
Vn
1

172 nF1 1 3n 1
Ona——==37—-=—x3"= =-<1

Vi, . 3n 3nx3 3
Vn+1

1 . .
=3 < 1, donc u,, est strictement decroissante.
n

I, —Suites monotones :
I, 1 -Ppropriétés :
Soit(uy),, 1 € N, une suite numérique. si Yn € N :
® U, < Uy, alors lasuite (u, ) est croissante ;
® U, = Uy, alorslasuite (u, ) est décroissante ;
® U, = Uy, alors la suite (u, ) est constante.
Remarque :
e Une suite (u,) est dite monotone si elle est soit croissante, soit décroissante ;
e Une suite (u,) est dite stationnaire, si elle est constante a un certain rang.

I5 -Suites arithmétiques, suites géométrique
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I5 1 -Suites arithmétiques

I5 11 —Definition :
Une suite (U,,) est dite arithmétique lorsqu’il existe un nombre réel r appelé raison tel que
pour tous entiers naturels n,p; ona:
Up4q1 = Uy + 1 : Formule de récurrence
Sin=0,alorsu, =uy +nr
Sin=1,alorsu, =u; +(n— Dr
Sin=2,alorsu, =u, +(n—2)r
D’une fagon générale, pour tout entier naturel n et p,ona:
Up = U, + (n — p)r : Formule explicite
Retenons bien :
Pour démontrer qu’une suite est arithmétique, il suffit de prouver que la différence entre
deux termes consécutifs est constante, i.e. : Up,1 — U, =1,n € N.
I5 12 -Somme des termes consécutifs d’une suite arithmétique:

(Up)n, estune suite arithmétique,vn € N,on a:
Up+Up+ 4 Up=nx 220 ot Ug+ Uy + Uy ot Upq = nx 220001

2

En particulier:14+2+3+4+ -4+ n= n(n2+1).

I5 , -Suites géométriques
I5 5 1 — Définition :
Une suite (u,) est dite géométrique lorsqu’il existe un nombre réel q appelé raison tel que
pour tout nombre entier naturel n,p; On a:
Up41 = qUy : Formule de récurrence)
Sin=0,alors: u, = uyq"
Sin=1,alors: u, = u;q" !
Sin =2, alors: u, = u,q" 2
D’une fagon générale, pour tout entier naturel n et p,on a:
u, = u,q™ P: Formule explicite
Retenons bien :
Pour démontrer qu’une suite est géométrique, il suffit de prouver que le quotient de deux

A .
termes consécutifs est constant, i.e. : == = q,(q € N)
Un

I5 , » -Somme des termes consécutifs d’'une suite géométrique:
(Up)n, estune suite géométrique de raison q,(q # 1),vyn € N,ona:

1—qn+t 1-q"

U1+U2+...+Un=UnX 1-q etU0+U1+U2 "'+U1’l—1=U0X1_q

I5 3 —-Convergence et divergence d’une suite :
e Une suite (U,) est dite convergente lorsqu’elle admet une limite finie (1) lorsque
n — +oo
e Une suite (U,,) est dite divergente lorsqu’elle admet une limite infinie(o) lorsque
n — +oo
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il. Limite d’une suite numérique :
II; —Calcul de limites
I, 1 -Propriété:
Soit (u,), une suite definie par : u, = f(n) ou fest une fonction numérique. Si f a une
limite en +o0, alors (u,,) a une limiteeton a:

11m U, = lir}r”n f(x), (laréciproque est fausse)
n-+ n—->+0oo

Exemple :

x%+1 . . n?+1
e lim ln( = ) = 0, donc la suite (v,),, de terme général v,, = ln( e ) converge

n—-+oo
vers 0.

e lim (xcos —) = +o0, donc la suite (wy,),, de terme généralw,, = n cos— L est
n—-+oo

divergente.
II, -Convergence d’une Suite arithmétique et géométrique.
II; ;1 -Théoréme :
1) Soit (uy)nn € N, une suite arithmétique de raison r,v n € N,u,, = uy + nr

e Sir>0,alors: lim u, = lim (nr) = +; (u,), est divergente ;
n—-+oo n—-+oo ’

e Sir=o,alors: lim u, =u, lasuite (u,) converge donc vers u, ;

n—-+oo
e Sir<o0,alors: lim u, = lim (nr) = —, (u,), est divergente ;
n—-+oo n—-+oo ’

2) Soit(u,),n € N, une suite géométrique de raison g et de 1% terme uy # 0,u, = upq™
e Si|g| > 1, alors la suite (u,) est divergente.
e Silg| < 1, alors la suite (u,,) est convergente.
e Si|gl| =1, alors la suite (u,) est stationnaire (u,, = ug)
II, , —Propriétés et comparaison:
On consideére les suites (u,) ,(v,) et(w,) et [ un nombre réel.
e Si(uy) et (u,) sont convergentes et si a partir d’un certain indice (rang), u, < v,

alors lim u, < lim v,;
n—-+oo n—+oo

e Sia partir d’un certain rang, u,, = v, et hrn v, = +o0, alors limu,, = +o

400 n—-oo
e Sia partird’'un certain rang, v, < u, <w,et lim v, = lim w, =1,
n—-+oo n—-+oo
alors lim u, =1;
n—-+oo
e Sia partir d'un certain rang, u, < v, et lim w, = —o0, alors lim u, = —;
n—-+oo n-+oo

e Silasuite (v,) est telle qu’a partir d’un certain rang partir, on ait :
lu, — | <v, et hm vn—O alors lim u, =1

n—-+oo
II3 -Convergence d’une suite monotone :
e Toute suite croissante et majorée est convergent ;
e Toute suite décroissante et minorée est convergente ;
e Toute suite croissante et non majorée diverge vers +oo
e Toute suite décroissante et non minorée diverge vers —oo
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II3 -Image d’une suite par une fonction:
II3 1 -Propriété :
Soit f une fonction, Df son domaine de définition et (U,,)une suite d’éléments de Df.
Si lim u, = Oet lim f(x) = [, alors lim f(u,) = l.(finie ou infinie)
n—-+oo n-a n—-+oo
II; , —Autre propriété :
Soit g une fonction continue sur un intervalle k, (U,)une suite a valeur dans k définie parla
relation de récurrence u,,1 = g(u,)
Si (u,) est convergente, alors sa limite est une solution de I’équation g(x) = x.
La solution « de cette équation est un point fixe de g.
Retenons bien :
Si g(x) = x n"admet pas de solution, alors (u,) est divergente.
Si(u,) converge vers [ et si f est continue en [, alors : f(I) = L.
I1, -Croissances comparées des suites a™, n* et In(n) :
II4 1 —Propriété :
Pourtoutn,etVa € Rona:

. o]
e Six >0, alors lim n—;=0

n—-+oco n
a
e Six>1etx> p,alors; lim n—n=0
n-+oo a
a
e Si0<a <letx<O0,alors lim = =+oo
n-+oo a

II; - Suites adjacentes :
II; 1 —Définition :
Soit (u,) une suite croisante et (v,,) une Suite décroissante. On dit que (u,)et (v,) sont
adjacentessi: lim (v, —u,) =0
n-+oo
Deux suites adjacentes convergent et ont la méme limite.
Exercices d’application
Exercice 1
U =1
Soit (u,) la suite définie par : {un+1 e
Un+3
1) Calculer u,u,, u; etu, et prouverquevVn € N, u,, +1 > 0.

2) Démontrer que la suite (v,,) définie sur N par: v, = — est une suite arithmétique.
n

3) Exprimer v, puis u, en fonction de n et étudier la convergente de la suite (u,).

Exercice 2
uO = 1
On considére la suite u définie sur N par : _ 2uy
Upt+1 = wnt2

1) Démontrer que la suite v,, = — est une suite arithmétique. Préciser sa raison et son

Un
premier terme.
2) Exprimer v, en fonction de n, puis u,, en fonction de n.
3) Calculer vy + v{ + -+ + v, en fonction de n.
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4) Etudier la convergence de la suite u.
Exercice 3
uo == 0

1) Soit u la suite définie par : 1
) P {un+1 = E,VE N

a) Calculer uy, u, etu,

b) Comparer les 4 premiers termes de la suite u aux 4 premiers termes de la suite W

définie sur N par : W, = %

2) Soit v la suite définie par : v, = In (%),VE N

a) Montrer que vy + v, + V3 = —In4
b) Onpose:s, = vy + v, + -+ v,. Exprimer s,,en fonction de n.
Exercice 4
uO = 0
On considére la suite (u,,) définie par : _ 3up+2,VEN
Upt+1 = Up+2

1) Démontrer que pout entier nde N, u,, # 2
2) Onpose:Vnzun—H;VEN

Up+2
a) Montrer que (V},) est une suite géométrique dont on précisera la raison et le
premier terme v,.
b) Exprimer V}, en fonction de n
c) En déduire u, en fonction de n
d) Calculer la limite de (V},) lorsque n tend vers 4o
e) Calculer en fonction de n, lasomme s, = vy + vy + -+ + v,
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Chapitre 6 : LES INTEGRALES
l. Intégrale d’une fonction continue
I, -Definition de I'intégrale d’une fonction continue
Soit f une fonction continue sur un intervalle |, a et b deux éléments de I.

On appelle intégrale de a a b de, le nombre réel F(b) — F(a) ou F est une primitive de f
sur .

b
Onnote: [ f(x)dx = [F(x)]5 = F(b) — F(a))

On calcule une intégrale, il y a au moins une étape de calcul ol I'on détermine une primitive

F puis une étape de calcul ou I'on calcule F(b) - F(a).

Exemple :
Calculer :

1
a) J; xdx
2
b) [ x%dx
Y
c) J; cosxdx
I, -Propriété
Soit f une fonction continue sur un intervalle |, a et b deux éléments de .
a
1) [ f(x)dx=0
b a
2) [ f(x)dx =~ [ f(x)dx
c b a
3) [, fCodx = [ f(x)dx+ [ f(x)dx
I3 -Linéarité de I'intégrale
Propriété
f et f sont deux fonctions continue sur un intervalle I.
b b
1) [Jaf(dx=af f(x)dx
b b b
2) [Y(af +Bdx = a [} fF(x)dx + B [, g(x)dx
b b
3) fa —f(x)dx = —fa f(x)dx
Exemple :
N
Calculer : I = [ cos®xdx
I3 -Signe de I'intégrale
Propriété
f et g sont deux fonctions continue sur un intervalle | et a et b deux éléments de I.
- Sif =0sur[a;b], alors f:f(x)dx >0
. b b
- Sif < gsurla;b],alors fa f(x)dx Sfa g(x)dx
I, -Inégalité de la moyenne
Propriété :
Soit f une fonction continue sur un intervalle | a et b deux éléments de I.
1) Si pour tous réels m et M et pour tout élément x de [a; b], m < f(x) < M, alors :

m(b—a) < [, f(x)dx < M(b - a).
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2) Si M est un réel tel que pour tout élément x de [a; b], |f(x)| < M, alors :
b
[ f(x)dx| < M(Ib - al).
il Technique de calcul d’intégrale :

II; - Technique de base

1. 1-Primitives usuelles
Tableau des primitives

Fonction u u'e u'u” u' xvou
u
Primitive In|u| e ustt vou
a+1

Exemple : Calculer
2 2x+4

a) fl (x2+4x+1) dx

b) JZcosxeS™ dx

c) f_zl 2(2x + 3)*dx
1. 2-Integration par parties
Propriété :
u et v sont deux fonctions dérivable sur un intervalle | telles que leurs dérivées soient
continues sur | a et b deux éléments de I.

b b

Ona: [ u'(x).v(x)dx = [u(x).v(x)]s - J, u).v'(x)dx
Exemple : Calculer

a) fol xe*dx

b) f inxdx

c) lelnTsdx

1. 3-Changement de variables
Propriété :
L R b - . .
Pour intégrer I'intégrale : fa f(ax + B)dx, avec a # 0, on peut utiliser le procéder suivant :

- Faire le changement de variables en posant : u = ax + (3, alors on obtient : du = adx ;
- Utiliser I'intégrale : fff(ax + B)dx = fu(b)lf(u)du =1 ab+ﬁf(u)du

u(a) a a’aa+f
Exemple : Calculer
a) f__32\/x+__1dx
b) [, dx
c) folx\/mdx

1. 2-Integration des fonctions paires, impaires et périodique

Propriété :
1) Soit f une fonction continue sur un intervalle | symétrique par rapport a I'origine.
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- Si f est paire, alors : f_aaf(x)dx =2 foaf(x)dx ;
- Si f est paire, alors : f_aaf(x)dx =2 foaf(x)dx
2) Soit f une fonction continue sur R périodique de période P.

