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Chapitre 1 : Equations-Inéquations-Systèmes 

I. EQUATIONS 

𝐼.1 − Polynôme du second degré 

1.1 − Définition :  

On appelle polynôme ou trinôme du second degré, toute fonction f définie par : 

 𝑓(𝑥)= 𝑎𝑥2 + 𝑏𝑥 +c (avec 𝑎 ≠ 0) où a, b et c sont des nombres réels. 

Exemple :  

 𝑓(𝑥) = 4𝑥2 − 4√3𝑥 + 3  

 𝑔(𝑥) = 5𝑥2 − 2𝑥 +5 

 ℎ(𝑥) = 𝑥2 − 5  

Ce sont donc des polynômes ou trinômes du 2nd degré. 

1.2 −Racines d’un polynôme du 2nd degré. 

1.2.1 −Forme canonique 

Soit 𝑃 un polynôme du 2nd degré dans ℝ défini par 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐 et (𝑎 ≠ 0). 

La forme canonique de 𝑃(𝑥) s’écrit donc : 𝑃(𝑥) = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

− (
𝑏2−4𝑎𝑐

4𝑎2
)] 

En posant ∆= 𝒃𝟐 − 𝟒𝒂𝒄 appelée discriminant du polynôme 𝑃(𝑥), on réécrit 𝑃(𝑥) sous 

forme :  𝑃(𝑥) = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
] ;  avec a ∈ ℝ∗ 𝑒𝑡 𝑏 ∈ ℝ  

 Démonstration: 

𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐       

 = 𝑎 [𝑥2 +
𝑏𝑥

𝑎
+

𝑐

𝑎
], Or   (𝑥 +

𝑏

2𝑎
)
2

= 𝑥2 +
𝑏𝑥

𝑎
+

𝑏2

4𝑎2
⟹ 𝑥2 +

𝑏𝑥

𝑎
= (𝑥 +

𝑏

2𝑎
)
2

−
𝑏2

4𝑎2
(1) 

En injectant (1) dans P(x), on a: 𝑃(𝑥) = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

−
𝑏2

4𝑎2
+

𝑐

𝑎
] 

     = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

− (
𝑏2−4𝑎𝑐

4𝑎2
)], or ∆= 𝑏2 − 4𝑎𝑐 

D’ où  𝑷(𝒙) = 𝒂 [(𝒙 +
𝒃

𝟐𝒂
)
𝟐

−
∆

𝟒𝒂𝟐
] ;  𝐚𝐯𝐞𝐜 𝐚 ∈ ℝ∗ 𝒆𝒕 𝒃 ∈ ℝ     

 

1.2.2 −Propriétés :  

Soit 𝑷(𝒙) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄, un polynôme du second degré. Une équation du second degré a 

coefficients réels a toujours deux racines qui sont soit distinctes, soit confondues ou soit 

n’existent pas. 

 Les racines de P sont selon les cas suivants :  

1er Cas : Si ∆= 𝑏2 − 4𝑎𝑐 > 0 , 𝑃(𝑥) a deux racines distinctes 𝑥1 et  𝑥2 distinctes telles que : 

𝑥1 =
−𝒃−√∆

𝟐𝒂
  et  𝑥2 =

−𝒃+√∆

𝟐𝒂
 

Donc 𝑃 peut s’écrire sous la forme :  𝑷(𝒙) = 𝒂(𝒙 − 𝒙𝟏)(𝒙 − 𝒙𝟐) 

2e Cas : Si ∆= 𝑏2 − 4𝑎𝑐 = 0, 𝑃(𝑥)a deux racines 𝑥1 et  𝑥2 qui sont confondues  telles que :  

𝑥1 = 𝑥2 =
−𝒃

𝟐𝒂
  et 𝑃 s’écrit sous la forme𝑃(𝑥) = 𝑎 (𝑥 +

𝑏

2𝑎
)
2
. On dit que P a une racine double. 
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3e Cas : Si ∆= 𝑏2 − 4𝑎𝑐 < 0, alors 𝑃 n’a pas de racines et donc n’est pas factorisable, 𝑥1 et 

𝑥2  n’existent pas, donc l’équation 𝑃(𝑥) = 0 n’admet pas de solutions dans ℝ.. 

 

Exemple : Mettre sous forme canonique les trinômes du 2nd degré suivants : 

a) 𝑃(𝑥) = 4𝑥2 − 4√3𝑥 + 3 

b) 𝑄(𝑥) = 5𝑥2 − 2𝑥 + 3 

c) 𝑅(𝑥) = 2𝑥2 + 3𝑥 + 2 

1.2.2 −Résolution d’une équation du 2nd  degré. 

On appelle équation du 2nd degré, c’est une équation du type 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, (𝑎 ≠ 0) 

d’inconnue 𝑥. 

Résoudre l’équation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, (𝑎 ≠ 0) équivaut à déterminer les racines du 

polynôme du 2nd degré P défini par :  𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, (𝑎 ≠ 0) 

En posant ∆= 𝒃𝟐 − 𝟒𝒂𝒄 appelée discriminant de 𝑃(𝑥),  

On a : 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
], 

donc 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ⟺ 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
] = 0 

   ⟺ (𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
= 0, puis que 𝑎 ≠ 0 

On envisage trois cas : 

1er cas : Si ∆> 0,  

On a: (𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
= 0 ⟺ (𝑥 +

𝑏

2𝑎
)
2

− (
√∆

2𝑎
)
2

= 0 

    ⟺ (𝑥 +
𝑏

2𝑎
+
√∆

2𝑎
) (𝑥 +

𝑏

2𝑎
−
√∆

2𝑎
) = 0  

    ⟺ (𝑥 +
𝑏+√∆

2𝑎
) (𝑥 +

𝑏−√∆

2𝑎
) = 0 

    ⟺ 𝑥 +
𝑏+√∆

2𝑎
= 0 ou 𝑥 +

𝑏−√∆

2𝑎
= 0 

    ⟺ 𝑥1 =
−𝑏−√∆

2𝑎
  ou  𝑥2 =

−𝑏+√∆

2𝑎
 

 

L’ensemble de solution est : 𝑆 = {
−𝑏−√∆

2𝑎
;  
−𝑏+√∆

2𝑎
} 

2e cas : Si ∆= 0,  

On a : (𝑥 +
𝑏

2𝑎
)
2

= 0 ⟺ (𝑥 +
𝑏

2𝑎
) (𝑥 +

𝑏

2𝑎
) = 0 

   ⟺ 𝑥1 = 𝑥2 =
−𝑏

2𝑎
  et l’ensemble de solution  est : 𝑆 = {

−𝑏

2𝑎
} 

3e cas : Si ∆< 0, On a : (𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
> 0 ⟺ (𝑥 +

𝑏

2𝑎
)
2

=
∆

4𝑎2
< 0 impossible dans ℝ car 

le carre d’un nombre n’est jamais négatif. 

Propriété : 

Pour résoudre l’équation 𝑥2 + 𝑏𝑥 + 𝑐 = 0, (𝑎 ≠ 0), on calcule le discriminant ∆= 𝒃𝟐 − 𝟒𝒂𝒄 

et on envisage les trois cas suivants :  

- Si ∆> 0, alors l’équation admet deux solutions distinctes : 𝑥1 =
−𝑏−√∆

2𝑎
  ou  𝑥2 =

−𝑏+√∆

2𝑎
 

- Si ∆= 0, alors l’équation admet une double solution :  𝑥1 = 𝑥2 =
−𝑏

2𝑎
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- Si ∆< 0, alors l’équation n’a pas de solutions. 

 

Exemple : Résoudre dans ℝ les équations suivantes. 

a) 𝑥2 + 𝑥 + 3 = 0 

b) (√2 − 1)𝑥2 + 2𝑥 + √2 + 1 = 0 

c) 𝑥2 − 5𝑥 + 6 = 0 

Remarque : 

- Le calcul de ∆ n’est pas toujours indispensable pour résoudre une équation du 2nd degré, 

soit par exemple : 2𝑥2 + 5𝑥 = 0 ⟺ 𝑥(2𝑥 + 5) = 0. Donc cette équation a deux 

solutions distinctes qui sont {−
5

2
; 0}. 

- Parfois on peut simplifier les calculs si b est pair en posant  𝑏′ =
𝑏

2
. On aura donc: 

∆= 𝑏2 − 4𝑎𝑐 = 4(𝑏′2 − 𝑎𝑐). On utilise alors le discriminant réduit ∆′ tel que :  

∆′ = 𝑏′2 − 𝑎𝑐 (∆ et ∆′ ont même signe). 

- Si ∆′ > 0, alors l’équation a deux solutions distinctes : 𝑥1 =
−𝑏′−√∆′

𝑎
  et  𝑥2 =

−𝑏′+√∆′

𝑎
 

- Si ∆′= 0, alors l’équation a une double solution : 𝑥1 = 𝑥2 =
−𝑏′

𝑎
 

- Si ∆′< 0, alors l’équation n’a de solution. 

Exemple : résoudre dans ℝ les équations ci- dessous en utilisant le discriminant réduit ∆′. 

a) 𝑥2 + 2𝑥 + 3 = 0 

b) 3𝑥2 − 12𝑥 + 12 = 0 

c) 2𝑥2 − 10𝑥 + 12 = 0 

1.2.3 −Équation du 2nd degré avec paramètre. 

Exemple d’application : 

Résoudre et discuter suivant les valeurs du paramètre𝑚 l’équation  

  (𝐸𝑚): (1 − 𝑚)𝑥
2 − 2𝑚𝑥 − (𝑚 + 2) = 0  

Résolution : 

Cette équation est du 1er   ou 2nd degré suivant que le coefficient de (𝐸𝑚) est nul. On a : 

- Si 1 −𝑚 = 0 ⇒ 𝑚 = 1, l’équation (𝐸𝑚) devient : 

(𝐸𝑚) : − 2𝑥 − 3 = 0 ⟺ 𝑥 = −
3

2
 , donc 𝑆 = {−

3

2
}. 

- Si 1 −𝑚 ≠ 0 ⇒ 𝑚 ≠ 1, l’équation (𝐸𝑚) est une équation du 2nd degré. 

 (𝐸𝑚): (1 − 𝑚)𝑥
2 − 2𝑚𝑥 − (𝑚 + 2) = 0  

On pose alors ∆′ = 𝑚2 + (1 −𝑚)(𝑚 + 2) 

       = 𝑚2 + 2 −𝑚 −𝑚2 

  ∆′ = −𝑚 + 2. 

Signe de ∆′ 

 

 

 

M −∞                                1                                         2                    +∞ 

−𝑚 + 2. +                   + − 

∆′ + + − 
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- Si 𝑚 ∈ ]2; +∞[, ∆′ < 0, alors l’équation (𝐸𝑚) n’a pas de solutions. 

- Si 𝑚 = 2, alors ∆′ = 0 donc l’équation (𝐸2) a une solution double : 

 𝑥1 = 𝑥2 =
−(−𝑚)

1−𝑚
= −2,  

 Donc 𝑆 = {−2}. 

- Si 𝑚 ∈ ]−∞; 1[ ∪ ]1; 2[, ∆′ > 0 alors l’équation (𝐸𝑚) admet deux solutions distinctes : 

𝑥1 =
𝑚−√−𝑚+2

1−𝑚
   et  𝑥2 =

𝑚+√−𝑚+2

1−𝑚
 

 

Donc 𝑆 = {
𝑚−√−𝑚+2

1−𝑚
;  
𝑚+√−𝑚+2

1−𝑚
}. 

Propriété : 

Pour résoudre dans ℝ une équation (𝐸): 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 ou a, b et c dépendent d’un 

paramètre, on peut procéder de la manière suivante : 

- On étudie éventuellement les cas où l’équation(𝐸) n’est pas du 2nd degré (𝑎 = 0). 

- Dans le cas où l’équation (𝐸) est du 2nd degré (𝑎 ≠ 0) : 

 On calcule le discriminant ∆ ; 

 On étudie le signe de ∆ suivant les valeurs du paramètre. 

 On détermine dans chaque cas le nombre de solutions et on calcule ces 

solutions. 

1.2.4 − Somme et produit des racines 

Soit P le polynôme du 2nd degré défini par : 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 admettant deux 

racines 𝑥1 𝑒𝑡 𝑥2. 

Si P admet deux racines 𝑥1 𝑒𝑡 𝑥2, alors on pose S leur somme et P leur produit. 

On a : S = 𝑥1 + 𝑥2 = (
−𝒃−√∆

𝟐𝒂
) + (

−𝒃+√∆

𝟐𝒂
) =

−𝑏

𝑎
 ⟹ 𝑆 =

−𝑏

𝑎
  

a) 𝑃 = 𝑥1𝑥2 = (
−𝒃−√∆

𝟐𝒂
) (

−𝒃+√∆

𝟐𝒂
)  

                               = (
−𝑏−√𝑏2−4𝑎𝑐

2𝑎
) (

−𝑏+√𝑏2−4𝑎𝑐

2𝑎
)  

                                =
𝑏2−(𝑏2−4𝑎𝑐)

4𝑎2
=

𝑐

𝑎
 ⟹ 𝑃 =

𝑐

𝑎
 

Exemple : Soit (𝐸): 𝑥2 − 3𝑥 + 2 = 0 

Calculer la somme S et le produit P des racines de (𝐸). 

Solution : 

On a : {
𝑆 = −

𝑏

𝑎
= −

(−3)

1
= 3

𝑃 =
𝑐

𝑎
=

2

1
= 2

⟹ {
𝑆 = 3
𝑃 = 2

  

Propriété 2 : Deux nombres réels ont pour somme S et pour  produit P si et seulement si, ils 

sont solutions de l’équation:𝑥2 − 𝑆𝑥 + 𝑃 = 0. 

Démonstration : 

- Soit 𝑥1 𝑒𝑡 𝑥2 deux nombres réels tels que :  𝑆 = 𝑥1 + 𝑥2 et  𝑃 = 𝑥1𝑥2. 

Pout tout nombre réel 𝑥 on a : 

 (𝑥 − 𝑥1)(𝑥 − 𝑥2) = 𝑥
2 − (𝑥1 + 𝑥2)𝑥 + 𝑥1. 𝑥2 

                                  = 𝑥2 − 𝑆𝑥 + 𝑃, car 𝑆 = 𝑥1 + 𝑥2 et 𝑃 = 𝑥1𝑥2 
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D’où  𝑥1 𝑒𝑡 𝑥2 sont les solutions de l’équation :  𝑥2 − 𝑆𝑥 + 𝑃 = 0 

- Réciproquement,  si 𝑥1 𝑒𝑡 𝑥2 sont les solutions de l’équation : 𝑥2 − 𝑆𝑥 + 𝑃 = 0, alors 

d’après la propriété 1, on a : 𝑆 = 𝑥1 + 𝑥2 et 𝑃 = 𝑥1𝑥2 

 

Exemple : Déterminer deux nombres ayant pour somme 2√3 et pour produit −1. 

Résolution :  

Soit 𝑥1 𝑒𝑡 𝑥2 sont ces deux nombres, s’ils existent, sont solutions de  l’équation :  

𝑥2 − 2√3𝑥 − 1 = 0, 

On a : ∆′= 4 > 0,  donc 𝑥1 = √3 − 2 et 𝑥2 = √3 + 2. 

Ces deux nombres cherchées sont 𝑥1 = √3 − 2 et 𝑥2 = √3 + 2 

II. INEQUATIONS 

II1 −Signe d’un polynôme du 2nd degré. 
Soit 𝑃 le  polynôme du second degré défini par 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

Le discriminant de 𝑃 est le nombre réel ∆ tel que : ∆= 𝑏2 − 4𝑎𝑐. 

On a: 𝑃(𝑥) = 𝑎 [(𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
] 

 Si ∆< 0 alors : ∀𝑥 ∈ ℝ, (𝑥 +
𝑏

2𝑎
)
2

−
∆

4𝑎2
> 0, donc 𝑃(𝑥) est du signe de  𝑎 ; 

 Si ∆= 0, alors : 𝑃(𝑥) = 𝑎 (𝑥 +
𝑏

2𝑎
)
2
, donc pour tout 𝑥 ≠ −

𝑏

2𝑎
, 𝑃(𝑥) est du signe de  𝑎 ; 

 Si ∆> 0, alors: 𝑃(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2), avec 𝑥1 𝑒𝑡 𝑥2  les deux racines distinctes de P. 

 

On étudie le signe de 𝑃(𝑥) à l’aide d’un tableau. On suppose que : 𝑥1 < 𝑥2 

𝑥 −∞                    𝑥1                                        𝑥2                            + ∞ 

𝑥 − 𝑥1 − + + 

𝑥 − 𝑥2 − − + 

(𝑥 − 𝑥1)(𝑥 − 𝑥2) + − + 

𝑃(𝑥) = 𝑎(𝑥 − 𝑥1)(𝑥 − 𝑥2) Signe de 𝑎 Signe de −𝑎 Signe de 𝑎 

 

Méthode : Soit 𝑃 le  polynôme du second degré défini par 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 , (𝑎 ≠ 0). 

Pour étudier le signe de 𝑃(𝑥), on peut calculer son discriminant ∆= 𝑏2 − 4𝑎𝑐  et utiliser l’un 

des tableaux ci-dessous. 

∆< 0, P n’a pas 
de racines 

 ∆= 0 , P a une racine 

double 𝑥1 = 𝑥2 = −
𝑏

2𝑎
 

 
 
 

∆> 0, P a deux racines distinctes  
                         𝑥1 et 𝑥2 

 
𝑥 

 
−∞ + ∞ 

 
𝑥 

−∞   −
𝑏

2𝑎
     + ∞ 

 
𝑥 

 
−∞          𝑥1            𝑥2        + ∞ 

𝑃(𝑥) Signe de 
𝑎 

𝑃(𝑥) Signe de 
𝑎 

Signe de 
𝑎 

𝑃(𝑥) Signe de 
𝑎 

Signe de 
−𝑎 

Signe de 
𝑎 

 

Exemple : 

Déterminer suivant les valeurs de 𝑥, le signe du polynôme 𝑃 defini dans les cas suivants :  

1) 𝑃(𝑥) = −2𝑥2 + 𝑥 − 1 

2) 𝑃(𝑥) = −2𝑥2 + 3𝑥 + 2 
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3) 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 

Résolution : 

1) 𝑃(𝑥) = −2𝑥2 + 𝑥 − 1 

∆= −7 < 0, donc P n’a pas de racines. 

∀ 𝑥 ∈ ℝ, 𝑃(𝑥) = −2𝑥2 + 𝑥 − 1 est du signe −2 < 0, donc 𝑃(𝑥) < 0, ∀ 𝑥 ∈ ℝ. 

2) 𝑃(𝑥) = −2𝑥2 + 3𝑥 + 2 

∆= 25 > 0, donc 𝑃 a deux racines distinctes. 

𝑥1 = 2 et 𝑥2 = −
1

2
, alors 𝑃(𝑥) = −2(𝑥 − 2) (𝑥 +

1

2
) 

 

Tableau de signe de 𝑃(𝑥) 

𝑥 
−∞              −

1

2
                                           2                         + ∞ 

𝑥 +
1

2
 

− + + 

𝑥 − 2 − − + 

(𝑥 +
1

2
) (𝑥 − 2) 

+ − + 

𝑃(𝑥) = −2(𝑥 +
1

2
) (𝑥 − 2) 

− + − 

 

∀ 𝑥 ∈ ]−∞; −
1

2
[ ∪ ]2; +∞[ , 𝑃(𝑥) = −2(𝑥 − 2) (𝑥 +

1

2
) < 0, 

∀ 𝑥 ∈ ]−
1

2
; 2[, 𝑃(𝑥) = −2(𝑥 − 2) (𝑥 +

1

2
) > 0. 

3) 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 

∆= 0, donc 𝑃 a une racine double. 𝑥1 = 𝑥2 = 1 et 𝑃(𝑥) = −3(𝑥 − 1)2. 

∀ 𝑥 ≠ 1, 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 est du signe de −3 < 0, donc ∀ 𝑥 ≠ 1, 𝑃(𝑥) < 0. 

1.1 − Résolution d’une inéquation du 2nd degré. 

Définition : Une inéquation d’inconnue 𝑥 du type 𝑎𝑥2 + 𝑏𝑥 + 𝑐 > 0 ou 𝑎𝑥2 + 𝑏𝑥 + 𝑐 < 0 

ou encore (≥ 0, 𝑟𝑒𝑠𝑝 ≤ 0) avec 𝑎 ≠ 0 est appelée inéquation du 2nd degré. 

Exemple :  

a) 3𝑥2 − 6𝑥 − 7 < 0 

b) 𝑥2 − 7𝑥 − 1 > 0 

c) 9𝑥2 + 𝑥 − 9 ≥ 0 

d) −2𝑥2 + 2𝑥 − 1 ≤ 0 

Ce sont donc des inéquations du 2nd degré. 

Méthode : 

Pour résoudre dans ℝ une inéquation du type 𝑥2 + 𝑏𝑥 + 𝑐 > 0, (𝑎 ≠ 0), on étudie le signe 

du polynôme 𝑃 défini par : 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

Exercice d’application : 

Résoudre dans ℝ les inéquations suivantes : 

a) −3𝑥2 + 2𝑥 − 5 > 0 

b) −3𝑥2 + 6𝑥 − 3 > 0 

c) −3𝑥2 + 6𝑥 − 3 < 0 

d) −3𝑥2 + 15𝑥 − 18 ≥ 0 
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e) −3𝑥2 + 15𝑥 − 18 ≤ 0 

Résolution : 

Résolvons dans ℝ les inéquations suivantes : 

a) −3𝑥2 + 2𝑥 − 5 > 0 

Posons 𝑃(𝑥) = −3𝑥2 + 2𝑥 − 5 

∆= −56 < 0, alors  𝑃(𝑥) est du signe −3 < 0, donc  ∀ 𝑥 ∈ ℝ, 𝑃(𝑥) = −3𝑥2 + 2𝑥 − 5 < 0 

mais −3𝑥2 + 2𝑥 − 5 > 0, c’est absurde, par conséquent cette inéquation n’a pas de 

solutions. 

b) −3𝑥2 + 6𝑥 − 3 > 0 

Posons 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 

∆= 0, on a :  𝑥1 = 𝑥2 = 1 donc  𝑃(𝑥) = −3(𝑥 − 1)2. 

∀ 𝑥 ≠ 1, 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 est du signe de −3 < 0, alors ∀ 𝑥 ≠ 1, 𝑃(𝑥) < 0 mais 

comme −3𝑥2 + 6𝑥 − 3 > 0, c’est absurde donc 𝑃(𝑥) n’a pas de solution, par conséquent 

cette inéquation n’a pas de solutions. 

c) −3𝑥2 + 6𝑥 − 3 < 0 

∆= 0, on a :  𝑥1 = 𝑥2 = 1 donc  𝑃(𝑥) = −3(𝑥 − 1)2. 

∀ 𝑥 ≠ 1, 𝑃(𝑥) = −3𝑥2 + 6𝑥 − 3 est du signe de −3 < 0, alors ∀ 𝑥 ≠ 1, 𝑃(𝑥) < 0 et 

comme −3𝑥2 + 6𝑥 − 3 < 0, alors l’ensemble de solutions est 𝑆 = ℝ = ]−∞; +∞[. 

d) −3𝑥2 + 15𝑥 − 18 ≥ 0 

Posons 𝑃(𝑥) = −3𝑥2 + 15𝑥 − 18 

∆= 9 > 0, on a :  𝑥1 = 3 et  𝑥2 = 2, alors 𝑃(𝑥) = −3(𝑥 − 2)(𝑥 − 3) 

 

Tableau de signe de 𝑃(𝑥) 

𝑥 −∞                   2                                           3                           + ∞ 

𝑥 − 2 − + + 

𝑥 − 3 − − + 

(𝑥 − 2)(𝑥 − 3) + − + 

𝑃(𝑥) = −3(𝑥 − 2)(𝑥 − 3) − + − 

 

−3𝑥2 + 15𝑥 − 18 ≥ 0, alors 𝑆 = [2; 3]. 

e) −3𝑥2 + 15𝑥 − 18 ≤ 0. 

De  ce qui précède, on a : ∆= 9 > 0, 𝑥1 = 3 et  𝑥2 = 2,  

 

Tableau de signe de 𝑃(𝑥) 

𝑥 −∞                    2                                           3                           + ∞ 

𝑥 − 2 − + + 

𝑥 − 3 − − + 

(𝑥 − 2)(𝑥 − 3) + − + 

𝑃(𝑥) = −3(𝑥 − 2)(𝑥 − 3)  +  

 

+ 

− − 
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−3𝑥2 + 15𝑥 − 18 ≤ 0, alors 𝑆 = ]−∞;2] ∪ [3; +∞[. 

𝐼𝐼2 −Équation et inéquation se ramenant au 2nd degré. 

2.1 − Équation et inéquation de degré supérieur à 2. 

Équations bicarrés.  

On appelle équation bicarrée, toute équation de la forme : 𝑎𝑥4 + 𝑏𝑥2 + 𝑐 = 0 avec (𝑎 ≠ 0). 

Pour résoudre une telle équation, on est ramené à la résolution d’une équation du 2nd degré 

en posant 𝑋 = 𝑥2 et l’équation 𝑥4 + 𝑏𝑥2 + 𝑐 = 0 devient alors 𝑎𝑋2 + 𝑏𝑋 + 𝑐 = 0; (𝑎 ≠ 0). 

Exemple :  

Résoudre dans ℝ les équations bicarrées suivantes. 

1) (𝐸1): 𝑥
4 − 5𝑥2 + 4 = 0 

2) (𝐸2): 𝑥
4 = 𝑥2 + 12 

Résolution :  

Résolvons dans ℝ les équations suivantes : 

1) (𝐸1): 𝑥
4 − 5𝑥2 + 4 = 0 

Posons 𝑋 = 𝑥2, alors (𝐸1) devient : 

(𝐸1): 𝑋
2 − 5𝑋 + 4 = 0  

  ∆= (−5)2 − 4 × 1 × 4 = 9 > 0  
On a : 𝑋1 = 1 et 𝑋2 = 4 

Alors 𝑥4 − 5𝑥2 + 4 = 0 ⟺ (𝑋 − 1)(𝑋 − 4) = 0 

   ⟺ (𝑥2 − 1)(𝑥2 − 4) = 0  

   ⟺ (𝑥 + 1)(𝑥 − 1)(𝑥 + 2)(𝑥 − 2) = 0    

   ⟺ 𝑥1 = 1 𝑜𝑢 𝑥 = −1 𝑜𝑢 𝑥 = 2 𝑜𝑢 𝑥 = −2   
Donc l’ensemble de solution est : 

 𝑆 = {−2;−1; 1; 2} 

2) (𝐸2): 𝑥
4 − 𝑥2 − 12 = 0 

Posons 𝑋 = 𝑥2, alors (𝐸2) devient : 

(𝐸2): 𝑋
2 − 𝑋 − 12 = 0  

∆= (−1)2 − 4 × 1 × (−12) = 49 > 0  

On a : 𝑋1 = −3 et 𝑋2 = 4 

Alors 𝑥4 − 𝑥2 − 12 = 0 ⟺ (𝑋 + 3)(𝑋 − 4) = 0 

  ⟺ (𝑥2 + 3)(𝑥2 − 4) = 0  

  ⟺ (𝑥2 + 3)(𝑥 + 2)(𝑥 − 2) = 0    

  ⟺ (𝑥2 + 3) > 0 𝑒𝑡 𝑥 = 2 𝑜𝑢 𝑥 = −2   

Donc l’ensemble de solution est : 

𝑆 = {−2; 2} 

 

2.2 −Inéquations bicarrées. 

Applications :  

Résoudre dans ℝ les inéquations suivantes : 

1) (𝐼1): 𝑥
4 − 5𝑥2 + 4 < 0 

2) (𝐼2): 4𝑥
4 − 5𝑥2 + 1 ≥ 0  

Résolution. 

Résolvons dans ℝ les inequations suivantes : 

1) (𝐼1): 𝑥
4 − 5𝑥2 + 4 < 0 
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Posons 𝑋 = 𝑥2, alors (𝐼1) devient : 

(𝐸1): 𝑋
2 − 5𝑋 + 4 < 0  

∆= (−5)2 − 4 × 1 × 4 = 9 > 0  
On a : 𝑋1 = 1 et 𝑋2 = 4 

Alors 𝑥4 − 5𝑥2 + 4 = (𝑥2 − 1)(𝑥2 − 4) = (𝑥 + 1)(𝑥 − 1)(𝑥 + 2)(𝑥 − 2) 

Tableau de signe : 

𝑥 −∞      − 2             − 1                1                   2        +∞ 

𝑥 + 1 − − + + + 

𝑥 − 1 − − − − + 

𝑥 + 2 − + + + + 

𝑥 − 2 − − − − + 

𝑃(𝑥) + − + − + 

 

(𝐼1): 𝑥
4 − 5𝑥2 + 4 < 0, alors l’ensemble de solution est : 

 𝑆 = ]−2; −1[ ∪ ]1; 2[ 

2) (𝐼2): 4𝑥
4 − 5𝑥2 + 1 < 0 

Soit 𝑃(𝑥) = 4𝑥4 − 5𝑥2 + 1   

𝑃(𝑥) = 0 ⟺ 4𝑥4 − 5𝑥2 + 1 = 0  

Posons 𝑋 = 𝑥2 ⟺ 4𝑋4 − 5𝑋2 + 1 =0,  

∆= 9 > 0  et 𝑋1 =
1

2
, 𝑋2 = 1 

𝑃(𝑥) = 4(𝑋 −
1

4
)(𝑋 − 1) 

= (4𝑋 − 1)(𝑋 − 1) 

= (4𝑥2 − 1)(𝑥2 − 1) 

𝑃(𝑥) = (2𝑥 − 1)(2𝑥 + 1)(𝑥 − 1)(𝑥 + 1)   

 

Tableau de signe : 

𝑥 −∞      − 1             −
1

2
                

1

2
                   1        +∞ 

2𝑥 + 1 − − + + + 

2𝑥 − 1 − − − + + 

𝑥 + 1 − + + + + 

𝑥 − 1 − − − − + 

𝑃(𝑥) + − + − + 

 

Et comme 4𝑥4 − 5𝑥2 + 1 ≥ 0,  l’ensemble de solution est :  

 𝑆 = ]−∞;−1] ∪ [−
1

2
;
1

2
] ∪ [1; +∞[ 

𝐼𝐼3 −Autres équation et inéquation de degré supérieur à 2. 