Pour tous nombres réelsa et b, on a:
b+p

- f(x)dx = f;f(x)dx

a+p
a+p _ (P
- [T fodx = [ f(x)dx
II, - Intégration de fonctions particuliéres
2. 1-Intégration de fonctions trigonométriques
Exemple :
Calculer [2(cos®xxsins + 3sin®x)dx

2. 1-Intégration de fonctions rationnelles
Exemple : Calculer

101
a) |, ———dx

b) [ ———dx

x(x2+1)

2 8x+5
<) Jb 2x2+3x+1

Exercice d’application :

1) Ondonne I= [2(cosx)?dx ;] = fg(sinx)zdx
a) Calculerl+] et -]
b) En déduire Iet]

Vs
2) On considére les intégrales I et J suivantes : I = f04 (x + 1)cos?xdx et

] = foz(x + 1)sin®xdx
a) Calculer[+] et [—]
b) En déduire I et)

T
3) On consideére les intégrales I et J suivantes : [ = f N sin?xcos*xdx et

J = [ cos?xsin*xdx
a) Calculerl+] et -]
b) En déduire Iet]
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Chapitre 7 : Nombres complexes
l. Etudes algébriques

[; —Notion de nombre complexe
1.1 — Définition :
On appelle nombre complexe, tout nombre qui s’écrit de la forme a + ib ou a et b sont des

nombres réels et i est appelé nombre complexe imaginaire tel que i? = —1 avec i = (0; 1).
L’ensemble des nombres complexes est noté C, par ailleurs C* est I’ensemble des nombres
complexes non nuls.
1.2 —Notation et vocabulaire :
On considére un nombre complexe Z tel que : z = a + ib.
e L’écriture a + ib est appelé forme algébrique.
e Le nombre réel a est appelé partie réelle de z, notée a = R.(z)
e Le nombre réel b est appelé partie imaginaire de z, notée, b = [,(2)
L’ensemble des nombres imaginaires purs est noté iR.
Remarque :
Soit z = a + ib un nombre complexe.
e Si b=0,alors z=a estappelé¢ nombre réel pur z € R. Tout nombre réel est un
nombre complexe car (R c C).
e Si a=0,alors z =1ib estappelé¢ nombre réel pur z € iR
Propriété :
Soient z = a + ib et z' = a + ib deux nombres complexes. On a les propriétés suivantes :
R.(z) = R.(Z) a=a
I = Iy = b=
R.(z) =0 {a =0
I[,(z) =0 b=0
1.3 — Représentation géométrique d’un nombre complexe

. z=z’<:>{

° z=0<:>{

Le plan est muni d’un repére orthonormé direct (0; €;; €,)
L application M : P — C b
a +ib — M(a; b) est une bijectionde C — P
o M(}) est appelé point image de z = a + ib

e a + ib est appelé affixe du point M (%)
Par ailleurs I’application ¥ : 9 — C qui, a tout a + ib, associe )
U (a, b) est aussi une bijection de C — 9. (9 est ’ensemble des
vecteurs du plan).

>
o U(}) estappelé vecteur image de Z = a + ib o 2 a

e a + ib est appelé affixe du vecteur U (§).
e Le plan est muni d’un repére orthonormé direct (0;é;; €,) est appelé plan complexe ;
e Un point M d’affixe z de ce plan est souvent noté M (z)
e La droite de repére (0; €,) appelée axe des réels et celle de repere (0; €,) est appelée
axe des imaginaires.
Exemple :
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Représentons dans le plan complexe, les nombres complexes suivantes : z; = 2 + 3i;
Z, =—§+2i; z3=4+5
1.4 —Opération dans C
a —Addition et multiplication dans C
Soient z = a + ib et 2’ = a’ + ib’ deux nombres complexes.
e z+z =a+a +i(b+b"),lasommede z et z’
e z.z =aa —bb' +i(ab' + a'b), le produit de z et z’
Exemple :
Effectuons les opérations suivantes :
. 2-D+U-3))=6-4i
. (4-50)B+20)=22-7i
. 2i(4—5i)=10+8i
.« (2+50)?%=-21+20i
. @Bi—-1)3=26-18i
Remarque :
D’aprés ce qui préceéde, on remarque que :
1) (C, +) est un groupe commutatif';
i1) (C*, x) est un groupe commutatif ;
i) La multiplication est distributive par rapport a 1’addition ;
On dit que (C, +, x) est un corps commutatif.

v) L’opposé de nombre complexe a + ib est le nombre complexe —a — ib
- , .1 a . b
V) L’inverse de tout nombre complexe a + ib est : preria i il
Preuve :
(a — ib) est appelé conjugué de z et (a + ib)(a — ib) = a? + b?
0 . _ a—ib . a ., b
na: a+ib (a+ib)(a—ib) T azb? la2+b2
Exemple :
1 2+3i 243i 2 | 3i
- = , —~ = =—+—=
2-3i  (2-3i)(2+3i)  4+9 13 13
Remarque :

Dans C, tout comme dans R, 0 n’a pas d’inverse.
Propriété :
Soient z et z' deux nombres complexes.
zz=0&2z=00uz' =0
b — Les produits remarquables
Propriété :
Pour tous nombres complexes z et z’ et pour tout entier naturel n, on a :
o (z+2)?=2%+2zz'+77%,;
o (z—-2N2=22-2z22"+7?;
(z+2)(z—-2)=2%2-272.
(z+ 2" = YR Chank 7'k

La forme : (z + z)" = Y¢_, Ck z" k. z'¥ est appelée formule du binéme de Newton.
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Les CF sont appelés coefficients binomiaux. Ils sont obtenus a partir du triangle de Pascal ou

a partir de calcul de combinaison suivante C¥ = " (T:l;k)' qui sera vue en probabilité.
Exemple :

Calculons (2 + i)°
Triangle de Pascal correspondant a n — 1.
1

—_— = =
W N =

1
31
14641
15101051
(2415 =Ej=0 C5 (25 x (D"
=C(2)° + C3(2)*D' + C2(2P () + C3(2)*(D)* + (' (D* + C2()°
=254+5%x2*Xi+10x23(—1) + 10 X 22(—i) + 5 x 2(1) + i5
=324+80i —80—-40i+10+1i
(2+410)°>=—-38+41i
¢ — Affixe du barycentre de n points pondérés.
Propriété :soit Ay, Ay, ..., Aydes points d’affixes respectives z, , 24, ..., Zy, €t @y, Ay, .., Ay
des nombres réels dont ) ; a; # 0.
L’affixe du barycentre G des points pondérés (4;; a;) est :
_ Xk=1QkZa, _ QiZp t QpZa, ot AnZp,

ZG = n =
Dh=1 Ok ata+ .+ a,

Exemple :
Soit deux points A et b d’affixes z4 et zp.

e [’affixe de ABest: zg — 24 ;

e [L’affixe d’un point I milieu du segment [AB] est : z; = %
e [’affixe du point G, centre de gravité d’un triangle ABC est: z; = @
e [’affixe du point G, centre de gravité d’un rectangle ABCD est : z; = w
d — Puissances entiére d’un nombre complexe
Propriétés :
1) Soit z un nombre complexe non nul et n un entier naturel non nul. On a :
[ ] ZO = 1
1
o z M= —
o zMl=72"x7z,
2) Puissance entiére de i
io =1 iz =—-1 i4 =1
.1 3 — 5 —

it=1i i
1.5 —Conjugué d’un nombre complexe.
Définition :

Soit z un nombre complexe tel que : z = a + ib.
On appelle conjugué de z, le ombre complexe noté z tel que z = a — ib
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Exemple :
e 1+1=1-1i;
e 3—-21=3+2i
e —2-—1=2i
Remarque :
Les points M et M’ d’affixes respectives z et z sont symétriques par rapport a 1’axe réel.

¥ o

Propriétés 1:
Pour tout nombre complexe z = a + ib,ona:
o Z=27
e z+ 7= 2R.(2):1asomme de z et son conjugué est un réel ;
e z.Z=a’+ b?:leproduit de z et son conjugué est un réel positif ou nul ;
o z—7=2I4(z):ladifférence de z et son conjugué est un imaginaire pur ;

e zER&S z=7z:Sizestunréel, alorsz =72

o z€iR& z=—Zzetz # 0:Sizestunimaginaire pur, alors z = —Zz.
Exemple
Soit z = —1 + 2i. Déterminons Z;z+ z;z.Zetz—2Z.Ona:

-§=(?TFZ}:12=—1+m
oz+7=-1+2i+(-1+2i)
=—142i—1-2i
=z+z2=-2
0z.7 = (—1+2i)(-1+ 2i)
= (=1 +2)(-1-2i)

=1+4
=zz=5
oz—7=-1+42i—(-1+2i)
=—1+2i+1+2i

=z—zZ=4i
Propriété 2 :
Pour tous nombres complexes z et z', Vn € Z ,on a:

D z+z =z+7 5) (2)=2; (' #0)

yA4

= 6) z")=@)" (z#0)
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Exemple :
Soit les nombres complexes z et z' telsque : z =2 +ietz' =1 —1

Ecrire sous forme algébrique les nombres complexes suivants :

a) (22 + z’) c) (22 n Zrz)
b) @+§) d) (z+2)?
Solution :

z=2+ietz' =1—-1i
Ecrire sous forme algébrique les nombres complexes suivants :
a) (2z+z)=2z+7
=2(2+i)+(1-1)
=2Q2-D)+1+i
=4—-2i+1+1i
= (2z+2z')=5-i

b) @+3)=E+é
VA ZI

s - 2
=(2+i)+ =
=2—i+>

1+i
o 20D
= 2=+t a0
=2 i+
1+1
=2-1+%2
—2—i+1-i

z!

=»@+3)=3—m

c) (22+z’2) =2z2+72
= Z70) +@=0)
=2-0%+1 +i)?
=4—4i—1+2i
=>(22+z’2> =3—2i

d) z+2)2= (E + ?)2

2
=(@+)+(1-1))
=Q2-i+1+10)?
=32

=(z+2)2=9

1.6 —Module d’un nombre complexe.

Définition :

Soit z un nombre complexe tel que : z = a + ib.