3.1 − Équation de degré supérieur à 2. 
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Exemple : 

Résolvons dans ℝ l’équation: (E): 𝑥4 − 𝑥3 − 13𝑥2 + 𝑥 + 12 = 0 

Posons : 𝑃(𝑥) = 𝑥4 − 𝑥3 − 13𝑥2 + 𝑥 + 12 

𝑃(1) = 0 ⇔ 1 est une racine de 𝑃 donc il existe un polynôme 𝑄 de degré 3 tel que : 

∀𝑥 ∈ ℝ, 𝑃(𝑥) = (𝑥 − 1)𝑄(𝑥) 

𝑃(−1) = 0 ⟺ −1 est une racine de 𝑃 donc il existe un polynôme 𝑅 de degré 2 tel que :  

∀𝑥 ∈ ℝ, 𝑄(𝑥) = (𝑥 + 1)𝑅(𝑥), par suite, on a : ∀𝑥 ∈ ℝ, 𝑃(𝑥) = (𝑥 − 1)(𝑥 + 1)𝑅(𝑥) 

⟹ 𝑃(𝑥) = (𝑥2 − 1)𝑅(𝑥) 

Pour déterminer le polynôme R, on peut effectuer la division euclidienne de 𝑃(𝑥) par 𝑥² − 1 

 

 

 

 

 

 

 

 

 

 

Donc 𝑅(𝑥) = 𝑥² − 𝑥 − 12 

⟹ 𝑃(𝑥) = (𝑥2 − 1)(𝑥2 − 𝑥 − 12) 

On factorise R en utilisant 𝛥 

𝑅(𝑥) =  𝑥2 − 𝑥 –  12  

𝑅(𝑥) = 0 ⟺ 𝑥2 − 𝑥 –  12 = 0 

 𝛥 =  49 > 0, 𝑥1 = −3  𝑒𝑡 𝑥2  = 4 

⟹ 𝑅(𝑥) =  (𝑥 + 3)(𝑥 − 4)   

𝑃(𝑥) =  (𝑥2 − 1)𝑅(𝑥) ⟹ 𝑃(𝑥) =  (𝑥 − 1)(𝑥 + 1)(𝑥 + 5)(𝑥 − 4)  

  𝑃(𝑥) = 0 , (𝐸) admet pour ensemble de solution :  

𝑆 =   {−3; −1; 1; 4}  

3.1 − Inéquation de degré supérieur à 2 

Exemple : 

Soit P, le polynôme  défini  par ; 𝑃(𝑥)  =  𝑥4 + 𝑥3 − 5𝑥2 + 𝑥 − 6 

a) Calculer 𝑃(−3) et 𝑃(2), que peut-on conclure ? En déduire une factorisation de 𝑃(𝑥); 

b) Résoudre dans ℝ ;   (𝐼): 𝑥4 + 𝑥3  −  5𝑥2 + 𝑥 − 6 <  0 

Solution : 

a) Calculons 𝑃(−3) 𝑒𝑡   𝑃(2)     

 𝑃(−3) =  81 − 27 − 45 − 3 − 6 = 0 

𝑃(−3) = 0  

 𝑃(2) = 16 + 8 − 20 + 2 − 6 = 0 

𝑃(2) = 0  

𝑃(−3) = 0 et 𝑃(2) = 0, alors  – 3  𝑒𝑡 2 sont les racines de 𝑃. 

𝑥4 − 𝑥3 − 13𝑥2 + 𝑥 + 12 

−𝑥4 + 𝑥² 

𝑥² − 1 

𝑥² − 𝑥 − 12 

       −𝑥3 − 12𝑥2 + 𝑥 + 12 

        𝑥3 − 𝑥 

−12𝑥2 + 12 

12𝑥2 − 12 

                         0 
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Factorisons le polynome 𝑃. 

On a : 𝑃(𝑥) = (𝑥 + 3)(𝑥 − 2). 𝑄(𝑥) où 𝑄 est un polynôme du second degré. 

Pour déterminer le polynôme 𝑄, on se propose d’utiliser la méthode des coefficients 

indéterminés.    

On pose : 𝑄(𝑥) =  𝑎𝑥2 +  𝑏𝑥 +  𝐶 

On a:  ∀𝑥 ∈ ℝ , 𝑃(𝑥)  =  (𝑥 + 3) (𝑥 − 2) (𝑎𝑥2 +  𝑏𝑥 + 𝑐 

   = (𝑥2 + 𝑥 − 6) (𝑎𝑥2 +  𝑏𝑥 + 𝑐)  

  =  𝑎𝑥4 +  𝑏𝑥3 +  𝐶𝑥2 +  𝑎𝑥3 +  𝑏𝑥2 +  𝐶𝑥 −  6𝑎𝑥2 –  6𝑏𝑥 −  6𝑐 

                           𝑃(𝑥)  =  𝑎𝑥4 + (𝑎 + 𝑏) 𝑥3 + (−6𝑎 + 𝑏 + 𝐶) 𝑥² + (−6𝑏 + 𝐶) 𝑥 − 6𝑐  

Par identification, on a:  

{
 
 

 
 

𝑎 = 1
𝑎 + 𝑏 = 1

−6𝑎 + 𝑏 + 𝑐 = −5
−6𝑏 + 𝑐 = 1
−6𝐶  =  −6 

⟹ {
𝑎 = 1
𝑏 = 0
𝑐 = 1

     

Donc 𝑷(𝒙) = (𝒙 + 𝟑)(𝒙 − 𝟐)(𝒙² +  𝟏) 

b) Résolvons dans  ℝ   l’inéquation (𝐸) : 𝑥4 + 𝑥3 − 5𝑥2  + 𝑥 −  6 < 0 

𝑥4 + 𝑥3 − 5𝑥2  + 𝑥 −  6 < 0 ⟺ 𝑃(𝑥) < 0 ,  

Or 𝑃(𝑥) = (𝑥 + 3)(𝑥 − 2)(𝑥2 +  1) et ∀ 𝑥 ∈ ℝ, 𝑥2 + 1 > 0 

Donc 𝑃(𝑥) est du signe de (𝑥 + 3)(𝑥 − 2) 

  Tableau de signe 

𝑥 −∞              − 3                                           2                           + ∞ 

𝑥 − 2 − − + 

𝑥 + 3 − + + 

(𝑥 + 3)(𝑥 − 2) + − + 

𝑃(𝑥) +  + 

 

Comme  𝑥4 + 𝑥3 − 5𝑥2  + 𝑥 −  6 < 0, alors l’ensemble des solutions de l’inéquation est :  

 𝑆 = ]−3; 2[ 

𝐼𝐼4 − Équation et inéquations irrationnelles 

4.1 − Équation irrationnelle 

On appelle équation irrationnelle, c’est une  équation du type: √𝑝(𝑥) =  𝑞(𝑥) 

Méthodes 1 : 

Résoudre l’équation √𝑝(𝑥) =  𝑞(𝑥) , revient à résoudre le système suivant : {

𝑝(𝑥) ≥  0

𝑞(𝑥)  ≥  0 

𝑝(𝑥) =  𝑞2(𝑥)
 

Méthodes 2 : √𝑝(𝑥) =  𝑞(𝑥) ⟺ 𝑝(𝑥) =  𝑞2(𝑥)  

Résoudre l’équation 𝑝(𝑥) =  𝑞2(𝑥) et prendre parmi les solutions, celles qui vérifient 

l’équation √𝑝(𝑥) =  𝑞(𝑥). 

Exemple : 

Résoudre  dans  ℝ l’équation : (𝐸): √(𝑥 + 1)(3 − 𝑥) =  3𝑥 − 1 

− 
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√(𝑥 + 1)(3 − 𝑥) =  3𝑥 − 1 ⟺ {
(x + 1)(3 − x) ≥  0

3𝑥 − 1 ≥  0
(𝑥 + 1)(3 − 𝑥) =  (3𝑥 − 1)2

  

 (𝑥 + 1) (3 − 𝑥)  ≥  0   

 

 Tableau de signe de  (𝑥 + 1) (3 − 𝑥) : 

𝑥 −∞              − 1                                           3                          + ∞ 

𝑥 + 1 − + + 

3 − 𝑥 + + − 

𝑃(𝑥) −  − 

 

Comme (𝑥 + 1) (3 − 𝑥)  ≥  0, alors  𝑆1 = [−1; 3] 

 3𝑥 − 1 ≥  0 ⟹   𝑥 ≥  
1

3
, alors 𝑆1  = [

1

3
;  +∞[ 

 (𝑥 + 1)(3 − 𝑥) =  (3𝑥 − 1)2 

 ⟹ 3𝑥 − 𝑥2 + 3 − 𝑥 =  9𝑥2 − 6𝑥 + 1  

 ⟹ 10𝑥2 − 8𝑥 − 2 = 0 

 ⟹ 5𝑥2 −  4𝑥 − 1 = 0   

𝐷 = 9 > 0 ; 𝑥1 = −
1

5
  et 𝑥2 = 1 ⟹ 𝑆3 = {−

1

5
; 1} 

L’ensemble de solution de cette équation est l’intersection de 𝑆1 , 𝑆2  𝑒𝑡 𝑆3. 

On a : 𝑆 =  𝑆1⋂ 𝑆2⋂ 𝑆3 = [−1; 3] ⋂ [
1

3
; +∞[ ⋂ {−

1

5
; 1} 

On a:  [−1; 3]⋂ [
1

3
; +∞[  = [

1

3
; 3] 

⟹ [
1

3
; 3]⋂ {−

1

5
; 1} , 𝑜𝑟 −

1

5
∉  [

1

3
; 3]  , 𝑠𝑒𝑢𝑙  1 𝜖 [

1

3
; 3] 

Donc l’ensemble de solution de l’équation (𝐸): √(𝑥 + 1)(3 − 𝑥) =  3𝑥 − 1 est :  

 𝑆 = {1} 

4.1 − Inéquation irrationnelle 

On appelle inéquation irrationnelle,  c’est une inéquation du type : √𝑝(𝑥) < 𝑞(x), 

Méthode : 

Résoudre cette inéquation, c’est  résoudre  le système suivant : 

√𝑝(𝑥) < 𝑄(𝑥) ⟺ {

𝑝(𝑥) ≥  0         

𝑞(𝑥)  ≥  0        

𝑝(𝑥) =  𝑞2(𝑥)
 

Exemple : 

Résolvons dans  ℝ l’inéquation (𝐼): √−2𝑥2 + 5𝑥 + 3  <  2𝑥 +  1 

Contraintes  sur  l’inconnue  à préciser  si nécessaire  

(𝐼): √−2𝑥2 + 5𝑥 + 3  <  2𝑥 +  1 <  2𝑥 +  1 

√−2𝑥2 + 5𝑥 + 3  <  2𝑥 +  1 ⟺ {
−2𝑥2 + 5𝑥 +  3 ≥  0     
2𝑥 +  1 ≥  0          

 −2𝑥2 +  5𝑥 +  3 < (2𝑥 +  1)2
  

+ 
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 −2𝑥2 +  5𝑥 + 3 ≥ 0  

∆= 49 > 0 ; 𝑥1 =  3  𝑒𝑡 𝑥2  = −
1

2
 

Donc −2𝑥2  +  5𝑥 +  3 =  − 2(𝑥 +
1

2
 ) (𝑥 –  3) 

  Tableau de signe  

𝑥 
−∞              −

1

2
                                          3                         + ∞ 

𝑥 +
1

2
 

− + + 

𝑥 − 3 − − + 

(𝑥 +
1

2
 ) (𝑥 –  3) 

+ − + 

𝑃(𝑥) = −2(𝑥 +
1

2
 ) (𝑥 –  3) 

 

− 

 

 

− 

 

−2𝑥² +  5𝑥 +  3  ≥  0, alors S1 = [−
1

2
; 3]  

 2𝑥 +  1  ≥ 0 ⟺  𝑥 ≥  −
1

2
,  alors  𝑆2 = [−

1

2
;  +∞[ 

 −2𝑥2  +  5𝑥 +  3 <  (2𝑥 + 1)2 

   ⟺−2𝑥2  +  5𝑥 +  3 <  4𝑥2  +  4𝑥 +  1  

 ⟺−6𝑥2  +  𝑥 +  2 < 0 

∆= 49 > 0 ; 𝑥1 =
2

3
  𝑒𝑡  𝑥2 = −

1

2
 

⟹−6𝑥2 + 𝑥 + 2 = −6 (𝑥 −
2

3
) (𝑥 +

1

2
)  

Tableau de signe 

𝑥 
−∞             −

1

2
                                          

2

3
                        + ∞ 

𝑥 +
1

2
 

− + + 

𝑥 −
2

3
 

− − + 

(𝑥 −
2

3
) (𝑥 +

1

2
)  + − + 

𝑃(𝑥) = −6 (𝑥 −
2

3
) (𝑥 +

1

2
)  − 

 

− 

 

−6𝑥2  + 𝑥 + 2 < 0, alors :  𝑆3  = ]−∞; −
1

2
[ ∪ ]

2

3
;  +∞[ 

Alors  l’ensemble  de solution  de (𝐼) est : 

  𝑆 = 𝑆1 ∩ 𝑆2 ∩ 𝑆3 = [−
1

2
; 3]  ∩  [−

1

2
;  +∞[  ∩ (]−∞; −

1

2
[ ∪  ]

2

3
;  +∞[) 

+ 

 

+ 
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  Donc  𝑆 = ]
2

3
;   3] 

 

III. SYSTEME  LINEAIRES  D’EQUATIONS  ET D’INEQUATIONS   

III1 − Système de trois équations à trois inconnues 

On appelle système  linéaire ou  système de  trois équations  du  1er degré à trois  inconnues, 

c’est le système  du Type (Σ): {

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′𝑧 = 𝑑′

𝑎′
′
𝑥 + 𝑏′′𝑦 + 𝑐′′𝑧 = 𝑑′′

𝑜ù   𝑥, 𝑦 𝑒𝑡 𝑧 𝑠𝑜𝑛𝑡  𝑑𝑒𝑠 𝑖𝑛𝑐𝑜𝑛𝑛𝑢𝑒𝑠  

Résoudre  ce  système, c’est  déterminer tous  les  triplets  ( 𝑥, 𝑦, 𝑧 ) de nombres  réels qui  

vérifient les  trois équations.  

Nous  utiliserons  quatre (4)  méthodes pour  la résolution d’un tel système. 

 La méthode par Substitution ; 

 La méthode par Pivot de GAUSS ; 

 La méthode de CRAMER ; 

 La méthode de SAIRUS. 