On appelle module de z, le nombre réel positif noté |z| tel que : |z| = Va? + b?
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Exemple :
Calculons le moudule du nombre complexe z dans les cas suivants :

a) z=3-—4i

|z| =/32 + (—4)2 =25 =5

= |z| =5
b) Z=%+i§
12 | (V3 13
2= G) +(3) = firi=Vi=1
=|z|=1
c) z=2-—1
|2l =VI+1 =15
= |z| =5
Remarque :

Soit z = a + ib un nombre complexe.

e Sib=0,alors|z|=a

e Sia=0,alors|z| =b

e VzE€G |z| =|-Z| =VaZ + b2
Propriétes :
Pour tous nombres complexes z et z' et pour tout nombre entier relatif, on a :

1) |z.z'| = |z| X |Z/|
1 1

2) ; = m, (Z * O)

3) Iz =1z|"; (z # 0)
4 _ﬂ_ ’

4) ; = 1z’ (Z * O)

5) |z+Zz'| < |z| + |Z'|; (inégalité triangulaire)
6) |Re(2)| < |z| et|n(2)| < |2
7) lzl - 12| < |z + 2|
Exemples :
Déterminons le module de nombre complexe :
|(—V3+i)@+D?| = |-V3+i| x|1+il?
=V3Fix(VI+1)

2
= Vix (V2)
=2x2

= |(—V3+i)A+D?| =4
(-v3+)°| _ =B+ _ 22,
- = - = 5 = 2
(1+0)? [1+i|2 (V2)
(-v3+0)°| _
1+0)2 | 4

Remarque :
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e Si z est I’affixe d’un point M, alors |z| = OM ;

e Sizest ’affixe d’un vecteur U, alors |z| = |[u]l;

e iz, et zg sont les affixes respectives de deux points A et B, alors
|[AB| = |25 — 24| = 4B.

il Etude trigonométrique

II; — Forme trigonométrique d’un nombre complexe
a —Argument d’un nombre complexe
Rappel trigonométrique

T 1lm
6 6
<1t71t
4 4
T 57
\ 3 3
( 2m A4Am
3 3
<31t 5
4 4
-5t 7i
\ 6 6

An
. §
Définition :
Soit z un nombre complexe non nul et M son image dans le plan
complexe.
On appelle argument de z, toute mesure de I'angle orienté

(e_{; OM).noté arg(z). Souvent le note 6 ou a.

Tout argument de z est de laforme : 6 + 2km, k € z
On note: arg(z) = 6 + 2km, k € Zouarg(z) = 0[2r]
Interprétation géométrique
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Si z est I'affixe d’un vecteur i , arg(z) est une mesure de I'angle orienté (e_{; 17).
si z, et zg sont les affixes respectives de deux points A et B, alors arg(z — z,) est une

N
mesure de I'angle orienté (e_{; AB) .

Détermination de I’argument
Pour tout nombre complexe non z = a + ib et pour argument 8(z),on a:

Ro(z a

cosf = Re(@) cosf = —
|| |z|

. I . b
sinf = m(2) sinf = —
|| |z|

Remarque :
i) Soit z un nombre complexe z ;
e siz=0,alors|z| = 0 etzn’apasdargument.
e Sizestunréel ie. (z € R),alorsarg(z) = 0[n]
e Siz est unimaginaire pur, i.e. (z € iR), alors
arg(z) = g[n].
ii) Pour tout nombre complexe z non nul, on a:
e arg(z) = —arg(z) [2n] = —arg(z) + 2km; k € Z
o arg(—z) =n+arg(z)[2r] =+ arg(z) + 2kn; k € Z
o arg(—2) =m—arg(z) [2n] = —arg(z) + 2km; KE Z

Exemple :

Déterminons un argument des nombres complexes suivants :
a) zy =141

Ona:lz|=Vvi+1=V2=|z]| =2

Soit 8 son argument. On a:

b) z, =1+ iV3

|Zz|=‘/1+(\/§)2=\/1=2=>|22|=2
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cosf =
Soit 6 son argument de z,, on a :

Vs
sing =

)

oG

= arg(z,) = g-&- 2km; k € z

C) Z3——%+l?3
2 2
Ona |23|=\/(—3) +(ﬁ) = 1+§=1=>~|Z3|=1
2 2 4 4
cosf = —= o
Soit 8 un argument de zz, on a : =0 = Py
sing =

2
= arg(zz) = Z?H + 2km; k €z
b — Argument d’un produit et d’un quotient
Propriété :
Pour tous nombres complexes non nuls z et z' et pour entier relatif n, on a :
i) arg(z.z') = arg(z) + arg(z’) + 2km; k€ Z
i) arg G) = —arg(z) + 2km; k€EZ
iii) arg(z)" =nxarg(z) + 2km; k€ Z
iv) arg (5) = arg(z) —arg(z') + 2km; k€ Z
Remarque :

Soit 4, B et C trois points deux a deux distincts, d’affixes respectives z4, zg et z..

Ona: arg (ZE) = arg(ﬁ) = Mes (ﬁ, R) [2m]

Zo
Exemple:
Déterminons les arguments des nombres complexes suivants :
- i3
2, = (—VE+D)A+0)? etz, = (2

(1+i0)2 )
o Zy=(—V3+i)A+0)?
Posons z'; = —V3 +i et 2’/ =1+itelsque:Z, = z'1(2"1)?

|2'1] = /(—\/§)2+12=\/3+1=2 et |2/ =vI+1i=+2

Ona:|z'y| =2 et |2’y =2
Soit 6';,0"'; les arguments de z; et z,,ona:

—V3 " V2
cos@'l = — cosf 1=—
2 ’ 51 2 " T
1;:61=_6 et ﬁ’ﬁelzz
sinf’'; == o0l —
1= sin8"’; .

= arg(z';) = 5?” [27] et arg(z”’,) = %[271]

Z, =2'1(z"))?,alors,ona:

1Zy| = |21 x |2"4]?
2
—2x (\2)
= |Z| =4
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Soit a , un argument de Z;, on a :
arg(Zy;) = arg[z'y X (z"1)?]
=arg(zy)+2xarg(z"y)
51 T
Z 4 (2x5) [2n]

5m+3m

=— [2m]
= arg(Z,) = 4?H[Zn] ouarg(Z,) = —Z?H[

_ (—\/§+i)3 S N . B .
o 7,= ( D ), d’apres de ce qui précede, on a :

21|

i ’ 17
arg(Z,) = arg (ZZ,_,lg) = 3arg(z'y) — 2arg(z"’;)

E3X5—”—2XE[2TE]
6 4

=2 - 2n]
= 2m[2m]

= arg(Z,) = 0[2m] ou arg(Z,) = 0+ 2km; k € z

¢ — Forme trigonométrique d’un nombre complexes non nul.
Définition et présentation :
Soit z un nombre complexe de la forme z = a + ib,

a = |z|cosB
b = |z|sin@

cosf = %
Ona:§ b {
sinf = —
|z
z=a+ib,= z = |z|cosf + i|z|sinb
= |z|(cosB + isinb
En posant: r = |z|,
on a:
z =1r(cos0 + isin0) appelée forme trigonométrique de z.
Remarque:
Soit z = r(cosf + isinf), r € R* et f € R.
e Sir>0= z=r(cosl + isinf) et arg(z) = 0|2rx]
o Sir<0=z-= —r(cos(@ + ) + isin(0 + n)) etarg(z) = (0 + n)[27]
Exemple :
Mettons ces nombres complexes sous la forme trigonométrique :
o z;=1+1
|z | =VI+1=V2=|z| =12

cosO =
;=0 =

L

Soit 6 son argumentde z;,ona: [2m]

SIS

sin@ =

Doncz; =2 (cos% + isin%) : est la forme trigonométrique de z;

1, .3
o Z,=—-+1—
2 2
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2l = (-2 + (D) = freiovis

2 2
=|z|=1

Soit 6 son argumentde z, ,ona: 3= 0= ey [27]

Donc z, = cos%’r + isinz?” : est la forme trigonométrique de z,
e z;=1—-iV/3
lz3l = [1+(=V3)2=V/1+3=2=|z]| =2

1
cosf ==
2

Soit 8 son argumentde z; ,on a: 5= 0= 5;” [27]

sinf = ——
2

Donc z3 = 2 (coss?" + isin 5?”) : est la forme trigonométrique de z3
Propriété :
Soit z et z’ deux nombres complexes non nuls.
Ona:z =7 & |z| = |z'| et arg(z) = arg(z')[27] .
Deux nombres complexes conjugués ont méme module et des arguements opposés
Exemple :
Dans chacun des cas suivants, déterminer le module et un argument de z.
1) z=1+itanf
2) z=1-—1itand
3) z =cosfO — isinf
4) z = —sinf + icosf

5) z=1+ cosO + isinf et 6 € [0; 7]
6) 7 = cosf+isinf

Solution :

cosf—isin6

Dans chacun des cas suivants, déterminons le module et un argument de z.
. sin@

1) z=1+itan8 =1+

cos6
1 .. 1 _
zZ= ﬂ(cose + isinf) = |z| = — ¢t arg(z) = 0[2n]

. sinf

2y z=1—itan0 =1—1i

cos6
1 ..
=— (cosO — isinB)
1 .. 1
z= E(cos(—@) + Lsm(—H)) = |z| = —5 ¢t arg(z) = —0[2m]
3) z=cosfO — isinf
z = cos(—0) +isin(—0) = |z| =1 et arg(z) = —0[2x]

4) z = —sinf + icosf

z= (cos (g + 9) + isin (g + 9)) = |z| =1etarg(z) = (g + 0) [2m]
5) z=1+4 cosO + isinf et 6 € [0; 7]
Ona:z =1+ cosf +isind =1+ e
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L _8 8
:ez(e 2+ez>

o [ & . &
i—[ez2+ie 2
=Zer |/ —

e .. 0 ]

=2 (cos— + isin —) coSs —

2 2 2
] 6 .. 0

z = 2cos—(cos— + lsm—)
2 2 2

On distingue deux cas:
V1

1% cas: 6 € [0; ;[
T 6 ] _ 6
Pour 6 € [O; E[; ZCOSE >0,=|z| = ZCOSE etarg(z) = E[Zn]
2%cas: 0 € [g, n[
T 0
0 € [—; n[=> 2cos=< 0
2 2
= —2cos§ >0
Ona: z= Zcosg(cosg + ising)
=z = —Zcosg(—cosg - ising)
2 2 2
0 0 .. 0
=z = —Zcosz(cos (n + E) + isin (n + E))
= |z| = —Zcosget arg(z) = (n +g) [2m]

cosf+isind _ e ie

6) z=

" cosb—ising ~ e~i®
z=e?% = |z| = 1etarg(z) = 20[2n]

d — Forme exponentille d’un nombre complexes
Définition :
Soit z un nombre complexe non nul.