1.1 −Résolution par Substitution  

Exemple : 

Résoudre dans les systèmes d’équations suivants : 

a) (Σ): {

𝑥 + 𝑦 − 2𝑧 = 7
2𝑥 − 𝑦 + 𝑧 = 0
3𝑥 + 𝑦 + 𝑧 = 8

 

b) (Σ): {

2𝑥 − 𝑦 − 2𝑧 = 6
𝑥 + 𝑦 − 𝑧 = 1
𝑥 − 5𝑦 − 𝑧 = 9

 

Solution : 

Résolvons les systèmes d’équations suivants 

a) (Σ): {

𝑥 + 𝑦 − 2𝑧 = 7    ①

2𝑥 − 𝑦 + 𝑧 = 0    ②

3𝑥 + 𝑦 + 𝑧 = 8   ③

  

De l’équation (3), on tire 𝑧 =  −3𝑥 − 𝑦 + 8    (4) 

On remplace 𝑧 par −3𝑥 − 𝑦 + 8 dans les équations  (1) et (2) 

On obtient (Σ): {
𝑥 + 𝑦 − 2(−3𝑥 − 𝑦 + 8) = 7   (1′)

2𝑥 − 𝑦 − 3𝑥 − 𝑦 + 8 = 0          (2′)
 

 ⟺ {
7𝑥 + 3𝑦 = 23  (1′)

−𝑥 − 2𝑦 =  −8  (2′)
  

(2′) ⟹ 𝑥 = −2𝑦 + 8 (3′) et on remplace 𝑥 par −2𝑦 + 8 dans (1′) 

 ⟹ 7(−2𝑦 + 8) + 3𝑦 = 23   

 ⟹−14𝑦 + 56 + 3𝑦 = 23  

 ⟹−11𝑦 =  −33  
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 ⟹ 𝒚 = 𝟑  

Remplaçons 𝑦 par 3 dans (3′). 

(3′) : 𝑥 = −2𝑦 + 8 ⟹ 𝑥 =  −2 × 3 + 8 = 2  

  ⟹ 𝒙 = 𝟐 

On remplace 𝑥  et 𝑦 par  leurs valeurs dans (4). 

(4): 𝑧 =  −3𝑥 − 𝑦 + 8 ⟹ 𝑧 = −3 × 2 − 3 + 8 = −1 

 ⟹ 𝒛 = −𝟏  

Donc le triplet de solution est :   𝑺 = {(𝟐; 𝟑;−𝟏)} 

b) (Σ): {

2𝑥 − 𝑦 − 2𝑧 = 6  ①

𝑥 + 𝑦 − 𝑧 = 1  ②

𝑥 − 5𝑦 − 𝑧 = 9 ③

 

①⟹ 𝑦 = 2𝑥 − 2𝑦 −6 

Remplaçons 𝑦 par 2𝑥 − 2𝑦 −6 dans les équations  (2) et (3) 

On obtient (Σ): {
𝑥 + 2𝑥 − 2𝑧 − 6 − 𝑧 = 1

𝑥 − 5(2𝑥 − 2𝑥 − 2𝑧 − 6) − 𝑧 = 9
⟺ {

3𝑥 − 3𝑧 = 7
−9𝑥 − 9𝑧 = −21

  

Le système {
3𝑥 − 3𝑧 = 7

−9𝑥 − 9𝑧 = −21
 a pour solutions, tous les couples (𝑥; 𝑧) des nombres réels 

tels que : 3𝑥 − 3𝑧 = 7 

Donc on donne à l’une des inconnues une valeur arbitraire, par exemple : 

𝑧 = 𝛼 ⟺ 3𝑥 = 3𝛼 + 7 ⟹ 𝑥 = 𝛼 +
7

3
 

Et : 𝑦 = 2𝑥 − 2𝑧 − 6 ⟹ 𝑦 = 2(𝛼 +
7

3
) − 2𝛼 − 6 

   ⟹ 𝑦 = 2𝛼 +
14

3
− 2𝛼 − 6  

⟹ 𝑦 = −
4

3
  

On obtient (Σ): {

𝑥 =
7

3
+ 𝛼

𝑦 = −
4

3
𝑧 = 𝛼

  , 𝛼 ∈ ℝ 

Donc l’ensemble des triplets de solutions de ( Σ) est ∶ 𝑺 = {
𝟕

𝟑
+ 𝜶,−

𝟒

𝟑
, 𝜶; (𝜶 ∈ ℝ)}  

1.2 −Résolution par le pivot de Gauss 

La méthode par le Pivot de Gauss est aussi appelée méthode par combinaison qui nécessite 

de vérification, mais qui transforme un système initial en un autre système équivalent ayant 

même ensemble de solutions. 

Exemple : 

 Résoudre les systèmes d’équations suivants : 

a) (Σ): {

𝑥 − 5𝑦 − 7𝑧 = 3
5𝑥 + 3𝑦 + 𝑧 = 3
3𝑥 + 𝑦 − 2𝑧 = −1

 b) (Σ): {

𝑥 + 𝑦 − 2𝑧 = 1  
𝑥 + 2𝑦 + 𝑧 = 1 
−2𝑥 + 𝑦 + 𝑧 = 1 

 

Solution : 

Résolvons les systèmes d’équations suivants : 
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a)  (Σ): {

𝑥 − 5𝑦 − 7𝑧 = 3  ①

5𝑥 + 3𝑦 + 𝑧 = 3  ②

3𝑥 + 𝑦 − 2𝑧 = −1 ③

 

- On élimine 𝑥 dans ② 𝑒𝑡 ③  par combinaison linéaire de chacune de ces deux équations 

avec l’équation ① : 

On a: (Σ): {

𝑥 − 5𝑦 − 7𝑧 = 3  ①

5𝑥 + 3𝑦 + 𝑧 = 3  ②

3𝑥 + 𝑦 − 2𝑧 = −1 ③

⟺ {

𝑥 − 5𝑦 − 7𝑧 = 3                                                        

28𝑦 + 36𝑧 = −12  → ②− 𝟓 ×① 

16𝑦 + 19𝑧 = −10 →③− 𝟑 ×①  

  

    ⟺ {

𝑥 − 5𝑦 − 7𝑧 = 3  ①

7𝑦 + 9𝑧 = −3       ②′

16𝑦 + 19𝑧 = −10  ③′  

  

- On élimine 𝑦 dans ③′ par combinaison linéaire de ②′ 𝑒𝑡 ③′ 

On obtient le système triangulaire suivant : {
𝒙 − 𝟓𝒚 − 𝟕𝒛 = 𝟑                                                              

𝟕𝒚 + 𝟗𝒛 = −𝟑                                                    

𝒛 = 𝟐 → 𝟕 ×③′ − 𝟏𝟔 ×②′  

 

 

 

Système de Gauss 

 

 

 

 

On résout le système triangulaire  en commençant par 𝑧 = 2, tout en remontant. 

 7𝑦 + 9𝑧 = −3 ⟹ 7𝑦 = −3 − 9 × 2  

   ⟹ 7𝑦 = −21  

   ⟹ 𝒚 = −𝟑  

 𝑥 − 5𝑦 − 7𝑧 = 3  

   ⟹ 𝑥 − 5(−3) − 7 × 2 = 3 

   ⟹ 𝑥 + 15 − 14 = 3 

   ⟹ 𝑥 = 3 − 1 

   ⟹ 𝒙 = 𝟐 

L’ensemble de triplets de solution est :  𝑺 = {(𝟐; −𝟑; 𝟐)} 

b) (Σ): {

𝑥 + 𝑦 − 2𝑧 = 1  
𝑥 + 2𝑦 + 𝑧 = 1 
−2𝑥 + 𝑦 + 𝑧 = 1 

  

On a:  {

𝑥 + 𝑦 − 2𝑧 = 1     ①  

𝑥 + 2𝑦 + 𝑧 = 1   ②

−2𝑥 + 𝑦 + 𝑧 = 1 ③ 

⟺ {

𝑥 + 𝑦 − 2𝑧 = 1                                         

3𝑦 − 3𝑧 = 0 →①−②         

3𝑦 + 3𝑧 = 3 → 2 ×①+③ 

 

Le système {
3𝑦 − 3𝑧 = 0
3𝑦 − 3𝑧 = 3

 n’a pas de solutions donc le système (Σ): {

𝑥 + 𝑦 − 2𝑧 = 1  
𝑥 + 2𝑦 + 𝑧 = 1 
−2𝑥 + 𝑦 + 𝑧 = 1 

 

n’admet pas de solutions. L’ensemble de triplets de solution est un ensemble vide; 𝑆 = ∅  

𝑥 − 5𝑦 − 7𝑧 = 3                  
  7𝑦 + 9𝑧 = −3           

   𝑧 = 2  
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1.3 −Résolution par la méthode de CRAMER 

Considérons le système d’équations (Σ): {

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′𝑧 = 𝑑′

𝑎′
′
𝑥 + 𝑏′′𝑦 + 𝑐′′𝑧 = 𝑑′′

 

Pour résoudre ce système par la méthode de CRAMER, on procède de la manière suivante : 

- On calcule le déterminant du système Δ𝑆 selon la disposition suivante : 

 Δ𝑆 = |
a     b     c
a′     b′     c′
a′′    b′′    c′′

| = a |
b′     c′

b′′     c′′
| − b |

a′     c′

a′′     c′′
| + c |

a′    b′

a′′    b′′
| 

Δ𝑆 = a(b
′c′′ − b′′c′) − b(a′c′′ − a′′c′) + c(a′b′′ − a′′b′)   

- On calcule les discriminants par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧 selon les dispositions ci-dessous : 

Δ𝑥 = |
d      b      c
d′    b′     c′

d′′   b′′    c′′
| = d |

b′     c′

b′′     c′′
| − b |

d′     c′

d′′    c′′
| + c |

d′   b′

d′′   b′′
| 

Δ𝑥 = d(b
′c′′ − b′′c′) − b(d′c

′′
− d′′c′) + c(d′b

′′
− d′′b′)  

 

Δ𝑦 = |
a     d     c
a′     d′     c′
a′′    d′′    c′′

| = a | d′     c
′

d′′     c′′
| − d |

a′     c′

a′′     c′′
| + c | a

′    d′
a′′    d′′

|    

Δ𝑦 = a(d′c′′ − d′′c′) − d(a′c′′ − a′′c′) + c(a′d′′ − a′′d′)  

 

Δ𝑧 = |
a     b      d 
a′     b′     d′
a′′    b′′    d′′

| = a | b
′     d′

b′′     d′′
| − b | a

′    d′
a′′     d′′

| + d |
a′    b′

a′′    b′′
| 

Δ𝑧 = a(b
′d′′ − b′′d′) − b(a′d′′ − a′′d′) + d (a′b′′ − a′′b′)  

- En fin, on détermine les valeurs de x, y et z par les formules suivantes : 

𝑥 =
Δ𝑥

Δ𝑆
;   𝑦 =

Δ𝑦

Δ𝑆
;  𝑧 =

Δ𝑧

Δ𝑆
 

Remarques : 

 Si Δ𝑆 ≠ 0, alors le système admet un triplet de nombre réels {(𝑥; 𝑦; 𝑧)}, solutions du 

système et la méthode de CRAMER est applicable. 

 Si Δ𝑆 = 0, alors la méthode de CRAMER n’est pas applicable, par conséquent : 

 Si l’un des déterminants par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧 est non nul, c'est-à-dire  

Δ𝑥 ≠ 0 ou Δ𝑦 ≠ 0 ou Δ𝑧 ≠ 0, alors 𝑆 = ∅ ; 

 Si tous les déterminants par rapport à x, y et z sont nuls (Δ𝑥 = Δ𝑦 = Δ𝑧 = 0), 

alors le système admet une infinité de solutions réelles et 𝑆 = ℝ3. 

Exemple :  

Résoudre dans ℝ les systèmes d’équations suivants :

(Σ1): {

𝑥 + 2𝑦 + 3𝑧 = 14  
2𝑥 − 𝑦 + 𝑧 = 3 

3𝑥 + 2𝑦 − 4𝑧 = −5 
  (Σ2): {

2𝑥 + 3𝑦 + 4𝑧 = 6  
𝑥 − 𝑦 + 3𝑧 = 5 

4𝑥 + 11𝑦 + 6𝑧 = 6 
      (Σ3): {

𝑥 + 𝑦 − 𝑧 = 2  
2𝑥 + 𝑦 − 3𝑧 = 0 
𝑥 − 𝑦 − 3𝑧 = −6 
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Solution : 

Résolvons dans ℝ les systèmes d’équations suivant : 

 (Σ1): {

𝑥 + 2𝑦 + 3𝑧 = 14  
2𝑥 − 𝑦 + 𝑧 = 3 

3𝑥 + 2𝑦 − 4𝑧 = −5 
  

Procédons par la méthode de CRAMER : 

- Calculons le discriminant du système Δ𝑆 

Δ𝑆 = |
1       2      3
2   − 1    1
3      2 − 4

| = |
−1    1
2   − 4

| − 2 |
2    1
3   − 4

| + 3 |
2   − 1
3     2

|  

    = 4 − 2 − 2(−8 − 3) + 3(4 + 3)  

              𝚫𝑺 = 𝟒𝟓  

- Calculons le déterminant par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧. 

Δ𝑥 = |
14       2      3
3   − 1    1
−5        2 − 4

| = 14 |
−1    1
2   − 4

| − 2 |
3    1

−5   − 4
| + 3 |

3   − 1
−5     2

|  

    = 14(4 − 2) − 2(−12 + 5) + 3(6 − 5)  

              𝚫𝒙 = 𝟒𝟓  

Δ𝑦 = |
1       14      3
2       3        1
3     − 5 − 4

| = |
3    1

−5   − 4
| − 14 |

2    1
3   − 4

| + 3 |
2       3
3   − 5

|  

    = −12 + 5 − 14(−8 − 3) + 3(−10 − 9)  

              𝚫𝒙 = 𝟗𝟎 

Δ𝑧 = |
1       2      14
2   − 1    3
3      2 − 5

| = |
−1    3
2   − 5

| − 2 |
2    3
3   − 5

| + 14 |
2   − 1
3       2

|  

    = 5 − 6 − 2(−10 − 9) + 14(4 + 3)  

              𝚫𝒙 = 𝟏𝟑𝟓  

- Déterminons 𝑥, 𝑦 𝑒𝑡 𝑧. On a :  

 𝑥 =
Δ𝑥

Δ𝑆
=

45

45
= 1  

 𝑦 =
Δ𝑦

Δ𝑆
=

90

45
= 2  

 𝑧 =
Δ𝑧

Δ𝑆
=

135

45
= 3  

L’ensemble de triplets de solutions est :  𝑆 = {(1; 2; 3)}  

1.4 −Résolution par la méthode de SAIRUS 

Considérons le système d’équations (Σ): {

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′𝑧 = 𝑑′

𝑎′
′
𝑥 + 𝑏′′𝑦 + 𝑐′′𝑧 = 𝑑′′

 

Pour résoudre un système par la méthode de SAIRUS, on procède de la manière suivante : 

- On calcule le déterminant du système Δ𝑆 selon la disposition suivante : 
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 Δ𝑆 = |
a     b       c      a      b
a′     b′    c′     a′   b′
a′′    b′′    c′′   a′′   b′′

| 

Δ𝑆 = ab
′c′′ + bc′a′′ + ca′b′′ − (a′′b′c + b′′c′a + c′′a′b)   

- On calcule les discriminants par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧 suivants, selon les dispositions 

suivants et les procédures ci-dessus : 

Δ𝑥 = |
d b c
d′ b′ c′
d′′ b′′ c′′

     
d b
d′ b′
d′′ b′′

|  

⟹ Δ𝑥 = db′c′′ + bc′d′′ + cd′b′′ − (d′′b′c + b′′c′d + c′′d′b)   

 

Δ𝑦 = |
a d c
a′ d′ c′
a′′ d′′ c′′

     
a d
a′ d′
a′′ d′′

|  

⟹ Δ𝑦 = ad′c′′ + dc′a′′ + ca′d′′ − (a′′d′c + d′′c′a + c′′a′d)   

 

Δ𝑧 = |
a     b      d 
a′     b′     d′

a′′    b′′    d′′
    
a b
a′ b′
a′′ b′′

|  

⟹ Δ𝑧 = ab′d′
′ + bd′a′′ + da′b′′ − (a′′𝑏′d + b′′d′a + d′′a′b)  

- En fin, on détermine les valeurs de x, y et z par les formules suivantes : 

  𝑥 =
Δ𝑥

Δ𝑆
; 𝑦 =

Δ𝑦

Δ𝑆
; 𝑧 =

Δ𝑧

Δ𝑆
  et 𝑆 = {(𝑥; 𝑦; 𝑧)} 

Remarques : 

 Si Δ𝑆 ≠ 0, alors le système admet un triplet de nombre réels {(𝑥; 𝑦; 𝑧)}, solutions du 

système et la méthode de SAIRUS est applicable. 