On appelle forme exponentielle du nombre complexe z, de module r et d’un argument
0, c’est I’écriture : z = re'® ; avecr € RL et € R.
cette écriture : re’® est aussi appelée forme polaire de z.
Exemple :
Mettons a la forme exponenntielle les nombres complexes de I’exemple précedant :

° Zl=1+iﬁzl=\/ieiZ

1 .3 2
° ZZ=Z2=—E+l7=>ZZ=€ 3

LT
° 23=1+i\/§=>z3=Zel§
Propriétés :
igr

Soit z et z' deux nombres complexes non nuls tels que : z = re'® etz = 1r'e®®’, n € Z,ona:

1) z.z' = 7 el
1_1,-i6

2) ~=-e

3) g = yneind

4) Z _ I ,i(6-6")

VA4 !
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e —Formule de Moivre
Soit z le nombre complexe de module 1 et d’un argument 6 tel que soit z = cosf + sin6.
Vn € Z, z" a pour module 1 et argument nf.
On en déduit la formule trés importante suivante appelée formule de Moivre :
(cosB + isin@)™ = cos(nB) + isin(no)

Exemple :
1) 6 € R, exprimons cos48 et sin40 en fonction de cosf et sinf.0On a:
(cosO + isinf)* = Y5 _, C¥(cos8)*F(ising)*

cos*0 + Cicos30(isin®) + C2cos?0(isind)? + C3cosO(isinB)3 + Cfcos®(isind)*
= c0s*0 + 4icos30sinf X 6c0s?*0sin?0 — 4icosOisin30 + sin*6
(cosB + isinB)* = cos*0 + sin*@ — 6¢c0s20sin?0 + i(4cos30sind — 4cosBisin®6) (1)
Or (cos@ + isinf)* = cos40 + isin406 (2)
En égalant les deux relations, on a :
cos46 = cos*0 — 6c0s%0sin?0 + sin*0
L=@ = {sin49 = 4cos3sinf — 4sin30cosO
- {cos40 = c0s*0 — 6c0s5%0(1 — cos?0) + (1 — cos?6)?
sin48 = 4cos3sinf — 4sin36cosH
N {cos49 = 8cos*0 — 8cos?0 + 1
sin40 = 4cos3sinf — 4sin30cosb

1 1
2) Soit z = —= + i —=. Calculons z1%°
) Soit ﬁ+l\/§ Calculons
1 1 T
zl= [-+==1 rg(z) =-—
lzl = [3+2=1etarg(z) ="
106 —_— 199
Donc:z =(cosz+lsmz)
1991 . . 1991
:cosT-l-lSln—
1991 1207 T T 1991 T
Or:_=___=307T__:_=__+2X15T[
4 4 4 4 4 4
1991 T
— = ——[2m]
4 4
o AN n 1.1 199 _ 1 _ .1
On en déduit que :2199=cos(——> lsm(——)=——l—- =z =5F-1lz
q 2) T )R T 'z

f —Formule d’Euler :

Pour tout nombre réel 8, on a le systéme suivant :
e'® = cos@ + isinf (1)
{e‘ie = cos6 — isinf (2)

IR

e (D+(12) = e +e7% =2c050 = cosO =

e (D)=(2) = ei? —e ¥ = 2isinf = sinh ==

Donc pour tout nombre réel 8, on a: oi0_,—i0

Exemple :
0 € R, linéarisons cos®@ et sin®0.
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14641
1 5101051

’71 615 20 156_1‘

e (o0s°0
. ei9+e_i9
On sait que : cosO = .
ei9+e—i9
= c0s®0 = ( )6
2

— ZLG(eiG + e—i9)6

= 2 [ZeoCE(e®) ™ ()]
= %[e&'e +6(e5%.e710) + 15(e*0.e729) + 20e° + 15(e2.e49) + 6(e!f.e759) + e7¢19]
= 216[(96“9 + e—6i9) + 6(e4i9 + 8—49) + 15(e2i9 + e_2i9) n 20]

_ zis [(eGiQ_;e—GiB) N 6 (e4i9+2€—4i9) N 15 (eZi9+2€—2i9) N 22_0

== [cos60 + 6c0s46 + 15c0s26 + 10]

T 32
= cos%0 = 312 [cos(68) + 6cos(40) + 15co0s(260) + 10]
5

. ei@_e—ig
e sin®f = ( )

2i
— ﬁ(eie _ e—ie)s
[esia + 564i9(_e—i9) + 1Oe3i9(_e—i6)2 + 1Oezi9(_e—i6)3 + 5€i9(_e—ie)4

+(—e7%)°]

= ——[e5% —5¢319 + 10e¥ — 10610 + 5e730 — ¢~5]
EhE

— ﬁ[(em + e—5i6) _ 5(e3i6 _ e—3i9) + 10(81'9 _ e—i@)]

-l s (5 10 (25

%6 [sin56 — 5sin360 + 10sin6]

IPhHE

sin® @ =

. 1 5 . 5 .
= sin® @ = —sin50 — —sin30 + - sind
16 16 8

I, — Racine n“™ d’

2.1 — Définition

un nombre complexe
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Soit z un nombre complexe non nul et un entier naturel (n = 2).
On appelle racine n®™¢ de z, tout nombre complexe z tel que :z" = z.
On considére les nombres complexes Z = re® et z = pe!®*. vn € N(n > 2),ona:

" =7 & (pel@)" =rel

c}pnenia:reie
pr=r
=
{na=9+2kn;kEz
p="Xr
=
a=2+2T keq
n n

Propriété :
Soit Z = re'? un nombre complexe non nul et n un entier naturel (n > 2).

7 admet des racines n-iemes telles que :
a 2km

Z = ’(/?ei(TLT) = ’W[cos (%+ ZkT”) + isin (%+ Z"T”)], ke{0;1;2; ... ;n—-1}
Les racines zy, Zy, Z3, ..., Zy—1 SOnt obtenues en donnant les valeur0,1,2,...,n —1ak.
Les images M,, My, ..., M,,_; de ces racines sont les sommets d’un polygdne regulier an
cotés inscrits dans le cercle de centre O et de rayon OM, = OM; = -+ OM,_; = Vr.
Remarque :

La somme de n racines n¢™¢ d’un nombre complexes non nul est nulle.

Exemple :

1) Déterminons les racines carrées de Z = 1 + i/3.

|IZ| =v1+3=2
coszé -
Soit 8 un argument dez.On a: Sin:ﬁ;z»e =3
2

.TT
DoncZ = 2e's
Posons z = re'? tel que:z2=%; our > 0.

. K
72 = 7 & r2e?? = 2e'

r2=2
< 29=§+2kn;k€z

r=+2
< 9=§+kn;k€z

Les racines de Z sont de la forme : z;, = V2e'GHm; gyec k = {0; 1}.

TT 7T
Ona:zy =+2e'setz; =+/2e"% et
2) Ecrivons sous forme algébrique les racines carrées de Z.
Ona:

Zozﬁei3=\/§(cos%+ising)
(Bt
_\/E(Z_i_lz)
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@_I_.z

07 2 2
Z, = \/Eei(%”) = \/E(cos (g+ n) + isin (%+ n))
2oy
V6 o .2
i s

Exemple :

, . . . 1+iV3
1) Déterminons les racines cubiques de Z = P

2T 2T

T T
Ona:1+iV3=2e5etl—iV3 =2e""3,alorsZ = %el? =e's

Soitz =re'® telque: z3 = Z
2T

23 =Zor3ed =5

r3=1
< 39=2§+2kn;k6z

{rzl
= 2k

0="12 kez
9 3
.21  2km
Les racines de Z sont de la forme : z;, = V2e'S3); qvec k = {0; 1; 2}

2T 8 Lam
Ona:zyo=e9;z1=e9 etz =e 9

2) Déterminons les racines cubiques de l'unité.
23 = 1 & 13e3i0 = ,i(0+2kn)

r3i=1
@{30=2kn;k62
r=1
A 9=2an;k€Z

2k
Les racines cubiques de l'unité sont de la forme : z, = e' 3 ; avec k = {0; 1;2}.
27 Rl
Ona:zp=1,z,=e3 etz =e 3.

Les images sont les sommets d’un triangle équilatéral et zy + z; + z, = 0.
Preuve :

21 . . 2T 4T . . A4Am
Zo+z1+2z, =1+ (cos? + lsm?) + (cos? + LSLTL?)

i (3 (i)

2 2
SRS S E I S ]
2 2 2 2
=1-1=0

D'olizg+2z;+2, =0

I.3— Nombres complexes et utilisation

3.1- Equation du premier degré et systeme d’équation linéaire

1) Une équation du 1*" degré est une équation de laforme : az + b = 0 ol a et b sont des
nombres complexes. Cette équation admet :

. . . . b
e Une solution unique si a # 0 et cette solution est -
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e Une infinité de solutionssia =b =0 ;
e Aucune solutionsia = 0ethb # 0.

az+ bz =c
a'z+b'z =c
complexes (a # 0; b # 0) est un systéme d’équations linéaires a deux inconnues dans
(©)>.

Exemple :

2) Tout systéeme de la forme : { ,;0u a,b,c,a, b’ et c’ sontdes nombres

1) Résoudre dans C les équations suivantes :
a) 2+5i)z=4-2i
b) iz—2=2z4+1+1i

. 2 . (@4+3)z-3iz’=1-1i

2) Résoudre dans (C)“ le systéme : {(_1 + 202+ B =07 =i

Solution :

1) Résolvons dans C les équations suivantes :
a) (2+50)z=4-2i

Ona:(2+5i)z=4—2i=>z=z:ii

 (a-2i)(2-50)
- 4425
_ 8-20i—4i-10
- 29
_ —2-24i

29

Z=———=

L’ensemble de solutionest : S = {—i—ﬁi}
b) iz—2=2z+1+1i
Ona:iz—2=2z4+1+4+i=iz—-2z=1+i+2
= (-2+i)z=3+i

3+i
- 7 = -
—2+1
_ (3+i)(-2-D)
- 4+1
_ —6-3i-2i+1
- 5
_ —5-5i
s
z=-1-—1i

L’ensemble de solutionest : S = {—1 — i}

(2+3i)z—-3iz' =1—-1i
(-14+2)z+B-Dz' =i
a —Racines carrées d’un nombre complexes.

2) Résoudre dans (C)? le systéme : {

Propriété :

Soit Z et z les nombres complexes tels que z" = Z; (n € N)et n = 2. On désignera par w,
et w, les racines carrées de Z.

Ona:Vx,y €ER, onposez =x + iy = |z| =m.

Vab €ER, ona:Z =a+ib= |Z =Va? + b?
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Pourn =2,0ona:z? =%
z=x+iy = z? =x% —y? + 2ixyet|z|? = x? + y2.
z2=72ox*—y>+2xyi=a+ib

|z|> = |Z] x* +y* = |Z] (D
= Re(zz) =R, (2) &1 x?— y2 =a (2)
Im(ZZ) = Im(Z) 2xy =b (3)
MD+R2)=2x2=a+|Z|
N xz — a+|Z|
— x = a+|Z| oux = — a+|Z|
o 2 - 2
M-Q2)= 2y*=1%l-a
N 2 _ |Z|—a
ys=—

2

_ ||Z]=a _ |Z]-a
=y= —— ouy=-—|—

Pour choisir les couples (x; y), on tient compte du signe de b :
e Sib > 0,alors xy > 0 et donc x et y sont de méme signe et on a :

a+|Z| . |Zl-a

szz— S 1 T=>W2=—x—iy
e Sib <0,alors xy < 0 etdonc x et y sont de signe contraire et on a :
( a+|Z| . [I1Z|-a .
wy = [—— i = w; =x—1y
Zl . [IZl- .
iwzz— a+2||+1 ||Ta:>~W2=—x-|—ly

L’ensemble des racines carrées de Z est : S = {wq, w,}
Exemple :

Soit Z = 3 — 4i un nombre complexe.
Calculons la racine de Z.
Posons z = x + iy tel que : z2 = Z
Ona:|z?| =x*4+y%et|Z =V9+16=+25=5
72 =72 7z>=3—4i;o0rz? = x? —y? + 2xyi
z2=3—-4i & x?>—y?+2ixy =3 —4i
x2+y2=5 (1)
x?—y?+2ixy=3—-4i ©{x*-y2=3 (2)
2xy = —4 3

D+ Q2)=2x*>=38

= x?=4

= x=2 oux=-2
D-0Q)= 2y?2=2

:y2=1

=y=1 ouy=-1
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Le produit xy = —2 est négatif donc x et y sont de signes contraires, alors on pose :
w=2—-1letw,=-2+1
L’ensemble des racines carréesdeZ =3 —4iest: S={2 —i; -2+ i}
b — Résolution de I’équation du 2™ degrés dans C.
Etude de cas général :
On veut résoudre dans C une équation du 2™ degré az2 + bz +c¢ =0, a,b,etc €
R; (a # 0). Comment alors procéder ?
Méthode :
Pour résoudre une équation dans €, on procede de la maniére suivante :
- On calcule le discriminant A du polynéme complexe ;
- On détermine les racines carrés de A suivant que A soit ou non complexe.
Pour cela, on rappelle que la forme canonique du polyndme P(z) = z2 + bz + c est :

P(z)=a [(z + %)2 — (i)] ; avec A= b? — 4ac

4q?
Propriété :
Une équation du 2" degré a coefficients réels a toujours deux racines :
. , . ~b—/A —b+VA
e SiA=b? — 4ac > 0, elles sont réelles et distinctes : x; = Za\/— etx, = 242/—
. b
e SiA=b?—4ac = 0, elles sont confondues : x; = x, = ——
2a
. o —b—iVA —b+ivA
e SiA=b? —4ac <0, elles sont complexes conjuguées : x; = wa etx, = ;\/_

Exemple :
Résoudre dans ¢ I’équation suivante
1- Cas ou les coefficients sont des nombres réels.
(E):z2+z+1=0
A=1—-4x1=-3

= A= 3i?