 Si Δ𝑆 = 0, alors la méthode de SAIRUS n’est pas applicable, par conséquent : 

 Si l’un des déterminants par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧 est non nul, c'est-à-dire  

Δ𝑥 ≠ 0 ou Δ𝑦 ≠ 0 ou Δ𝑧 ≠ 0, alors 𝑆 = ∅ ; 

 Si tous les déterminants par rapport à x, y et z sont nuls (Δ𝑥 = Δ𝑦 = Δ𝑧 = 0), 

alors le système admet une infinité de solutions réelles et 𝑆 = ℝ3. 

Exemple :  

Résoudre dans ℝ les système suivants 

(Σ1): {

3𝑥 − 2𝑦 + 5𝑧 = 7  
2𝑥 + 𝑦 − 𝑧 = −6 
𝑥 − 𝑦 + 𝑧 = 0 

 (Σ2): {

2𝑥 + 3𝑦 + 4𝑧 = 6  
𝑥 − 𝑦 + 3𝑧 = 5 

4𝑥 + 11𝑦 + 6𝑧 = 6 
 (Σ3) {

𝑥 + 𝑦 − 𝑧 = 2  
2𝑥 + 𝑦 − 3𝑧 = 0 
𝑥 − 𝑦 − 3𝑧 = −6 

 

Solution : 

Résolvons dans ℝ les système suivants en procédons par la méthode de SAIRUS : 

(Σ1): {
3𝑥 − 2𝑦 + 5𝑧 = 7  
2𝑥 + 𝑦 − 𝑧 = −6 
𝑥 − 𝑦 + 𝑧 = 0 

  

- Calculons le discriminant du système Δ𝑆 



 

20 
 

Δ𝑆 = |
3 −2 5
2 1 −1
1 −1 1

      
3 −2
2 1
1 −1

|  

 

= 3 + 2 − 10 − (5 + 3 − 4) = −9  

 𝚫𝑺 = −𝟗   

- De la même manière, on calcule le déterminant par rapport à 𝑥, 𝑦 𝑒𝑡 𝑧. 

Δ𝑥 = |
7 −2 5
−6 1 −1
0 −1 1

       
7 −2
−6 1
0 −1

| = 7 + 30 − (7 − 12) 

𝚫𝒙 = 𝟏𝟖  

 

Δ𝑦 = |
3 7 5
2 −6 −1
1 0 1

      
3 7
2 −6
1 0

| = −18 − 7—(−30 + 14) 

 𝚫𝒚 = −𝟗  

  Δ𝑧 = |
3 −2 7
2 1 −6
1 −1 0

      
3 −2
2 1
1 −1

| = 12 − 14 − (7 + 18)  

  𝚫𝒛 = −𝟐𝟕⟹ 𝑧 =
27

−9
= −3 

- Déterminons 𝑥, 𝑦 𝑒𝑡 𝑧. On a :  

 𝑥 =
Δ𝑥

Δ𝑆
=

18

−9
= −2  

 𝑦 =
Δ𝑦

Δ𝑆
=

−9

−9
= 1 

 𝑧 =
Δ𝑧

Δ𝑆
=

−27

−9
= 3  

L’ensemble de triplets de solutions est :  𝑆 = {(−2; 1; 3)}  

 

 

III2 − Système d’inéquation linéaire 

Exemple :  

Résoudre dans ℝ, le système d’inéquation suivant (Σ): {

−𝑥 + 𝑦 + 3 ≥ 0  
𝑥 + 𝑦 − 1 ≥ 

−2𝑥 + 𝑦 − 1 ≥ 0 
  

Soit : {
𝐷1 : −𝑥 + 𝑦 + 3 = 0
𝐷2: 𝑥 + 𝑦 − 1 = 0
𝐷3: −2𝑥 + 𝑦 − 1 = 0

 ⟹ {

𝐷1: 𝑦 = 𝑥 − 3
𝐷2: 𝑦 = −𝑥 + 1
𝐷3: 𝑦 = 2𝑥 + 1

 

  

𝐷1: 𝑦 = 𝑥 − 3,   

 

 

𝐷2: 𝑦 = −𝑥 + 1, 

 

 

𝑥 2 0 

𝑦 −1 −3 

𝑥 0 1 

𝑦 1 0 
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𝐷3: 𝑦 = 2𝑥 + 1,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑥 0 −1 

𝑦 1 −1 
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Chapitre 2 : Limites et continuité 

I. Approche intuitive de la notion de limite  

𝐈𝟏 −Limite d’une fonction en l’infinie 

𝟏. 𝟏 −Limite infinie 

Pour les grandes : valeurs de 𝑥, les fonction𝑥²,   𝑥3, 𝑥4, … , 𝑥𝑛(𝑛 ∈ ℕ) prennent des valeurs 

Suffisamment grandes. On dit que ces fonctions tendent vers l’infini lorsque 𝑥 tend vers 

l’infini et on note :  

 lim𝑛→+∞𝑥
2 = + ∞, 

 lim𝑛→−∞𝑥
2 = +∞  

NB : Le symbole ∞ = +∞ 𝑜𝑢 −∞ 

Notation :  

On écrit :   lim𝑛→+∞(𝑓𝑥) =  + ∞, 

On lite : « limite de 𝑓(𝑥) lorsque 𝑥 tend vers + ∞ est égale à ∞» 

𝟏. 𝟐 −Limite en infini des fonctions élémentaires 

Nous Admettons les résultats suivants :  

 {
lim
𝑛→+∞

𝑘 = 𝑘 

lim
𝑛→−∞

𝑘 = 𝑘 
   Exemple : {

lim
𝑛→+∞

3 = 3

lim
𝑛→−∞

7 = 7 
  

 lim
𝑛→+∞

𝑥 = + ∞  

 lim
𝑛→−∞

𝑥 = − ∞  

 lim
𝑛→+∞

𝑥3 = + ∞  

 lim
𝑛→−∞

𝑥3 = −∞  

 lim
𝑛→+∞

√𝑥 = +∞   

 lim
𝑛→+∞

𝑥𝑛 = +∞  

 lim
𝑛→−∞

𝑥𝑛 = {
+∞ 𝑠𝑖 𝑥 𝑒𝑠𝑡 𝑝𝑎𝑖𝑟
−∞ 𝑠𝑖 𝑥 𝑒𝑠𝑡 𝑖𝑛𝑝𝑎𝑖𝑟

 

On remarque que  
1

𝑥
 est très voisin de 0 pour des grandes valeurs positives de 𝑥. 

Alors, on a :  

 lim
𝑛→+∞

1

𝑥
= 0  

 lim
𝑛→−∞

1

𝑥
= 0  

 lim
𝑛→+∞

1

𝑥𝑛
= 0, (𝑛 ∈ ℕ∗)  

 lim
𝑛→−∞

1

𝑥𝑛
= 0, (𝑛 ∈ ℕ∗) 

Remarque : 

 Une fonction lorsqu’elle admet une limite en +∞,  ou en −∞ cette limite est unique. 

 Certaines fonctions n’admettent  pas de limite en infini, ainsi la fonction  mantisse, 

définie par 𝑚(𝑥) = 𝑥 − 𝐸(𝑥), n’admet de limite ni en +∞, ni en −∞, 

𝐈𝟐 −Limite d’une fonction en 𝒙𝟎 

𝟐. 𝟏 −Limite infinie en 𝒙𝟎 

Soit 𝑓(𝑥) =
1

𝑥2
, une fonction définie sur ℝ∗ 

On examine le comportement de 𝑓 lorsque 𝑥 se rapproche de 0. 

𝑥 −0,01 −0,001 0 0,001 0,01 

1

𝑥2
 

106 104 +∞ 104 106 
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 𝑥 = −0,01 ⟹ 𝑥2 = 0,0001 𝑒𝑡 
1

𝑥2
=

1

0,0001
= 104 

 𝑥 = −0,001 ⟹ 𝑥2 = 0,000001 𝑒𝑡 
1

𝑥2
=

1

0,000001
= 106 

De même pour 𝑥 = 0,01 𝑒𝑡 𝑥 = 0,001, on obtient respectivement 104 𝑒𝑡 106 

On Constate que 𝑓(𝑥) prend des valeurs positives de plus en plus grandes lorsque 𝑥 se 

rapproche de 0. Donc 𝑓(𝑥) tend vers +∞  𝑥 𝑡𝑒𝑛𝑑 𝑣𝑒𝑟𝑠 0 et on écrit : 

 𝑙𝑖𝑚
𝑥→0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→0

1

𝑥2
=

1

0
= +∞ 

Propriété : 

Soit 𝑓 une fonction définie en 𝑥0. 

Si 𝑓 admet une limite en 𝑥0, alors : 𝒍𝒊𝒎
𝒙→𝟎

𝒇(𝒙) = 𝒇(𝑥0) 

Généralement, nous admettons les résultats suivants : 

 

{
 

 
𝑙𝑖𝑚
𝑥→𝑎

𝑘𝑥 = 𝑘𝑎                               

lim
𝑥→𝑎

𝑎𝑛 = 𝑎𝑛, (𝑆𝑖 𝑛 ∈ ℕ)            

lim
𝑥→𝑎

√𝑥 = √𝑎, (𝑠𝑖 𝑎 ≥ 0)   

   Exemples : 

{
 

 
lim3
𝑥→2

𝑥 = 3 × 2 = 6

lim
𝑥→2

𝑥3 = 23 = 8

lim
𝑥→4

√𝑥 = √4 = 2

Exemple : 

Soit 𝑓(𝑥) = 𝑥2 + 3 ; on a : 

lim
𝑥→1

𝑓(𝑥) = 𝑓(1) = 12 + 3 = 4 ou lim
𝑥→1

𝑓(𝑥) =  lim
𝑥→1

(𝑥2 + 3) = 12 + 3 = 4 

Remarque : 

- Lorsqu’une  fonction admet une limite en 𝑥0, cette limite est unique. 

- Une fonction en 𝑥0, n’admet pas nécessairement une limite en 𝑥0. Ainsi la fonction  𝑔 

définie par : {
𝑔(𝑥) =

sin𝑥

𝑥
, 𝑛 ∈ ℝ∗

𝑔(0) =
1

2

 n’admet pas de limite en 𝑜.  

- Une fonction 𝑓 n’admet pas de limite en 𝑥0 s’il existe un intervalle ouvert 𝐾 de 

centre 𝑥0 tel que 𝐷𝑓 ∩ 𝐾 =  ∅ 

𝟐. 𝟐 −Limite à droite limite à gauche 

Soit 𝑓 une fonction numérique définie sur un intervalle 𝐼. 

 On dite que 𝑓 admet une limite 𝑙 en 𝑥0 à droite si et seulemnet si la restriction de 𝑓  à  

  𝐼 ∩ ]𝑥0;  +∞[ admet en 𝑥0 cette limite. 

On note : lim
𝑥→𝑥0+

𝑓(𝑥) = 𝑙 ou lim
𝑥→𝑥0>

𝑓(𝑥) = 𝑙; (𝑥 > 𝑥0) 

 On dite que 𝑓 admet en 𝑥0 ∈ 𝐼 une limite 𝑙′′  à gauche si et seulement si la restriction 

de 𝑓 à à 𝐼 ∩ ]−∞ ; 𝑥0 [ admet en 𝑥0 cette limite  𝑙′. 

On note : lim
𝑥→𝑥0−

𝑓(𝑥) = 𝑙′ ou lim
𝑥→𝑥0<

𝑓(𝑥) = 𝑙′; (𝑥 < 𝑥0) 

Exemple : 

Soit 𝑓(𝑥) =
1

𝑥
 et 𝐷𝑓 = ]−∞; 0[ ∪ ]0; +∞[ 

1) lim
𝑥→𝑥0+

𝑓(𝑥) = lim
𝑥→𝑥0+

(
1

𝑥
) =

1

0+
= +∞ ou lim

𝑥→𝑥0>
(
1

𝑥
) =

1

0>
= +∞ 

2) lim
𝑥→𝑥0−

𝑓(𝑥) = lim
𝑥→𝑥0−

(
1

𝑥
) =

1

0−
= −∞ ou lim

𝑥→𝑥0<
(
1

𝑥
) =

1

0<
= −∞ 



 

24 
 

II. Calculs de limites 

𝐼𝐼1– Propriété de comparaison 

𝟏. 𝟏 − Majoration, minoration 

Propriétés 

Soit 𝑓 une fonction. 

- S’il existe une fonction  𝑔 𝑡𝑒𝑙𝑙𝑒 𝑞𝑢𝑒 𝑓 ≥ 𝑔 𝑠𝑢𝑟 𝑢𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑙𝑒  ]𝑥0; +∞[ et 

lim
𝑥→+∞

𝑔(𝑥) = + ∞, 𝑎𝑙𝑜𝑟𝑠 lim
𝑥→+∞

𝑓(𝑥) = + ∞. 

- S’il existe une fonction 𝑔 𝑡𝑒𝑙𝑙𝑒 𝑞𝑢𝑒 𝑓 ≤ 𝑔 𝑠𝑢𝑟 𝑢𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑙𝑒  ]𝑥0; +∞[ et 

lim
𝑥→+∞

𝑔(𝑥) = − ∞, 𝑎𝑙𝑜𝑟𝑠 lim
𝑥→+∞

𝑓(𝑥) = − ∞. 

Exemple :  

Soit 𝑓(𝑥) = |𝑥|(𝑥 + 1) 

On a : 𝐷𝑓 = ℝ et ∀ 𝑥 ∈  ]0 ; +∞[, 𝑓(𝑥) = 𝑥2 + 𝑥. 

Donc ∀ 𝑥 ∈ ]0 ;  +∞[ , lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

𝑥2 = +∞ 

On en déduit que : lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

𝑥2 = +∞, ∀𝑥 ∈ ]−∞ ;  0[ 

1.2- Encadrement 

Propriété :  

Soit 𝑓 une fonction, 𝑔, ℎ des fonctions telles que 𝑔 ≤ 𝑓 ≤ ℎ  sur un intervalle ]𝑥0; +∞[ et 

lim
𝑥→+∞

𝑔(𝑥) = lim
𝑥→+∞

ℎ(𝑥) = 𝑙, alors lim
𝑥→+∞

𝑓(𝑥) = 𝑙 

Cette propriété est connue sous le nom de théorème de deux gendarmes ou théorème de 

sandwich. 