—-1—-ivV3 —-1+iv3
= Zl == 21\/— et Zz == —;l\/—
=s={5% =

2- Cas ou les coefficients sont des nombres complexes
(E): 22+ (2+3D)z—-2(1-2))=0
A= (2+30)2 — 4 X 1(—2 + 4i)
=4+4+12i—9+ 8 —16i
A=3—4i; Ae C
A cet effet, cherchons les racines carrées de A.
Soit z = x + iy tel que : z2 = A.
z2 =x? —y?2 +2ixy; |A| =V9+ 16 = 5 et |z?| = x% + y?
72 = Ao x? —y? + 2ixy =3 —4i
x> +y2=5 (1)
2 =A=1x*-y*=3 (2)
2xy = —4 3)
(D+@2)=>2x*>=38
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= x?=4

= x=2 oux=-2
D-2)= 2y*=2
=y2=1
=y=1 ouy=-1
Le produit xy = —2 est négatif donc x et y sont de signes contraires, alors on pose :
w, =2—1 etw, =—2 +ilesracines carrées de A.
=z, = _b;wl = _2_32i+2_i =-2i=z =—2i
Z, = _b;wz = _2_3;_2+i =-2-i=>z,=-2-i

= S ={-2i; -2 —1i}

(E)): z2+(4+5)z—7i—1=0
A= (4+50)2—-4x1(7i—-1)
=16 +40i —25—-28i+4
A= -5+ 12i; A€ C
Posonsz =x +iy / z2 = A

x? +y? =25+ 144 = 13 (1)
2" = A& x? —y? =5 (2)
xy =6 3)
D+ @2)=>2x%*=38
=x%2=4
= x=2 oux=-2
(1) -(@2)= 2y?=18
=y2=9

=y=3 ouy=-3
Le produit xy = 6 est positif donc x et y sont de mémes signes, alors on pose :

w, =2+ 3i etw, = —2 — 3ilesracines carrées de A.
-b+w 445042431 . .
=z, = 21= - =3+4i= 2z =3+4i
_ —btw, _ 4+5i-2-3i

Z2— 1+L$Zz=1+1

2 2
=S={3+4i; 1+1i}

¢ — Equation se ramenant au 2" degré :

Exemple 1 :

Soit I’équation (E): z3 + (4 — 5i)z? + (8 — 20i)z — 40i = 0
a) Démontrer que (E) admet une solution imaginaire pure.
b) Résoudre (E) dans C

Résolution

Soit (E): z3+ (4 —5i)z%+ (8 —20i)z—40i =0
a) Démontrons que (E) admet une solution imaginaire pure.

Posons P(z) = z3 + (4 — 5i)z% + (8 — 20i)z — 40i

Soit z; = ib cette solution imaginaire. (b # 0)

P(z,) = P(ib) = —ib3 — (4 — 5i)b% + (8 — 20i)ib — 40i
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= —ib® — 4b% 4 5ib? + 8ib + 20b — 40i
P(ib) = —4b? + 20b + i(—b3 + 5b% + 8b — 40)
—4b% +20b =0 (D
—b3+5b*2+8b—40=0 (2)
z, est un imaginaire, donc on considére seulement I'équation (1).

(1) :—4b*+20b=0= —4b(b—-5)=0
= b=00ub=5#0
Donc z; = 5i est la solution imaginaire pure (E) cherchée.
b) Résolvons (E) dans C

5i est la racine de P, alors P(z) = (z — 5i)Q(2) ; ou Q(z) = z2+ az + b; (a,b € C) tel
que:

P(ib)zO(:){

P(z) = (z—-50)(z% + az + b)
P(z) = z3 + az? + bz — 5iz% — 5aiz — 5ib

a—5=4-5i a=4
Par identification,ona :{b — 5ai = 8 — 20i = {b B 3
—5ib = —40 -

Donc:Q(z) =2z%>+4z+8
P(z) = (z—-51)Q(z) = P(z) = (z—5i)(z*> + 4z + 8)
P(z) =0 (z—5i)(z*> + 4z + 8)
& z=5io0uz?+4z+8=0
z2+4z+8=0=A"=4-38
=—4
A = (20)?
=z, =—2—2ietzz=—-2+2i
= § = {5i; -2 —2i; -2+ 2i}
d — Transformation de produit en somme et de somme en produit
Propriétés 1:
Pour tous nombres réelsa et b, on a:

e cosacosb ==[cos(a + b) + cos(a — b)];

N | =

e sinasinb = — % [cos(a + b) — cos(a — b)];
e sinasinb = %[sin(a + b) + sin(a — b)].
Propriété 2 :
Pour tous nombre réels petqg,ona:

e cosp+cosq = 2005?005?
e sinp +sing = ZSinpzﬂcospz;q
® (CoSp —cosq = —ZSingsing
e sinp +sing = 2cos¥sinp2;q

3.2- Géométrie et nombre complexes
a —Transformations et nombres complexes
Tableau récapitulatif d’écriture complexe de certaines transformations du plan
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Dans ce tableau, M(Z) et M'(Z) désigne un point et son image, ainsi que leurs affixes, par

chacune de ces

transformation.

| oz,

Translatiﬁon de €: " MM =1 Z =z+a
vecteur u(a) -

o &
Symeétrie de aM = —OM 2 —w=—(z—w)
centre Q(w)

OM' = 0M
Symétrie par {(?1; W) __ (?1; W) -
rapport a I’axe
réel
Me—]—aM

Symétrie par . , OM' = OM
rapport 4 &/ (&5 oM) = = - (&3; OM) o
imaginaire z'=—Z

Homothétie de
centre Q(w)
etd’angle a

Rotation de
centre Q(w) et
d’angle a

oM’ = kQOM

z'—w=k(z—-w)

e
0 €

Exemple :

{Mes (W/,\W) = a[2m]

OM' = 0M

z' —w=e%(z—w)

Soit les points Q(—2; 1) et A(1; —1)

Dans chacun d

es cas suivants :

e Donner I'écriture complexe de la transformation ;

e Déterminer I'image de A par la transformation.

1) Symétrie de centre () ;

Ona:

zZ'—w=—(z—w)
Sz —(-2+)=—(z2—-(-2+1)
Sz =—z-2+i—-2+1i
& z' = —z — 4 + 2i est I'écriture complexe de la symétrie de centre Q.
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L'image de A par cette symétrie :

Ona:z' =—z—-4+2i= 2z =—24—4+2i
=—1-i)—-4+2i
@ZA,=_5+31:

b —Confuguration du plan et nombres complexes
Pour tous nombres complexes : z,; zp; zc et zp d’affixes respectives des points A, B, Cet D,
on a les configurations géométriques suivantes :
1) Le triangle ABC et isocéle en A si et seulement si :
M ia Zc—24 _ _—ia.

=e " ou ——=e

;avec AB = AC et mesh=a 0<a<m
Zp—Za Zp—Za

2) Le triangle ABC est équilatéral si et seulement si : AB = BC = AC ; mesA = g et

Zc—2 L - _im
27t _ o3 ou i — 073
Zp—7Za Zp—7Za
3) Le triangle ABC est rectangle isocele en A si et seulement si :
Zc—7 . Zc—7 . ~
CP—j ou="A=_j:AB=ACet mesh=1
Zp—7%a ZB—Za 2
o . ~
4) Le triangle ABC est rectangle en A si et seulement si : ﬁ = bi;avec b # 0 et mesA =
B~ LA
T
2
5) Les points B, B et C sont alignés si et seulement si :
Zc—7 .
< 4 eR etmes(AB AC) = 0[x]
Zp—%a
6) Les points A4, B, C et D sont concycliques si et seulement si :
Zc—Zp
Zc-7p . Zp-%
C B: D~ BER* uZ_ZAEIR*
Zc—Za  Zp—Za Zp-ip

Zp—%4
b —Lieux géométriques et nombres complexes
Propriétés :
Soit A le point d’affixes z, et Mun point d’affixe z
Si R est un complexe réel directement positif, le lieu des points M dont I’affixe Z verifie
||z — z4| = R est le cercle de centre A et de rayon R.
Si a est un nombre réel, le lieu des points M dont I’affixe z vérifie arg(z — z,) = a[r] est la
droite de repére (4, 1), privé de A avec Mes (el, U) = a[m].
Remarque :
Le lieu des points M dont I’affixe z vérifie : arg(z — z,) = a[mr] est la demi-droite de
repere(A, @), privé de 4, avec Mes(es; 4) = a[m].
Exemple 1:
Soit A le point d’affixe z, telque: zy = 1 + i
Déterminer le lieu des points M dont I'affixe z vérifie :
a) z—2z,=2

b) arg(z —z,) = = [n]

o) arg(z —zy) = —Z[2n]
Résolution :
SO't ZA = 1 + L
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Déterminons le lieu des points M dont I'affixe z vérifie :

a) z—2z,=2

Méthode 1:

|z—2z4| =2 = AM =2

Donc le lieu M cherché est un cercle (C)de centre A et de rayon 2.
Méthode2 :

Ona:zy=1+ietz=x+1iy
lz—zyl=2=|x+iy—(A+i)|=2
olx-1+iy—-1D|=2

e Jx-1)2+(y-1)2=2

& (x—1)2+ (y —1)?2 =22 est une équation du cercle de centre A et de rayonr = 2

Donc le lieu M est un cercle (C) de centre A(1;1) etderayonr = 2.
b) arg(z —z4) = g[n] < mes (e_{; W) = g[n] donc le lieu de M est la droite du repére

(A, 1), privé de point A(1; Q).

c) arg(z—2zy) = —%[27‘[] = mes(e_{; W) = —%[211'] donc le lieu de M est la demi-
droite de repére (4, V) privé de A avec (eq; V) = —%[21!].

Exemple 2 :

A tout nombre complexez + 2 —i,ona:Z= Z;_sz_il

Déterminer I'ensemble réel des points M d’affixe Z tels que :
a) Zsoit un nombre réel ;
b) Z soit un imaginaire pur

Résolution :

z+3-2i
Ona:Z = -
Z—2+1

Déterminons I'ensemble des points M d’affixe Z tels que :

,ZFE2—1

a) Zsoit un nombre réel
z+3-21

En effet, Z = -, etz=x+1y
z—-2+i
__z+3-2i _ x+iy+3-2i
T oz—2+4i x+iy—2+i
_ x+3+i(y-2)
o x=2+i(y+1)

_ (3 +iy-2))((x=2)-iy-2) (x=2)+(y-2) (¥ +1)
B (x=2)2+(y+1)?