Exemple : 

Soit 𝑓(𝑥) = 𝑥2 +  𝑐𝑜𝑠 𝑥. 

Calculons la limite de 𝑓 en +∞ et en −∞ 

𝐷𝑓 = ℝ et ∀ 𝑥 ∈ ℝ , On a : −1 ≤ cos 𝑥 ≤ 1 ⟺ 𝑥2 − 1 ≤ 𝑥2 + 𝑐𝑜𝑠 𝑥 ≤ 𝑥2 + 1  

On pose 𝑔(𝑥) = 𝑥2 − 1 et ℎ(𝑥) = 𝑥2 + 1 telles que 𝑔 ≤ 𝑓 ≤ ℎ 

Or, lim
𝑥→+∞

𝑔(𝑥) = lim
𝑥→+∞

ℎ(𝑥) = +∞, alors lim
𝑥→+∞

𝑓(𝑥) = +∞ 

De même : lim
𝑥→−∞

𝑔(𝑥) = lim
𝑥→−∞

ℎ(𝑥) = +∞, alors lim
𝑥→−∞

𝑓(𝑥) = +∞ 

On en déduit que lim
𝑥→±∞

𝑓(𝑥) = +∞ 

1.3- Comparaison de limites: 

Propriété 

Soit 𝑓𝑒𝑡 𝑔 deux fonctions telles que: 𝑓 ≤ 𝑔 sur un intervalle 𝐼 = ]𝑥𝑜;+∞[. 

Si lim
𝑥→+∞

𝑓(𝑥) = 𝑙 et lim
𝑥→+∞

𝑔(𝑥) = 𝑙′, alors 𝑙 ≤ 𝑙′ 

𝐼𝐼2 − Limites et opérations sur les fonctions. 

2.1- Limite de la somme de deux fonctions. 

lim
𝑥→𝑥0

𝑓(𝑥) 𝑙 +∞ −∞ +∞ −∞ +∞ 

lim
𝑥→𝑥0

𝑔(𝑥) 𝑙′ 𝑙′ 𝑙′ 𝑙′ −∞ −∞ 

lim
𝑥→𝑥0

(𝑓 + 𝑔)(𝑥) 𝑙 = 𝑙′ +∞ −∞ +∞ −∞ ? ind 

Exemple :  



 

25 
 

On considère les fonctions (𝑥) = 𝑥²+
1

𝑥2
 , 𝑔(𝑥) = 𝑥 − 1 +

1

𝑥
  et  ℎ(𝑥) = 𝑥²+ 𝑥 

1) lim
𝑥→0+

𝑓(𝑥) = lim
𝑥→0+

(𝑥2 +
1

𝑥2
) = 0 +

1

0+
= 0 + (+∞) = +∞ 

Donc lim
𝑥→0+

𝑓(𝑥) = +∞ 

2) lim
𝑥→0−

𝑔(𝑥) = lim
𝑥→0−

(𝑥 − 1 +
1

𝑥
) = 0 − 1 +

1

0−
= −1 + (−∞) = −∞ 

Donc lim
𝑥→0−

𝑔(𝑥) = −∞ 

3) lim
𝑥→+∞

ℎ(𝑥) = lim
𝑥→+∞

(𝑥2 + 𝑥) = +∞ + (+∞) = +∞ 

Donc lim
𝑥→+∞

𝑓(𝑥) = +∞ 

2.2- Limite du produit de deux  fonctions 

lim
𝑥→𝑥0

𝑓(𝑥) 𝑙 +∞ −∞ +∞ ou −∞ +∞ −∞ +∞ 

lim
𝑛→𝑥0

𝑔(𝑥) 𝑙′ 𝑙′(𝑙′ ≠ 0) 𝑙′(𝑙′ ≠ 0) +∞ +∞ −∞ −∞ 

lim
𝑥→𝑥0

(𝑓𝑔)(𝑥) 𝑙  𝑙′ 
{
+∞ 𝑠𝑖 𝑙′ > 0
−∞, 𝑠𝑖 𝑙′ < 0

 {
−∞ 𝑠𝑖 𝑙′ > 0
+∞, 𝑠𝑖 𝑙′ < 0

 ? ind +∞ +∞ −∞ 

 

Remarque : 

On en déduit que si lim
𝑥→𝑥0

𝑓(𝑥) = 𝑙,  alors  ∀ 𝑥 ∈ ℕ∗, on a : lim
𝑥→𝑥0

𝑓(𝑥)𝑛 = 𝑙𝑛 

Exemple :  

On considère les fonctions suivantes : 𝑓(𝑥) = −3𝑥5 ;     𝑔(𝑥) = 𝑥5 + 𝑥 et ℎ(𝑥) = −3𝑥;  

1) lim
𝑥→−∞

𝑓(𝑥) = lim
𝑥→−∞

(−3𝑥5 ) = −3(−∞)5 = −∞, 

  ⟹ lim
𝑥→−∞

𝑓(𝑥) = −∞,  

2) 𝑔(𝑥) = 𝑥2 + 𝑥 = 𝑥2 (1 +
1

𝑥
) 

  ⟹ lim
𝑥→−∞

𝑔(𝑥) = lim
𝑥→−∞

𝑥² (1 +
1

𝑥
) = (−∞)2 (1 +

1

+∞
) = +∞(1 + (0)) = +∞  

  ⟹ lim
𝑥→−∞

𝑔(𝑥) = +∞  

3) lim
𝑥→−2

ℎ(𝑥) = lim
𝑥→−2

(3𝑥) = 3 × 2 = 6  

  ⟹ lim
𝑥→−2

ℎ(𝑥) = 6  

2.3- Limite de l’inverse d’une fonction. 

lim
𝑥→𝑥0

𝑓(𝑥) 𝑙′(𝑙′ ≠ 0) +∞ ou −∞ 0  et 𝑓(𝑥) > 0 0  et 𝑓(𝑥) < 0 

lim
𝑥→𝑥0

(
1

𝑓
) (𝑥) 

1

𝑙
 

0 +∞ −∞ 

 

Exemple : 

On donne 𝑓(𝑥) =
1

𝑥−3
 .  𝐷𝑓 = ℝ − {3} 

On a : lim
𝑥→3

(𝑥 − 3) = 0, 𝑜𝑟 ∶ {
𝑓(𝑥) < 0, 𝑆𝑖  𝑥 < 0

𝑓(𝑥) > 0, 𝑆𝑖  𝑥 > 0
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Alors lim
𝑥→−3+

=
1

0+
= +∞ 𝑒𝑡 lim

𝑥→−3−
𝑓(𝑥) =

1

0−
= −∞  

Donc  𝑓(𝑥) n’a pas de limite en 3. 

NB : Cette propriété est aussi avalable pour la limite du quotient de deux fonctions.  

On a : lim
𝑥→𝑥0

(
𝑓

𝑔
) (𝑥) = lim

𝑥→𝑥0
(𝑓 ×

1

𝑔
) (𝑥) et on applique les mêmes propriétés sur les deux 

fonctions. 

2.4- Limite de la valeur absolue d’une fonction. 

Exemple : 

Soit 𝑓(𝑥) = 𝑥2 − 2  

On a : lim
𝑥→0

|𝑓(𝑥)| = lim
𝑥→0

|𝑥2 − 2| = |−2| = |2| = 2 

2.5- Limite de la racine d’une fonction : 

Propriété : 

Soit 𝑓 une fonction définie sur un intervalle I,  𝑥0 un élément de I et 𝑙 un réel donné. 

 Si lim
𝑥→𝑥0

𝑓(𝑥) = 𝑙 ⟹ lim
𝑥→𝑥0

√𝑓(𝑥) = √𝑙 

 Si lim
𝑥→𝑥0

𝑓(𝑥) = +∞ ⟹ lim
𝑥→𝑥0

√𝑓(𝑥) = √+∞ = +∞ 

Exemple : 

Soit  𝑔(𝑥) = 𝑥2 + 2 

Calculons la limite de 𝑔 en 0 et en +∞. 

On a: 

lim
𝑥→0

𝑔(𝑥) = 2 ⟺ lim
𝑥→0

√𝑔(𝑥) = √2  

lim
𝑥→+∞

𝑔(𝑥) = +∞ ⟺ lim
𝑥→+∞

√𝑔(𝑥) = √+∞ = +∞  

2.6- Limite de  𝒙 ⟶ 𝒇(𝒂𝒙 + 𝒃) 

2.6.1- propriété : 

Soit 𝑓 une fonction, 𝑥0 un nombre réel et 𝒙 ⟶ 𝒂𝒙 + 𝒃 une fonction affine non constante. 

La fonction 𝑥 ⟶ 𝑎𝑥 + 𝑏 admet une limite en 𝑥0 si et seulement si 𝑓 admet une limite en 

𝑎𝑥0 + 𝑏 et on a : lim
𝑥→𝑥0

𝑓(𝑎𝑥 + 𝑏) = lim
𝑢→𝑎𝑥0+𝑏

𝑓(𝑢), avec 𝑢 = 𝑎𝑥 + 𝑏 

NB: Dans 𝑓(𝑎𝑥 + 𝑏),  on pose 𝑢 = 𝑎𝑥 + 𝑏 et lorsque 𝑥 → 𝑥0, alors 𝑢 → 𝑎𝑥0 + 𝑏 

lim
𝑥→0

sin𝑥

𝑥
= 1 est appelée limite de référence. 

Exemple: 

Calculons la limite de la fonction  𝑓 définie par 𝑓(𝑥) =
sin(3𝑥−6)

3𝑥−6
 en  2. 

Pour calculer la    lim
𝑥→2

𝑓(𝑥), on pose : 𝑢 = 3𝑥 − 6 

Alors quand 𝑥 ⟶ 2,   𝑢 ⟶ 0, donc lim
𝑥→2

sin (3𝑥−6)

3𝑥−6
= lim

𝑢→0

sin𝑢

𝑢
 

D’après la limite de référence, On a: lim
𝑢→0

sin𝑢

𝑢
= 1, et on en déduit que : lim 

𝑥→2
𝑓(𝑥) = 1 

𝐈𝐈𝟑 −Exemple de recherché de limite: 

3.1- limite d’une fonction polynôme en l’infini. 

Soit 𝑎 un nombre réel et 𝑛 un entier naturel. 

On écrite :  𝐥𝐢𝐦
𝒙→∞

(𝒂𝒏𝒙
𝒏 + 𝒂𝒏−𝟏𝒙

𝒏−𝟏 +⋯+ 𝒂𝟏𝒙
𝟏 + 𝒂𝒐) =  𝐥𝐢𝐦

𝒙→∞
𝒂𝒏𝒂

𝒏 
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On dit que la limite en l’infini d’un polynôme est égale  à la limite en l’infini de son monôme 

de plus  haut degré. 

Example:  

1) lim
𝑥→−∞

(−𝑥2 + 4𝑥 − 1) = lim
𝑥→−∞

(−𝑥2) = −∞ 

2) lim
𝑥→−∞

(−𝑥3 + 3𝑥 − 5) = lim
𝑥→−∞

(−𝑥3) = +∞ 

3) lim
𝑥→+∞

(𝑥3 − 56 + 3) = lim
𝑥→+∞

(−5𝑥6) = −5(+∞)6 = −∞ 

3.2- Limite d’une fonction rationnelle en infini 

Propriété :  

Soit 𝑎  et 𝑏 deux nombres réels et 𝑛,𝑚 deux entiers naturels. 

On écrite : 𝐥𝐢𝐦
𝒙→∞

𝒂𝒏𝒙
𝒏+𝒂𝒏−𝟏𝒙

𝒏−𝟏+⋯+𝒂𝒐

𝒃𝒎𝒙𝒎+𝒃𝒎−𝟏𝒙𝒎−𝟏+⋯+𝒃𝒐
= 𝐥𝐢𝐦

𝒙→∞

𝒂𝒏𝒙
𝒏

𝒃𝒎𝒙𝒎
 

On dit que la limite en l’infinie d’une fonction rationnelle est égale à la limite en infinie du  

quotient des monômes de plus haut degré du numérateur et du dénominateur. 

Exemple: 

1) lim
𝒙→∞

2𝑥6+2𝑥5−14𝑥

−7𝑥4+11𝑥2−17
= lim

𝒙→∞

3𝑥6

−7𝑥4
= lim

𝒙→∞

3𝑥2

−7
=

−3

7
(−∞)2 = −∞ 

Donc lim
𝒙→−∞

2𝑥6+2𝑥5−14𝑥

−7𝑥4+11𝑥2−17
= 0 

2) lim
𝑥→+∞

4𝑥6+𝑥+4

2𝑥6−5𝑥+1
= lim

𝑥→+∞

4𝑥6

2𝑥6
=

4

2
= 2 

Donc lim
𝑥→+∞

3𝑥6+𝑥+4

2𝑥6−5𝑥+1
= 2 

3.3- Autre Exemple 

1) Déterminons la limite en +∞  de la fonction définie par : 𝑓(𝑥) = √𝑥2 + 1 − 𝑥 

On a: lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

√𝑥2 + 1 − 𝑥 = √+∞−∞ = +∞−∞ ? ? 

(On ne peut conclure directement) 

En effet, ∀ 𝑥 ∈ ℝ, √𝑥2 + 1 + 𝑥 ≠ 0, alors on peut écrire : 

√𝑥2 + 1 − 𝑥 =
(√𝑥2+1−𝑥)(√𝑥2+1+𝑥)

(√𝑥2+1+𝑥)
  (expression conjuguée de √𝑥2 + 1 − 𝑥) 

   =
𝑥²+1−𝑥²

√𝑥2+1+𝑥
  

 √𝑥2 + 1 − 𝑥 =
1

√𝑥2+1 +𝑥
,   

⟹ lim
𝑥→+∞

√𝑥2 + 1 − 𝑥 = lim
𝑥→∞

1

√𝑥2+1 +𝑥
=

1

+∞
= 0  

Donc lim
𝑥→+∞

√𝑥2 + 1 − 𝑥 = 0 

2) Déterminons la limite en 2 de la fonction 𝑔 définie par : 𝑔(𝑥) =
𝑥2−4

𝑥2+2𝑥−8
   

On a : lim
𝑥→2

𝑔(𝑥) = lim
𝑥→2

𝑥2−4

𝑥−2
=

0

0
 ? ? (On peut conclure directement). 

On a: 𝐷𝑔 = ]−∞; 2[∪]2;+∞[ 

∀ 𝑥 𝜖 𝐷𝑔, 𝑔(𝑥) =
(𝑥−2 )(𝑥+2)

(𝑥−2 )
= 𝑥 + 2 

  ⟹ lim
𝑥→2

𝑔(𝑥) = lim
𝑥→2

(𝑥 + 2) =  4  

  ⟹ lim
𝑥→2

𝑔(𝑥) = 4  
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III. Continuité 

𝐈𝐈𝐈𝟏 − Définition et propriétés 

1.1- Definition : 

Soit 𝑓 une fonction et 𝑥0 un nombre réel. On dit que 𝑓 est continue en 𝑥0 si 𝑓 est définie en 

𝑥0 et lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0). 

Exemple : 

1) 𝑓(𝑥) = 𝑘 ⟺ 𝑓(𝑥0) = 𝑘 ; (𝑥0 ∈ ℝ), 𝑓 est une fonction constante. 

lim
𝑥→𝑥0

𝑓(𝑥) = lim
𝑥→𝑥0

𝑘 = 𝑓(𝑥0). 

On n’en déduit que la fonction 𝑓(𝑥) = 𝑘 est constante en tout élément de ℝ. 

2) 𝑔(𝑥) = 𝑥2 + 1 

Démontrons que 𝑔 est continue en 3. 

𝑔 est continue en 3 si et seulement si lim
𝑥→3

𝑔(𝑥) = 𝑔(3) 

𝑔(𝑥) = 𝑥2 + 1 ⟺ 𝑔(3) = 32 + 1 = 10  et 𝑒𝑡  lim
𝑥→3

𝑔(𝑥) = 32 + 1 = 10 

lim
𝑥→3

𝑔(𝑥) = 𝑔(3) = 10, d’où  𝑔 est continue en 3. 

1.2- Continuité en 𝒙𝟎 de fonctions élémentaires. 

Propriété : 

1) Les fonctions suivantes sont continues en tout élément 𝑥0 de leur ensemble de 

définition. Il s’agit de 𝑓(𝑥) = |𝑥 |, 𝑔(𝑥) = 𝑢𝑛, (𝑛 𝜖 ℕ), 𝑞(𝑥) = √𝑥, 𝑝(𝑥) =
1

𝑥𝑛
, (𝑛 𝜖 ℕ∗), 

𝑤(𝑥) = cos 𝑥,   𝑡(𝑥) = sin 𝑥. 

2) Soit 𝑓 𝑒𝑡 𝑔 deux fonctions continues en 𝑥0. 

Les fonctions  𝑓 + 𝑔, 𝑘𝑓, (𝑘 𝜖 ℝ), et |𝑓| sont continues en 𝑥0. 

 Si 𝑔(𝑥0) ≠ 0, alors la fonction 
𝑓

𝑔
 est continue en 𝑥0. 

 Si 𝑓(𝑥0) ≥ 0, alors la fonction √𝑓 est continue en tout nombre réel 𝑥0. 

Exemple :  

 Les fonctions polynômes et les fonctions rationnelles sont continues en tout élément 

de leur ensemble de définition. 

 La fonction 𝑓,  définie par 𝑓(𝑥) = √𝑥2 + 1, est continue en tout nombre réel 𝑥0. 

 La fonction tangente est continue en tout élément de son ensemble de définition. 

 La fonction  𝑔,  definie par 𝑔(𝑥) = |2𝑥 + 3|, 𝑒𝑠𝑡 continues en tout nombre réel 𝑥0. 

Propriété : 

Soit a et b  deux nombres réels avec (𝑎 ≠ 0), 𝑓 une fonction et 𝑔 la fonction définie par : 

𝑔(𝑥) = 𝑓(𝑎𝑥 + 𝑏), 𝑓 est continu en 𝑎𝑥𝑜 + 𝑏 si et seulement si 𝑔 est continue en 𝑥0. 

Exemple : 

La fonction 𝑓 définie par 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 +
𝜋

2
) est continue tout nombre réel 𝑥0. 

𝐈𝐈𝐈𝟏 − Prolongement d’une fonction par continuité. 

2.1- Definition : 

Soit 𝑓 une fonction non définie en 𝑥0, et 𝑙 un nombre réel tel que: lim
𝑥→𝑥0

𝑓(𝑥) = 𝑙.  
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On Appelle prolongement de 𝑓 par continuité en 𝑥0, la fonction  définie par : 

{
𝑔(𝑥) = 𝑓(𝑥), 𝑠𝑖 𝑥 ∈ 𝐷𝑓

𝑔(𝑥0) = 𝑙
 

Exemples : 

1) Soit 𝑓(𝑥) =
sin𝑥

𝑥
, 

𝐷𝑓 = ]−∞; 0[∪]0, +∞[  

On a: lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

sin𝑥

𝑥
= 1, (𝑙 = 1), alors : {

𝑔(𝑥) =
sin𝑥

𝑥
, 𝑠𝑖 𝑥 ≠ 0

𝑔(0) = 1
 est donc le 

prolongement par continuité de 𝑓 en 0. 

2) 𝑓(𝑥) =
√𝑥−1

𝑥−1
 

𝑓(𝑥) existe si et seulement si : {
𝑥 ≥ 0
𝑒𝑡

𝑥 − 1 ≠ 0
⟺ {

𝑥 ≥ 0
𝑒𝑡

𝑥 ≠ 1
⟺ {

𝑥 ∈  [0;+∞[

𝑥 ∈ ]−∞; 1[ ∪ ]1; +∞[
 

   

    ⟺ 𝑥 ∈ [0; 1[∪]1;+∞[  

    ⟺ 𝐷𝑓 = [0; 1[∪]1;+∞[  

lim
𝑥→1

𝑓(𝑥) = lim
𝑥→1

(
√𝑥−1

𝑥−1
)   

  = lim
𝑥→1

(√𝑥−1)(√𝑥+1)

(𝑥−1)(√𝑥+1)
  

  = lim
𝑥→1

𝑥−1

(𝑥−1)(√𝑥+1)
  

  = lim
𝑥→1

1

√𝑥+1
  

  =
1

2
  

⟹ lim
𝑥→1

𝑓(𝑥) =
1

2
,  

lim
𝑥→1

𝑓(𝑥) =
1

2
, alors la fonction 𝑔 définie par : {

𝑔(𝑥) =
√𝑥−1

𝑥−1
, 𝑠𝑖 𝑥 ∈ 𝐷𝑓

𝑔(1) =
1

2

 est le prolongement 

de 𝑓 par continuité en 1. 

 

FIN 
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Chapitre 3 : Dérivation 

I. Dérivation en 𝒙𝟎 

𝑰𝟏 −  Nombre derivé d’une fonction en 𝒙𝟎 

1.1- Définition : 

Soit 𝑓 une fonction définie sur un intervalle ouvert 𝐾 et 𝑥0 un élément de 𝐾. 

On dit que 𝑓 est dérivable en 𝑥0 si 
𝑓(𝑥0)−𝑓(𝑥0)

𝑥−𝑥0
 a une limite finie en 𝑥0. Cette limite est 

appelée nombre dérivé 𝑓 en 𝑥0 notée 𝑓′(𝑥0). 

On a alors : lim𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓′(𝑥0) 

Remarque :  

Parfois on peut poser : h= 𝑥 − 𝑥0 ⟺ 𝑥 = ℎ + 𝑥0 

Donc lorsque𝑥 → 𝑥0 , alors ℎ → 0. 

On a alors : limℎ→0
𝑓(ℎ+𝑥0)−𝑓(𝑥0)

ℎ
= 𝑓′(𝑥0) 

Exemple 1 : 

 Soit 𝑓(𝑥) =
𝑥

2𝑥+1
 

Etudions la dérivabilité de 𝑓 en −1. 

On a : ∀ 𝑥 ∈ 𝐷𝑓 ∖ {−1},  

   
𝑓(𝑥)−𝑓(−1)

𝑥−(−1)
=

𝑥

2𝑥+1
−1

𝑥+1
  

          =
−(𝑥+1)

(2𝑥+1)(𝑥+1)
  

          =
−1

2𝑥+1
  

   
𝑓(𝑥)−𝑓(−1)

𝑥−(−1)
=

−1

2𝑥+1
 , 

⟹ lim𝑥→−1
𝑓(𝑥)−𝑓(−1)

𝑥−(−1)
= lim𝑥→1

−1

2𝑥+1
= 1  

On en déduit que : lim
𝑥→−1

𝑓(𝑥)−𝑓(−1)

𝑥−(−1)
= 1 , donc  𝑓 est dérivable en -1 et 𝑓′(−1) = 1 est appelé 

nombre dérivé de 𝑓 en −1. 

Exemple2 : 

Soit 𝑔(𝑥) = |𝑥| 

Etudions la dérivation de 𝑔 en 0 

On a : ∀ 𝑥 ∈  ℝ∗, 
𝑔(𝑥)−𝑔(0)

𝑥−0
=

|𝑥|

𝑥
 

Alors : 
𝑔(𝑥)−𝑔(0)

𝑥−0
= {

=
−𝑥

𝑥
= −1 , 𝑠𝑖 𝑥 < 0

=
𝑥

𝑥
= 1,    𝑠𝑖 𝑥 > 0   

 

On en déduit que : lim𝑥→0+
𝑔(𝑥)−𝑔(0)

𝑥−0
= 1 𝑒𝑡 lim𝑥→0−

𝑔(𝑥)−𝑔(0)

𝑥−0
= −1  

lim𝑥→0+
𝑔(𝑥)−𝑔(0)

𝑥−0
≠ lim𝑥→0−

𝑔(𝑥)−𝑔(0)

𝑥−0
 ; donc 𝑔 n’est pas dérivable en 0. 

1.2-Interprétation graphique : 

Soit 𝑓 une fonction, (𝐶) sa présentation et A un point de (𝐶) d’abscisse𝑥0 . Si 𝑓 est dérivable 

en 𝑥0, alors (𝐶) admet une tangente (𝑇) en A dont le coefficient directeur  est 𝑓′(𝑥0). 

On a : (𝑻): 𝒚 = 𝒇′(𝒙𝟎)(𝒙 − 𝒙𝟎) + 𝒇(𝒙𝟎), appelée équation de la tangente (𝑇) au point 

d’abscisse 𝑥0. 
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Exemple : 

Soit ℎ une fonction définie par : ℎ(𝑥) =
𝑥²−4

𝑥+2
 . 

Déterminons une équation de la tangente (𝑇) au point 𝐴(1 ; −1) de la fonction ℎ. 

On a : 𝑥0 = 1 et ℎ(1) =
1−4

1+2
= −1 ⟹ ℎ(1) = −1 

ℎ(𝑥)−ℎ(1)

𝑥−1
=

𝑥2−4

𝑥+2
+1

𝑥−1
  

  =
𝑥2−4+𝑥+2

(𝑥+2)(𝑥−1)
  

  =
(𝑥−1)(𝑥+2)

(𝑥+2)(𝑥−1)
  

 
ℎ(𝑥)−ℎ(1)

𝑥−1
= 1,  

⟹ lim𝑥→1
ℎ(𝑥)−ℎ(1)

𝑥−1
= 1 ⟹ ℎ′(1) = 1  

On a : ℎ(1) = −1 et ℎ′(1) = 1 

 on en déduit que : (𝑇) : 𝑦 = ℎ’(1)(𝑥 − 1) + ℎ(1)  

   ⟺ 𝑦 = 1(𝑥 − 1) − 1 = 𝑥 − 2  

   ⟺ (𝑻): 𝒚 = 𝒙 − 𝟐 est une équation de la tangente (𝑇).  

1.3- Dérivabilité et continuité en 𝒙𝟎. 

Propriété : Une fonction est dérivable  en 𝑥0,  alors elle est continue en 𝑥0. 

Remarque : une fonction continue en 𝑥0 n’est pas forcement dérivable en 𝑥0. 

𝑰𝟐 – Dérivabilité à gauche, dérivabilité à droite  

2.1- Définitions et propriétés  

a- Définitions : 

Soit 𝑓 une fonction définie en 𝑥0. 

1) On dit que 𝑓 est dérivable à gauche en 𝑥0, si 𝑓 est définie sur un intervalle de la 

forme :]𝑎; 𝑥0] et  
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
  a une limite finie à gauche en 𝑥0 (𝑥0

< ou 𝑥0
−) 

C’est-à-dire : lim𝑥→𝑥0
<
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓𝑔′(𝑥0) = 𝑙 

Cette limite est appelée nombre dérivé de 𝑓 à gauche ou (par valeur inférieur) en 𝑥0 notée 

𝑓𝑔′(𝑥0). 

2) On dit que 𝑓  est dérivable à droite en 𝑥0, si 𝑓  est définie sur un intervalle de la 

forme : [𝑥0; 𝑏[ 𝑒𝑡 
𝑓(𝑥)−𝑓(𝑥𝑂)

𝑥−𝑥0
  a une limite finie à droite en 𝑥0 (𝑥0 

> ou  𝑥+). 

C’est-à-dire : lim𝑥→𝑥0
>
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= 𝑓′𝑑(𝑥0) = 𝑙 

Cette limite est appelée nombre dérivée de 𝑓  à droite ou (par valeur supérieur) en 𝑥0 notée 

𝑓𝑑′(𝑥0). 

Remarque : 

Soit 𝑓  une fonction et (𝐶) sa courbe représentative si 𝑓 est dérivable à gauche 

(respectivement, à droite) en 𝑥0, alors (𝐶) admet une demi-tangente à gauche 

(respectivement, à droite) au point d’abscisse 𝑥0, dont le coefficient directeur est le nombre 

dérivé de 𝑓 à gauche (respectivement, à droite) en 𝑥0. 

Exemple1 : 
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Soit 𝑓 une fonction définie sur [0; +∞[ par : 𝑓(𝑥) = 𝑥² et (𝐶𝑓) sa représentation 

graphique. 

On a : lim𝑥→0+
𝑓(𝑥)−𝑓(0)

𝑥−0
= lim𝑥→0+

𝑥2

𝑥
= 0, alors 𝑓 est dérivable à droite en 𝑥0, donc (𝐶𝑓) 

admet une demi-tangente à droite au point 0, de coefficient directeur 𝑓′
𝑑
(0) = 0 

Exemple2 :   

Soit 𝑔 la fonction définie par : 𝑔(𝑥) = {
𝑥², 𝑠𝑖 𝑥 ∈ ]−∞, 1]
1

𝑥,
, 𝑠𝑖 𝑥 ∈ [1; +∞[ ,

et (𝐶𝑔) sa courbe représentative. 

 On a: lim𝑥→1−
𝑔(𝑥)−𝑔(1)

𝑥−1
= lim𝑥→1−

𝑥2−1

𝑥−1
 

   = lim
𝑥→1−

(𝑥−1)(𝑥+1)

𝑥−1
  

   = lim𝑥→1−(𝑥 + 1) = 2  

lim𝑥→1−
𝑔(𝑥)−𝑔(1)

𝑥−1
= 0, donc (𝐶𝑔) admet une demi-tangente à gauche au point 𝐴(1; 1), de 

coefficient directeur 𝑔’𝑔(1) = 2. 

 On a : lim𝑥→1+
𝑔(𝑥)−𝑔(1)

𝑥−1
= lim

𝑥→1+

1

𝑥
−1

𝑥−1
  

        = lim
𝑥→1+

(−
1

𝑥
) = −1, 

lim𝑥→1+
𝑔(𝑥)−𝑔(1)

𝑥−1
= −1 , donc (𝐶𝑔) admet une demi-tangente à droite au point A de 

coefficient directeur 𝑔’𝑑(1) = −1. 

Remarque : 

On en déduit que les fonctions 𝑓 𝑒𝑡 𝑔 ne sont pas dérivables en 0 (respectivement, en 1). 