_ x24x—6—ixy—ix—3iy—3i+ixy—2yi-2xi+4i+yZ-y-2
B (x—2)2+(y+1)2
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_ x%+x+y?-y-8 . 3x45y-1
T (x—2)2+(y+1)2 (x—-2)2+(y+1)2

ZER ©,(Z7)=0 < 3x+5y—1=0
Donc I'ensemble des points M cherché est une droite d’équation : 3x + 5y — 1 = 0, privé

de point B(2;

b) Z soit un imaginaire pur
x?+x+y?-y-8 . 3x+5y-1

- (x—2)2+(y+1)2 (x—2)2+(y+1)2
ZEIR &R, =0

centre I(—%;

& x2+x+y*—y—-8=0
Lo 1(, 1 _1_g_
(:)(x+2) +(y ) 8=0

4 2 4

Lo 1y, 1 _1_
<:>(x+2) 4+(y 2) ) 8
2
= (x+ %)2 - % + (y - %) = g : c’est une équation d’un cercle (C) de

%) et de rayon ; . Donc I'ensemble des points M est un cercle (C) de centre

I etderayonr = \/%
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Chapitre 8 : SIMILITUDES
l. Similitudes directes du plan:
[, —Définition et propriété
1.1- Définition :
Soit k un nombre réel strictement positif.
On appelle similitude S de rapport k, toute application f du plan qui, a tous points A et
B d’image respectives A’ et B’, on ait : A'B" = kAB.
Une similitude est directe si elle conserve le sens des angles orientés.
Propriété :
Toute similitude directe du plan a une écriture complexe de la forme : Z' = az + b;
avec (a € C*, b € C).
e Sia=0etb=0,alorsS = 1Id (S est une identité) ;
e Sia=1leth #0,alorsz’ =z+ b donc S est une translation de vecteur 1 (b)
e Sia # 1, alors S est la compose de I’homothétie h de centre () d’affixe w = %a et de
rapport k > 0 et de la rotation de centre (w) et d’angle o = arg(a).
On dit alors que Sest une similitude directe du plan de centre Q(w), de rapport k et d’angle a. Le
centre ((w), le rapport k et 1’angle a sont appelés éléments caractéristiques de S.
La composée commutative : S = h o r = r o h d’écriture : z' = ke'*(z — w) + w est appelée
forme réduite de S .

La formule : z' = ke'*(z — w) + w permet de déterminer 1’écriture complexe d’une similitude
directe du plan.
Remarque :

Soit S une similitude directe du plan de centre Q(w), de rapport k et d’angle « ;
e Sik =1, alors S est une rotation de centre A(w) et d’angle a d’angle @ ; S = r(Q; a)
e Sia = 0[2mr], alors S est une homothétie de centre Q(w) et de rapport k; S = h(Q; k)

e Sia = m[2m], alors S est une homothétie de centre Q(w) et de rapport —k; S = h(Q; —k)
Exemple :
Soit S une similitude directe de centre w(1, 1), de rapport k = 2 et d’angle a = — g
Donnons I’écriture complexe de S.
k+1,doncS:z' = ke (z—w)+w
oz =25z -1A+D)+1+i
=2 57-2e"5(1+)+1+i
= 2(cos§ — ising)z - 2(cos§ - sing)(l +i)+14+i
(1 .3 1 .3 . .
= (5—17)2—2(5—17)(1+1)+1+L
=(1-iV3)z—(1-W3)Q+D)+1+i
=(1-iV3)z—1—i+iV3-V3+1+i

=7 =(1-i3)z—V3(1-1)
Exemple 2 :
Soit S une similitude directe du plan d’écriture complexe z' = (1 + i)z — 2i
Déterminons les éléments caractéristiques de S
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e Soncentre: w = ﬁ
-2i _ -2i
1-(1+i) 1-1-i
e Sonrapport k = |a|
a=1+i o la|l=|1+il=VI+1=+2
= k=2
e Sonangle a = arg(a)

W= =2 =w=(2; 0)

cosa =

Ona: = a =

N

[2m].

sina =

éllH NlH
ISR

Donc I’ensemble des éléments caracteristiques de s estnoté : ¢ = {w(2;0); k = V2; a = %}
Autre propriété :
. s b . b ,
Sia = —1, alors S est une symétrie de centre () (5) ou une rotation centre () (E) et d’angle
a = 1 ou encore une homothétie de centre () (g) de rapport k = —1.
I, — Composée de similitudes directes du plan
Propriétés :
Soit S une similitude directe de rapport k et d’angle a et S’ une similitude directe de rapport
k' et d’agnle o'
La composée S’ o S est une similitude directe de rapport k'k et d’angle a’ + a.
La reciproque de S noté S~ est une similitude directe de rapport % et d’angle - .
On en déduit que pour toutes similitudes directes d’écritures complexes S : z' = ke'®z + b et
S':7 =ke@z+b,
Ona:S' oS =S'[S] = ke (ke®z +b) + b’
= k'kel@OZ 4 ' b 4 b’
Donc : " 0§ = k'ke!@*®z 4 k¢ p 4 b’

La reciproque S™! a pour écriture complexes S™1: z'71 = %ei"‘z +b
Exemplexe :
Soit S et S’ d’écriture complexes : S: z' = 2e'3z + 2i et S':z = 3e'sz — 5
Déterminons la composée S’ o S, on a:
§'oS =3¢ (252 +2i) - 5

= 6ei(g+§)z + 6iei% -5

= 6e'2z + 6ie's — 5

= 6iz+6i(Z+1i) -5

2 2

= 6iz+3iV3 -3 -5
= §' oS =6iz— 8+ 3iV3
La composée S’ o S est une similitude directe de rapport 6 et d’angle g

I3 — Exemples d’étude de similitudes directes
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3.1- Similitude direcete déterminée par son expression analytique.
Méthodes :
Pour déterminer 1’écriture complexe d’une application du plan dans lui-meme d’expression
analytique donnée, on peut proceder de deux manicres suivantes :

. Soit: {xl’ =ax+by+c (1)

vy =ax+by+c (2)

Ecrire z' = x" + iy’ et remplace x’ et y' en fonction de x et .
Remplacer x par : %Z_ ety par: %Z_ et développer 1’expression obtenue en fonction de z et Z.
x'=ax+by+c (1)
y'=ax+by+c (2)
On multiplie I’équation (2) par i

° Soit:{

On additionne les deux équations (1) + (2) et en suite on regroupe la partie entier et
imaginaire afin d’obtenir 1’écriture complexe.
Exemplexe : Ssoit f ’application du plan lui-méme d’expression analytique :
X'=x+y+2
{y’ ='x+y-1
1) Déterminer I’écriture complexe de f
2) En déduire la nature et les éléments caratéristiques de f
3) Déterminer la nature, les éléments caractéristiques et 1’écriture complexe de f~1.
Résolution :
Ona:{ alc’ =x+y+2
y=—x+y—-1
1) Déterminons I’écriture complexe de f
Méthode 1:
z'=x"+iyetz=x+1iy
On a: {.x’,= x + Y +.2 . (1)
iy'=—-ix+iy—i (2)

x'+iy=x—ix+y+iy+2—i
= zZ=x0-D)+yQ+i)+2—-i

zZ+ zZ+z

o7 =220-D+Z2A+ D) +2—i

=%(z—iz+z‘—iz‘)+%(z+iz—z‘—iz‘)+2—i
z iz z V4 z

R R - TN R
2 2 2 2 20 2 20 2

=z—iz—2-—1
= z' = (1 — i)z + 2 — i est criture complexe f cherchée.
, x'=x+y+2 1
Methode2:{y, — +yy_ 1 E2§
Ona:(D+@)xi = x"+iy=x+y+2—ix+iy—i
=x'+tiy=x+iy—ilx+iy)+2—i
=z =z—iz+2—-1i
=z =0-Dz+2—-1i
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2) Déduisons-en la nature et les ¢léments caractéristiques de f.

e Nature :
f:z' =az+b; (a€C’b e C)donc f estune similitude directe du plan.

e Elements caractéristiques :
2-i _ —(2-0)i
-1+ (=D
Donc w = (—1; —2).

- Rapportk=|1—i|=Vi+1=V2=k=+2

- Angle:

- Centre:a)1 =-2i—-1= w=-1-2i

Soit @ cet angle, on a : ;=>9=?+2k1‘[,k€Z
. C— -1y, — . _ =
Donc f:S = {a)(_z), k=+2; 6 _T}
3) Lanature, les éléments caractéristiques et 1’écriture complexe de f 1.
.
ft: \/% e'sz + 2 — i donc f 1 est une similitude directe de centre Q(—1; —2), de rapport

1 , n
k = v—iet d’angle "

Ecritue complexe : f~1: z' = %eie z-—w)+w

= fhz' = etz — (-1-20) + (-1 -2)

|~

_ 1 i1 ATy
= e 4z+ﬁe s(1+2))—1-2i
1

. 1 . . .
= (cos%+151n§)z+—(cos%+151ng)(1+21)—1—21

vz vz

_1(V2 .2 1 (V2 | .2 . .

—ﬁ(7+lT)Z+\/—E(?+L7)(1+21)—1—21
1 (V2 | .2 1 , . ,

=5(7+z7)z+5(1+z)(1+21)—1—21

= (1+Dz+5;1+3i-2)—1-2i

1 . 1 3 .
—E(1+l)Z—E+;—1—Zl

1 . 3 1.
=-A+Dz—->—-2i
=>f—1;z'=§(1+i)z—§(3+i)

3.2- Similitude directe déterminée par son écriture complexe
Application :
Soit S I'application du lan dans lui-méme d’écriture complexe z' = 3iz—1 — 7i
1) Justifier que S est une similitude directe et préciser ses éléments caractéristiques ;
2) Déterminer I'expression analytique de S.
Résolution :
Soitz' =3iz—1—-7i
1) Justifions que S est une similitude directe et précisons ses éléments caractéristiques.
En effet ; S est de laforme z’' = az + b; (a € C*, b € C), donc S est une similitude directe.
Ses éléments caractéristgiues :
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b -1-7i
e Centrew=—= -
1-a 1-3i
_ (~1-7D)(1+30)
- 1+9
_ —1-10i+21
- 10
w=2—-1i=Q(2; —-1)

e Rapportk:a=3i=k=3

e Angle:a = 3i est un imaginaire pur donc 8 = g

T

S est une similitude de centre Q(2; —1); de rapport k = 3 et d’angle 8 = 2

L’ensemble de éléments caracteristiques de Sest: ¢ = {Q(Z; -1); k=3; 6= g}

2) Déterminons I'expression analytique de S.
Soitz' =3iz—1-7i
Enposantz’' =x' +iy' etz=x+iy,ona:
z'=3iz-1-7iex"+iy =3i(x+iy) —1-7i
ox'+iy=3ix-3y—-1-7i
ex'+iy'=-3y—-14+i(3x—7)
- {x’,: —3y—1
y' =3x-7
x'=-3y—-1
y' =3x—-7
3.3- Exemple d’une similitude directe qui transforme un point en unautre

L'expression analytique de S est : {

Application 1:
Les points A, B, C et D ont pour affixes respectives 2; —2i; —2 et 2i.
Déterminer la forme réduite de la similitude S telle que : S(B) = CetS(C) =D
Résolution
Ona:zy=2;zg=2i;zc=-2 etzp =2i
Déterminons la forme réduite de S telle que : S(B) = C et S(C) =D
S(B)=cC azg+b =2z,
{S(C)=D {azc+b=zD
a(—=2i)+b=-2
{ a(=2)+b=2i
—2ai+b=-2 (1)
{—2a+b=2i (2)
De I'équation (1), b = —2 + 2ai et en remplacant dans (2),ona:
—2a—2+2ai=2i = -2a(1—-i)=2(1+1)

=a=—I
b=-242ai=b=-24+2(-)(i{)=-24+2=0
=b=0
Donc la forme réduite de S est: z’' = —iz

Application 2 :
Soit A, B et C les points d’affixes respectives : i; 1 + i et 2 4+ 2i
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1) Déterminer I'affixe du barycentre G des points ponderés (4, 2), (B, —2) et (C, 1).
2) Démontrer que la similitude directe S qui transforme A en B et B en C, a pour centre
le point G.
3) Déterminer I'angle et le rapport de S
Résolution :
Ona:zy=i;zg=1+1i;z,=2+72i
1) Déterminons |'affixe du barycentre G des points ponderés (4, 2), (B,—2) et (C, 1).
G = bar{(4,2);(B,-2);(C,1)} = 2GA—2GBE+GC =0
S 2753 — 22q5 + 7 =0
& 2(z4 —225) —2(zg —zg) + 2 — 2z =0
& 224 — 225 —22g+ 225+ 2 —2;=0
S 2zy—2z2g+2zc—2;=0
Sz =224 — 27 + Z¢
Sz =20—2-2i+2+72i
Sz =20
Zg = 2i donc G est d’affixe 2i.
2) Démontrons que la similitude S qui transforme A en B et B en C a pour centre le point

G.
S(A)=B (azy+b =z
Ona: {S(B)zc‘:’{az3+b=zc
ai+b=1+i 1)
{a(1+i)+b=2+2i 2)
—ai—b=-1—1i

(2)_(1)‘:’{a(1+i)+b=2+2t
Sa=1+1
En remplagant a dans (1),
Ona:(1+Di+b=14+ie=eb=1+i—-i+1
<b=2
L’écriture complexede S est:z' = (1 +1)z + 2.

. . b )
G est le centre S si et seulementsi: G = o= 20
b 2 2 ) . - .
Ona:G = v ari e 2i, alors G = 2i, donc S est une similitude directe de centre

G d’affixe 2i.
3) Déterminons I'angle et le rapport de S

L'angle de S c’est donc un argumentde 1 + i; le rapport k est k = |1 +1i | =V1+1=+2

V2
_ cost9=7 -
Soit 6 cet angle;on a: _ &= ] =Z[2ﬂ]'
sin 6 ==

Donc S a pour angle % et le rapport k = V2

Application :
Dans le plan complexe rapporté au repére orthonormé direct (0; u; ¥), on désigne par A; B;
C les point d’affixe respectives : i, 2 + 3i et 2 — 3i.
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Soit r la rotation de centre B et d’angle E.

a) Déterminer I'affixe du point A’ image du point A par la rotation .
b) Démontrer que les point A’ ; B et C Sont alignés et déterminer I'écriture complexe
de I'homothétie de centre B qui transforme Cen A'.
Résolution :

i

Ona:zy=i,zg=2+3ietz; = 2—3ietr(B 4) z' —zg=e4+(z—zp)
a) Déterminons I'affixe du point A’ image du point A par la rotation r.
i
r(B; %) 1z' —zg =e4+(z— zp)
i
=z =e+(z—zg)+zp

Sz = e%(zA —2zg) + zp
<=)ZA,=ei7nzA—ei7nZB+zB
Zy = (cos%+ ising)xi—(cosz+ isinz)(2+3i)+2+3i
=(Z+i D) xi-(Z+i2)@+30) +2+3i
B V(g B 0T 2

_l_—_
2 2

£l—£—\/_ 51‘/_+i_+2+3l

2
=—3‘—F+£+£ —SLF+2+3L

ZA,=2+3L—21\/—
=z, =2+i(3—2V2
b) Démontrons que les points A’, B et C sont alignés.

)+2+&

Vérifions que : ==—2* € R*
Zp— ZAI

Zc=Z,  2-3i—(2+i(3-2v2)
Zp—Z,  2+3i—(2+i(3-2V2)
2-3i-2-3i+2i\V2
243i—-2-3i+2iV2

_ —6i+2iV2
T 2iV2
_ (—6i+2iV2)(-2iV2)

8
=—12\/E+8__£+16R*

8
_ic‘?" = — i + 1 € R*, alors les points A’ ; B et C sont alignés.
B—4Ar

e Ecriture de 'homothétie de centre B qui transforme C en A’.
hg) =B {azB +b=2zp
h(C) =A azc +b = zy,
a2+3i))+b=2+3i (1D
{a@—30+b=2+(3—mﬁ)(m

h:z' —zg = k(Z — zg) (:»{
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a(2+3i)+b=2+3i
{—a(2—3i)—b=—2—i(3—2\/f)

6ai=2iV2
g =22 _V2
6 3
=>k=|a|=g
=>k=£

3
Donc hiz' — (2+3i) =2 (z' — (2 +31))

=2 =27-Z(2+30)+2+3i
@z’zgz———i\/f+2+3i
@z’zg —£+2+31 iv2
@z’=g2+62\/_+(3 V2)

L’écriture complexe de cette homothétie est : z' = gz + & 2\/— +1i (3 \/f)

il. Similitudes indirectes.
II; —Définition et propriété
1.1- Définition :
On appelle similitude indirecte, toute similitude qui transforme tout angle en son opposé.
Elle est donc la composée d’une homothétie et d’'un antidéplacement (symétrie orthogonale
ou symétrie glissée).
Remarque :
Un antidéplacement est appelé :

e Réflexion = symétrie d’axe (D) : si ab + b=0 ; (isométrie indirecte) ;

e Symétrie orthogonale ;

e Symétrie glissée : si I'expression ab+b # 0, ousi k = 1 il s’agit d’'un symétrie

glissée.

1.2- Théoréme:
Soit S la transformation du plan dans lui-méme .Si S est une similitude indirecte de rapport
k, alors S admet une écriture de laforme :z' = az+ b; (aeC*; beC).
Comme pour une similitude directe, I'écriture complexe d’une similitude indirecte permet de
déterminer ses éléments caractéristiques.
1.3- Nature et élément caractéristiques
La nature et les éléments caractéristiques d’une similitude indirecte sont déterminés suivant
le module de a ; c’est-a-dire k = |a].

- Sik =1, il s’agit d’une symétrie orthogonale ou soit d’'une symétrie glissée ;

- Oncalculeab + beton distingue deux cas :

1*cas:siab + b = 0, alors S est une symétrie d’axe (D). (D) étant la droite passant par un

point A (g) et dirigé par le vecteur 1u(1 + a).
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2°cas:siab + b # 0, alors S est une symétrie glissée: f: sty = tyz o SA; de vecteur

v (ab i b) et d’axe passant un point B (%) et de direction #(1 + a) ou#(i) si ¥ = 0.

ab +b
1_

- Sik # 1,S est la composée d’'une homothétie de centre | ( |a|2) et d’'une symétrie

orthogonale (réflexion) d’axe (D) passant par I et de direction U (1 + %)

Onécrit: S=hos, =s,0h.

Propriétés :

e La composée de deux similitudes indirectes est une similitude indirecte ;

e La composée d’une similitude directe et d’une similitude indirecte est une similitude

indirecte ;

e Laréciproque d’une similitude indirecte est une similitude indirecte.
1.4- Point invariant ou point fixe
Définition :
On appelle point invariant ou point fixe par une transformation, tout point qui a pour image
lui-méme. C’'est-a-dire pour tout point M du plan ; f(M) = M.
Remarque :
Pour démontrer qu’une application est un point invariant, il suffit tout simplement de
résoudre I'équation : 2’ = z.

FIN
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Chapitre 9 : DENOMBREMENT ET PROBABILITES
l. Analyse combinatoire

[, -Notation factorielle

I; 1 — Definition:

Soit n un entier naturel non nul.

On appelle factorielle de n, le produit des entiers positifs de 1 a n noté par :
n=nn-1DMn-2)x..x2x1

On lit « factorielle n ».

Exemple :

31=3x2x%x1

4! =4x3x2x%x1

Par convention: 0! =1

I, -Permutation :

2.1 — Definition:

Soit E un ensemble non vide de cardinal n ; ( un est un entier naturel).

On appelle permutation de n éléments de E, toute suite ordonner formée a partir de de n
éléments distincts de E.

Onlanote:B,=n(n—1)(n—2)X..x2x1=n!

Exemple :

Soit E = {a; b; c}

Le nombre de permutation des éléments de E est :

P; =3!=3X2x%x=6

Les permutations des éléments de E sont : abc; ach; bac; bca;cab et cha.

I3 — Arrangement avec répétition :

3.1 — Definition:

Soit E un ensemble non vide.

On appelle arrangement avec répétition de k éléments parmi les n éléments de E, toute suite
ordonnée de k éléments de E distincts ou non ( non nécessairement distinct).
Le nombre est noté : AX = nP,

I, - Arrangement sans répétition :

4.1 — Definition:

Soit E un ensemble non vide.

On appelle arrangement sans répétition de k éléments de E, toute suite ordonnée de k

éléments de E distincts deux a deux (p < n).
n!

On le note Ak = —

Exemple :

On peut placer de 7% facons différentes 4 lettres distinctes dans 7 boites aux lettres.

Exercice d’application:

1) De combien de facons différentes, peut-on placer 4 lettres distinctes dans 20 boites aux
lettres ?
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2) A Partir de 3 lettres a, b et ¢, combien de mots de 2 lettres non nécessairement distincte
peut-on former ?

3) De combien de facon différentes peut- on ranger 7 livres :
a) Dans n’importe quel ordre ?
b) Si 3 livres particuliers doivent rester ensemble ?
c) Si2 livres particuliers doivent prendre les positions extrémes ?
4) Une classe comporte 9 garcons et 3 filles. De combien de fagons peut-on faire un choix
de 4 éléves.
a) Quelconques ?
b) Comprenant au moins une fille ?
c) Comprenant exactement une fille ?
I5 — Combinaison :
5.1 — Definition:
Soit E un ensemble non vide.

On appelle combinaison de k éléments de E, toute partie de E a k éléments.
n!

p!(n-p)!

On le note Ck =

Exemple :

De combien de fagons peut-on former un comité de trois personnes dans une assemblée de
10 hommes et 6 femmes ?

C’est une combinaison de 3 personnes sur un total de 16.

3 160
Ona: (i = PTerECTi 560

Il y a donc 560 fagons différentes de former un comité de 3 personnes dans cette
assemblée.

Quelques valeurs particulieres :

Al =1 cd=cr=
Ay =n! Cl=ct1=n
Al=n

Propriété :

Pour tous entiers naturels n et p tel que p soit inférieur ou égal an, on a :
' =Cy

Si de plus 0 < p < n, alors : Cﬁ:i + CZ—1 = Cﬁ

Résume :

Types de P " .
ti\::ges Ordre Répétitions d'éléments | Dénombrement
Successifs Un élément peut étre
. . ., . . nP ( p-uplets)
Avec remise | On tient compte | tiré plusieurs fois
Successifs de 'ordre qk = ™ (arrangement)
Avec remise Un élément n'est tiré " (n-p)
' u'une seule fois ! . .
Simultanés L'(?rdre . a ck = ~__ (Combinatoires)
n'intervient pas p!(n-p)!
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il. Calcul de probabiliteé :

II; - Eventualité, Univers, Evénement

1.1 — Definition 1:

On appelle Eventualité, une épreuve donnant un nombre fini de résultats. L’'ensemble de
toutes les éventualités est appelé I’'Univers.

Exemple :

Le lancer d’une piece de monnaie, le lancer d’un dé ... sont des expériences aléatoires, car
avant de les effectuer, on ne peut pas prévoir avec certitude quel en sera le résultat, résultat
qui dépend en effet du hasard.

A cette expérience aléatoire, on associe I'ensemble des résultats possibles appelé univers.
Ses éléments sont appelés éventualités.

2.1 — Definition 2:

On appelle événement, toute partie de I'univers des cas possibles ().

Les sous-ensembles de I'univers Q sont appelés événements.

4 Les événements formés d’un seul élément sont appelés événements élémentaires.

4 Etant donné un univers Q, I'’événement () est I’événement certain.

4 L'ensemble vide est I'événement impossible.

4 L'événement formé des éventualités qui sont dans A et dans B est noté: A N B.

A NB selit« Ainter B »

4 L'événement formé des éventualités qui sont dans A ou dans B est noté : A U B.

A U B selit « Aunion B »

4 Etant donné un univers Q et un événement A, I'ensemble des éventualités qui ne sont pas
dans A constitue un événement appelé événement contraire de A, noté 4 appelé
complémentaire de A.

¢ A et B sont incompatibles si et seulementsiANB = @.

Pour décrire mathématiquement une expérience aléatoire, on choisit un modeéle de cette
expérience ; pour cela on détermine I'univers et on associe a chaque événement
élémentaire un nombre appelé probabilité.

II, - Calcul de probabilités d’un événement

2.1 — Definition:

Q est 'univers des éventualités d’une expérience aléatoire.

Une probabilité sur I'univers Q est une application P de P(Q2) — [0; 1] qui, a toute partie A
de () associe le nombre réel P(A) appelé probabilité de I'événement A et qui vérifie les
conditions suivantes :

- 0<P(A)<1;
- P(Q) =1, (probabilité de m’événement certain) ;
- P(Q) = 01

2.1 — Propriété :

Soit P une probabilité définie sur I'univers () et A et b deux évenements, on a:
- PAUB)=PA)+PB)—P(ANB)

- SiANB=¢@,alorsP(ANB)=0,donc: P(A UB)=P(A) +P(B)
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- P(ANB)=PA)+PB)—P(AUB)
- P(A)+P(A)=1=P(A)=1-P(4)

cardA
cardf

- Sitous les événements élémentaires de Q ont la méme probabilité, alors : P(Q) =

II; - Indépendance des événements

3.1 — Definition:

Soit P, une probabilité définie sur un univers ().

Deux évenements A et B sont dits indépendants pour la probabilité P, lorsque :

P(ANnB)=P(A) x P(B).

- Deux événements sont dits indépendants lorsque la réalisation de I'un n’influe pas sur la
réalisation de 'autre ;

- Sinépreuves sont indépendants, alors pour évenements A4, 4,, Az, ...., A, de chacun

des univers associé a ces épreuves, on a :
P(Al nAz ﬂA3 ...ﬂAn) = P(Al)xP(Az) XP(A3) X ...XP(An).

Résumé :

Parties de E Vocabulaire des événements Propriété

A A quelconque 0<PA=<1

1) Evénement impossible P(@)=0

Q Evénement certain P(Q) =1
A NB = @ | AetBsontincompatibles P(AUB)=P(A)+ P(B)

A A est I'événement contraire de A P(Z) =1-P(4)

A, B A et B quelconques P(AuB)=PA)+PB)—P(ANB)

Exemple :

On considére 'ensemble E des entiers de 20 a 40. On choisit I'un de ces nombres au hasard.
A est 'événement : « le nombre est multiple de 3 »

B est 'événement : « le nombre est multiple de 2 »

C est I'événement : « le nombre est multiple de 6 ».

Calculer P(A), P(B), P(C),P(ANB),P(AUB),P(ANC)etP(A UC).

I14 - Equiprobabilité

4.1 — Definition:

On dit qu’il y a équiprobabilité quand tous les événements élémentaires ont la méme
probabilité.

Dans une situation d’équiprobabilité, si {1 a n éléments et si E est un événement composé de
card E
card Q

m événements élémentaires : P(E) = ou cardE et card QBdésignent respectivement

le nombre d’éléments de E et de ().

On le mémorise souvent en disant que c’est le nombre de cas favorables divisé par le
nombre de cas possibles.

Remarque :

Les expressions suivantes « dé parfait », « piece parfaite », « cartes bien battues », « boule
tirée de l'urne au hasard », «boule indiscernable au toucher»,
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« boules indiscernables » ... indiquent que, pour les expériences réalisées, le modéle associé
est I’équiprobabilité.
Exemple 1:
On lance deux fois de suite un dé équilibré.
1) Représenter dans un tableau les 36 issues équiprobables.
2) Calculer la probabilité des événements :
A : « on obtient un double » ; B : « on obtient 2 numéros consécutifs »
C: « on obtient au moins un 6 » ; D : « la somme des numéros dépasse 7 ».
Exemple 2:
On lance 4 fois de suite une piéce équilibrée.
1) Dresser la liste des issues équiprobables.
2) Quel est I'événement le plus probable : AouB?
A : « 2 piles et 2 faces »
B : « 3 piles et 1 face ou 3 faces et 1 pile »
II5 - Probabilité conditionnelle
5.1 — Definition
Soit P une probabilité sur un univers des cas possibles Q) et soit a un évenement de
probabilité non nulle.
Pour tout évéenement B, on appelle de A sachant B, le nombre réel noté :

P(ANB) P(ANB)
P,(B) = o) ou P(A/B) = @)

Exemple :
En fin de 1°" S, chaque éléve choisit une et une seule spécialité en terminale suivant les
répartitions ci —dessous :

Par spécialité :

Mathématiques Sciences physiques SVT

40% 25% 35%

Sexe de I’éléve selon la spécialité :

Spécialité Mathématiques Sciences physiques SVT
Sexe
Fille 45% 24% 60%
Gargon 55% 76% 40%

On choisit un éleve au hasard.
1) Construire I'arbre pondéré de cette expérience aléatoire.
2) a) Quelle est la probabilité de chacun des événements suivants ?
F: « I'éleve est une fille », M : « I’éleve est en spécialité maths ».
b) Quelle est la probabilité que ce soit une fille ayant choisi spécialité mathématiques ?
c) Sachant que cet éléve a choisi spécialité mathématiques, quelle est la probabilité que
ce soit une fille ?
On appelle probabilité de F sachant M cette probabilité (conditionnelle) et on la note
Py (F)ou Pz (M).
Quelle égalité faisant intervenir P(F N M ), P(F) et Py (F) peut-on écrire ?
Comparer P(F) et Py (F) et en donner une interprétation.
d) Sachant que cet éléve a choisi spécialité SVT, quelle est la probabilité que ce soit une
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fille ?
e) Comparer Ps(F)et P(F), et en donner une interprétation.

5.2 — Arbres pondérés

Reégles de construction

La somme des probabilités des branches issues d'un méme nceud est 1.

La probabilité de I'événement correspondant a un trajet est le produit des probabilités des

différentes branches composant ce trajet.

Exemple

On jette une piéce.

- Sion obtient pile, on tire une boule dans I'urne P contenant 1 boule blanche et 2 boules
noires.

- Sion obtient face, on tire une boule dans I'urne F contenant 3 boules blanches et 2
boules noires.

Représenter cette expérience par un arbre pondéré.

Remarque :

Si A et B sont tous deux de probabilité non nulle, alors les probabilités conditionnelles

p(A/B) et p(B/A) sont toutes les deux définies et on a : p(A NB) = p(A/B)p(B) = p(B/A)p(A).

Il - Schéma de Bernoulli

6.1 — Definition :

1- Une épreuve de Bernoulli est une épreuve ayant deux éventualités ;

2- Un schéma de Bernoulli est une expérience aléatoire qui consiste a répéter n fois de
facons indépendante une épreuve de Bernoulli.

3- Soit un schéma de Bernoulli a n épreuves ol pour chaque épreuve, la probabilité de
succes est notée P et celle de I'échec est notée 1 — P.
La probabilité d’obtenir exactement k succeés (0 < k < n) au cours de ces n épreuves
est: P, = Ckp*(1 —p)k

Exemple :
Une maladie atteint 3% d’une population donnée. Un test de dépistage donne les résultats
suivants :
Chez les individus malades, 95% des tests sont positifs et 5% négatifs.
Chez les individus non malades, 1% des tests sont positifs et 99% négatifs.
On choisit un individu au hasard.
1) Construire I'arbre pondéré de cette expérience aléatoire.
2) Quelle est la probabilité
a) qu’il soit malade et gu’il ait un test positif ?
b) gu’il ne soit pas malade et qu’il ait un test négatif ?
c) qu’il ait un test positif ?
d) qu’il ait un test négatif ?
3) Calculer la probabilité
a) gu’il ne soit pas malade, sachant que le test est positif ?
b) gu’il soit malade, sachant que le test est négatif ?
4) Interpréter les résultats obtenus aux questions 3a et 3b.

IIl. Variables aléatoires :

III; - Notion de variable aléatoire
1. 1-Définition :
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On appelle variable aléatoire X sur un univers (), toute application de () vers R.

Vocabulaire et notation :

L’ensemble des valeurs prises par X noté X(Q) = {x;, x5, ..., X, } est appelé univers image de
Q par X.

III, - Lois de probabilité

2. 1-Définition :

Soit P, une probabilité définie sur I'univers Q.

La Loi de probabilité d’une variable aléatoire X sur Q est I'application qui, a toutes valeurs x;
prises par X, associe P(X = x;).

Généralement, on la représente sur un tableau.

X X1 Xy Xn,

P(X =x;) P(X =x) P(X = x;) P(X = xp)

2.2-Propriété :
Pour toute variable aléatoire X prenant les valeurs x5, x5, ..., X,, 0ona:
PX=x)+PX=x)++PX=x, =1
Onécrit: Y- PX =x) =1
III3 - Fonction de répartition
3. 1-Définition :
Soit X une variable aléatoire définie sur Q muni d’une probabilité P.
La fonction de répartition de X est I'application de R vers [0; 1] définie par :
F(X)=P(X <x;)

III4 - Espérance mathématique, variance et écart-type
4. 1-Définition :
On appelle respectivement espérance mathématique de X, variance de X et écart-type de X,
les nombres suivants :
- L'espérance mathématique est le nombre E(X) défini par: E(X) = X, x;P; .
- Lavariance est le nombre V défini par: V(X) = E(X?) — (E(X))Z.
- L'écart - type est le nombre défini par: a(X) = /V(X)
Exercice d’application :
Une boite contient 4 boules rouges ,3 boules vertes et n boules jaunes (n € N etn = 2). On
tire simultanément 2 boules de la boite et on suppose que les tirages sont équiprobables.
1) Exprimer en fonction de n, les probabilités des événements :

A : « Les deux boules sont jaunes »

B : « Le tirage est unicolore »

C : « Le tirage est bicolore »

2) Onsuppose que P(A) = %; déduire n, puis P(B) et P(C).

3) Onsuppose que n = 7. On répete 10 fois I'expérience en remettant dans la boite aprés
chaque tirage, les deux boules tirées. X est la variable aléatoire qui comptabilise le
nombre de réalisation de 'événement B.

a) Calculer la probabilité des événements (X = 2) et (X > 9).
b) Calculer I'Esperance mathématique de X et donner une interprétation du résultat.
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III; - Loi de Binomiale

Propriété :

On considére un schéma de Bernoulli a n épreuves. On note P la probabilité de succes, X est
variable aléatoire qui prend pour valeurs le nombre de succés obtenu au cours de ces n
épreuves.

La loi de probabilité de x est : P, = Ckp¥(1 —p)» %, 0 <k <n.

Elle est appelée loi Binomiale de paramétre (n; p)

Exemple :

Une urne contient quatre boules rouges, trois boules vertes et n boules jaunes ; n étant un
entier naturel supérieur ou égal a 2. On tire simultanément deux boules de I'urne et on
suppose que tous les tirages sont équiprobables.

c) Calculer en fonction de n, la probabilité des événements suivants :

A « Obtenir deux boules de méme couleur »
B « Obtenir deux boules de couleurs différentes »

d) On suppose que la probabilité d’obtenir deux boules jaunes est de 13—3 Déterminer n ;
puis P(A) et P(B).

e) Onsuppose quen = 7. On repere cing fois I'expérience en remettant dans I'urne apres
chaque tirage, les deux boules tirées. Soit X le nombre de fois ou I'’événement A est
réalisé au cours de ces cing répétitions. Déterminer la loi de probabilité de X.

Théoréme :

Pour une loi Binomiale de paramétres (n; p) :
E(X) =npeta(X) = npq
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