Exemple 3 :  

Soit ℎ(𝑥) = {
𝑥²− 1, 𝑠𝑖 𝑥 ∈  ]−∞; 1]

2 −
2

𝑥
, 𝑠𝑖 𝑥 ∈  [1; +∞[,

 et (𝐶ℎ) sa courbe représentative. 

 On a : lim𝑥→1−
ℎ(𝑥)−ℎ(1)

𝑥−1
= lim

𝑥→1−

𝑥²−1

𝑥−1
= lim

𝑥→1−
(𝑥 + 1) = 2,  

lim𝑥→1−
ℎ(𝑥)−ℎ(1)

𝑥−1
= 2, donc (𝐶ℎ) admet une demi-tangente au point 𝐼 à gauche de 

coefficient directeur 2. 

 On a : lim𝑥→1+
ℎ(𝑥)−ℎ(1)

𝑥−1
= lim

𝑥→1+

2−
2

𝑥

𝑥−1
= lim

𝑥→1+
(
2

𝑥
) = 2 

lim𝑥→1+
ℎ(𝑥)−ℎ(1)

𝑥−1
= 2, donc (𝐶ℎ) admet une demi-tangente à droite au point 𝐼 de 

coefficient directeur 2. 

On remarque que : lim𝑥→1−
ℎ(𝑥)−ℎ(1)

𝑥−1
= lim𝑥→1+

ℎ(𝑥)−ℎ(1)

𝑥−1
= 2, alors lim𝑥→1

ℎ(𝑥)−ℎ(1)

𝑥−1
= 2 et 

la fonction ℎ est dérivable en 1, sa courbe (𝐶ℎ) admet au point 𝐼 une tangente de coefficient 

directeur 2. 

b- Propriétés : 

Une fonction 𝑓 est dérivable en 𝑥0 si et seulement si, elle est dérivable à  gauche et à droite 

et les nombres dérivés  à gauche et à droite sont égaux.  

C’est-à-dire si :  lim𝑥→𝑥0
+
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
= lim𝑥→𝑥0

−
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
,  c’est alors qu’on dit que 𝑓 est 

dérivable en 𝑥0, sinon elle ne l’est pas en 𝑥0. 

𝑰𝟑 −Fonctions dérivées 
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3.1- Définitions : 

Soit 𝑓 une fonction. 

 L’ensemble des nombres réels en les quels 𝑓 est dérivable appelé ensemble de 

dérivabilités de 𝑓. 

 La fonction 𝑥 → 𝑓′(𝑥) est appelé fonction dérivée de 𝑓. 

II. Calculs de dérivées 

𝐈𝐈𝟏 − Dérivées des fonctions élémentaires 

On appelle dérivée de la fonction 𝑓(𝑥) et on note : 𝑓’(𝑥) 

Tableau récapitulatif des dérivées des fonctions élémentaires 

Fonction 𝑓(𝑥) Domaine de définition 

de 𝑓 

Domaine de dérivabilité 

de 𝑓 

Dérivée 𝑓′(𝑥) 

𝑓(𝑥) = 𝑘; (𝑘 ∈ ℝ) 𝑓 est définie sur ℝ 𝑓 est dérivable sur ℝ 𝑓′(𝑥) = 0 

𝑓(𝑥) = 𝑥 𝑓 est définie sur ℝ 𝑓 est dérivable sur ℝ 𝑓′(𝑥) = 1 

𝑓(𝑥) = 𝑥𝑛; (𝑛 > 1) 𝑓 est définie sur ℝ 𝑓 est dérivable sur ℝ 𝑓′(𝑥) = 𝑛. 𝑥𝑛−1 

𝑓(𝑥) =
1

𝑥
 

𝑓 est définie sur ℝ∗ 𝑓 est dérivable sur ℝ∗ 
𝑓′(𝑥) = −

1

𝑥2
 

𝑓(𝑥) = √𝑥 𝑓 est définie sur ℝ+
∗  𝑓 est dérivable sur ℝ+

∗  
𝑓′(𝑥) =

1

2√𝑥
 

 

𝟏. 𝟏 −Dérivée de la fonction sinus, cosinus et tangente  

Propriété 

 La fonction sinus est dérivable en 0 et a pour nombre dérivé 1 et lim𝑥→0
𝑠𝑖𝑛𝑥

𝑥
= 1 

 La fonction cosinus est dérivable en 0 et a pour nombre dérivé 0 et lim𝑥→0
𝑐𝑜𝑠𝑥−1

𝑥
= 0 

Ces deux résultats sont  appelés limites de références. On pourrait les démontrer à partir de 

la classe de terminale S. 

 

Tableau récapitulatif des dérivées des fonctions sinus, cosinus et tangente 

Fonction 𝑓(𝑥) Domaine de définition 

de 𝑓 

Domaine de dérivabilité 

de 𝑓 

Dérivée 𝑓′(𝑥) 

𝑓(𝑥) = 𝑠𝑖𝑛𝑥 ℝ ℝ 𝑓′(𝑥) = 𝑐𝑜𝑠𝑥 

𝑓(𝑥) = 𝑐𝑜𝑠𝑥 ℝ ℝ 𝑓′(𝑥) = −𝑠𝑖𝑛𝑥 

𝑓(𝑥) = 𝑡𝑎𝑛𝑥 ℝ\ {
𝜋

2
+ 𝑘𝜋, 𝑘 ∈ ℤ} ℝ\ {

𝜋

2
+ 𝑘𝜋, 𝑘 ∈ ℤ} 𝑓′(𝑥) = 1 + 𝑡𝑎𝑛²𝑥 

 

𝐈𝐈𝟐 −Derivées et opération sur les fonctions 

Tableau récapitulatif 

Dans ce tableau  𝑈 et 𝑉 sont des fonctions dérivables sur un intervalle ouvert 𝐾. 

 

Operations sur les fonctions Fonctions Dérivées des fonctions 

Dérivée de la somme de deux fonctions 𝑈 + 𝑉 𝑈′ + 𝑉′ 

Dérivée du produit de deux fonctions 𝑈𝑉 𝑈′𝑉 + 𝑈𝑉′ 
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Dérivée de la puissance d’une fonction 𝑈𝑛;  (𝑛 ∈ ℕ), 𝑛 ≥ 2 𝑛. 𝑈′. 𝑈𝑛−1 

Dérivée de l’inverse d’une fonction 1

𝑉
 −

𝑉′

𝑉2
 

Dérivée du quotient de deux fonctions 𝑈

𝑉
 

𝑈′𝑉 − 𝑈𝑉′

𝑉2
 

Dérivée de la racine carrée d’une fonction √𝑈 𝑈′

2√𝑈
 

Dérivée de la fonction : 𝑥 → 𝑈(𝑎𝑥 + 𝑏) 𝑈(𝑎𝑥 + 𝑏) 𝑎𝑈′(𝑎𝑥 + 𝑏) 

Dérivée de 𝑐𝑜𝑠 ∘ (𝑢) 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) −𝑎. 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 

Dérivée de 𝑠𝑖𝑛 ∘ (𝑢) 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 𝑎. 𝑐𝑜𝑠(𝑎𝑥 + 𝑏) 

Dérivée du produit d’une fonction par un 

scalaire 

𝑘𝑉; (𝑘 ∈ ℝ) 𝑘𝑉′ 

Exemples :  

Calculons la dérivée de la fonction 𝑓 dans les cas suivants : 

a) 𝑓(𝑥) = 2𝑥 +
1

𝑥
  .  

On pose :  {
𝑈(𝑥) = 2𝑥

𝑉(𝑥) =
1

𝑥

 ⟹ {
𝑈′(𝑥) = 2

𝑉′(𝑥) = −
1

𝑥²

 

Donc 𝑓’(𝑥) = 2 −
1

𝑥²
= 

2𝑥²−1

𝑥²
  

⟹ 𝑓′(𝑥) =
2𝑥2−1

𝑥2
 ; 𝑓 est dérivable sur chacun des intervalles ]−∞; 0[ et ]0; +∞[, donc sur ℝ∗ 

b) 𝑓(𝑥) = 𝑥²𝑐𝑜𝑠𝑥 

On pose :  {
𝑈(𝑥) = 𝑥²  
𝑉(𝑥) = 𝑐𝑜𝑠𝑥

 ⟹ {
𝑈′(𝑥) = 2𝑥

𝑉′(𝑥) = −𝑠𝑖𝑛𝑥
 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 𝑈′𝑉 + 𝑈𝑉′  

    ⟹ 𝑓′(𝑥) = 2𝑥𝑐𝑜𝑠𝑥 − 𝑥²𝑠𝑖𝑛𝑥  

c) 𝑓(𝑥) = 3𝑥² 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 3 × 2𝑥 = 6𝑥, donc 𝑓′(𝑥) = 6𝑥 

d) 𝑓(𝑥) = 𝑠𝑖𝑛²𝑥 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 2(𝑠𝑖𝑛𝑥)′. (𝑠𝑖𝑛𝑥)2−1 

⟹ 𝑓′(𝑥) = 2𝑐𝑜𝑠𝑥. 𝑠𝑖𝑛𝑥 
e) 𝑓(𝑥) =  (2𝑥 + 1)3 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 3 × (2𝑥 + 1)′. (2𝑥 + 1)3−1 

   ⟹ 𝑓′(𝑥) = 6(2𝑥 + 1)² 

f) 𝑓(𝑥) =
1

𝑥2+1 
.  

 𝑓 est derivable sur ℝ  et 𝑓′(𝑥) = −
(𝑥2+1)′

(𝑥2+1)2
=

−2𝑥

(𝑥2+1)2
  

g) 𝑓(𝑥) =
2𝑥

𝑥+2
  

On pose :  {
𝑈(𝑥) = 2𝑥     
𝑉(𝑥) = 𝑥 + 2

⟹ {
𝑈′(𝑥) = 2

𝑉′(𝑥) = 1
 

𝑓(𝑥) =
𝑈

𝑉
 , 𝑓 est dérivable sur ℝ ∖ {−2} et on a :  

  𝑓′(𝑥) =
𝑈′𝑉−𝑉′𝑈

𝑉²
 =

2(𝑥+2)−2𝑥

(𝑥+2)2
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  𝑓′(𝑥) =
2𝑥+4−2𝑥

(𝑥+2)2
   ⟹ 𝑓′(𝑥) =

4

(𝑥+)²
   

h) 𝑓(𝑥) = √𝑥2 + 1 

𝑓 est dérivable sur ℝ et on a :  

 𝑓′(𝑥) =
(𝑥2+1)′

2√𝑥2+1
 

   𝑓′(𝑥) =
2𝑥

2√𝑥2+1
 ⟹ 𝑓′(𝑥) =

𝑥

√𝑥2+1
 

i) 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 −
𝜋

3
) 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = −2𝑠𝑖𝑛 (2𝑥 −
𝜋

3
). 

j) 𝑓(𝑥) = 𝑠𝑖𝑛 (4𝑥 +
2𝜋

3
) 

𝑓 est dérivable sur ℝ et 𝑓′(𝑥) = 4𝑐𝑜𝑠 (4𝑥 +
2𝜋

3
). 

III. Applications de la dérivée : 

𝐈𝐈𝐈𝟏 − Sens de variation d’une fonction 

1.1 −Théorème: 

Soit 𝑓 une fonction définie sur sur un intervalle ouvert K. 

 𝑓 est croissante sur K si et seulement si 𝑓’ est positive sur K 

 𝑥 ∈ 𝐾 

𝑓′(𝑥) + 
𝑓(𝑥)  

 
 
 

 

 𝑓 est dite décroissante sur K si et seulement si 𝑓’ est négative sur K. 

 𝑥 ∈ 𝐾 

𝑓′(𝑥) − 
𝑓(𝑥)  

 
 
 

 𝑓 est constante sur K si et seulement si 𝑓’ est nulle K. 

Exemple : 

soit 𝑓 la fonction définie par 𝑓(𝑥) = 𝑥3 − 3𝑥 − 1. 

𝑓 est dérivable sur ℝ et 𝑓 ′(𝑥) = 3𝑥2 − 3 = 3(𝑥 − 1)(𝑥 + 1). 

On a : 𝑓’(𝑥) = 3(𝑥 − 1)(𝑥 + 1), donc 𝑓’(𝑥) = 0 ⟺ 3 ≠ 0 𝑒𝑡 𝑥 = 1 ou 𝑥 = −1 

Tableau de signe 

𝑥 −∞               − 1                                           1                          + ∞ 

𝑥 + 1 − + + 

𝑥 − 1 − − + 

(𝑥 − 1)(𝑥 + 1)  + − + 
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𝑓′(𝑥) = 3(𝑥 − 1)(𝑥 + 1)  + − + 

Calcul de limites et d’images : 

 𝑓(−1) = 1  

 𝑓(1) = −3  

 lim𝑥→−∞ 𝑓(𝑥) = −∞  

 lim𝑥→+∞ 𝑓(𝑥) = +∞  
     

Tableau de variation 

𝑥 −∞                         − 1                                                  1                                                 

+ ∞ 

𝑓′(𝑥) + − + 

𝑓(𝑥)                                         1      

 

                                                          

                             

                                                    +∞                                                             

−∞                                                                                      −3 

 

                                    Sens de variation  

 ∀𝑥 ∈ ]−∞;−1[ ∪ ]1;+∞[, 𝑓′(𝑥) > 0, alors 𝑓 est strictement croissante sur 

]−∞;−1[ ∪ ]1;+∞[ 

 ∀𝑥 ∈ ]−1; 1[, 𝑓′(𝑥) < 0, alors 𝑓 est strictement décroissante ]−1; 1[. 

Remarque:  

 Si 𝑓′(𝑥) > 0 sur K, alors 𝑓 est strictement croissante sur K ; 

 Si 𝑓′(𝑥) < 0 sur K, alors 𝑓 est strictement décroissante sur K ; 

 Si 𝑓’(𝑥) a un signe constant sur K et ne s’annule en un nombre fini d’élément de K, 

alors 𝑓 est dite strictement monotone si et seulement si 𝑓 est soit croissante ou soit 

décroissante. 

1.2 −Extremum relatif d’une fonction  

Propriété : 

Soit 𝑓 une fonction dérivable sur un intervalle ]𝑎; 𝑏[ et 𝑥0 un élémentde]𝑎; 𝑏[. Si 𝑓 s’annule 

et change de signe en 𝑥0, alors 𝑓 admet un extremum relatif en 𝑥0. 

 

Tableaux de variations 

𝑥 𝑎                                 𝑥0                                                𝑏 

𝑓′(𝑥) + − 

𝑓(𝑥) 

 
                             𝑀( 𝑥0

𝑓(𝑥0)
)  

 

 

 𝑓 admet un maximum 𝑀 relatif en 𝑥0 
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𝑥 𝑎                                 𝑥0                                                𝑏 

𝑓′(𝑥) − + 

𝑓(𝑥) 

 

 

 

                             𝑚( 𝑥0
𝑓(𝑥0)

) 

𝑓 admet un minimum 𝑚 relatif en 𝑥0 

 

Exemple :  

Soit 𝑓(𝑥) = 𝑥3 − 3𝑥 − 1 

D’après l’exemple précédent, on a le tableau de variation suivante :  

𝑥 −∞                         − 1                                                  1                                                 + ∞ 

𝑓′(𝑥) + − + 

𝑓(𝑥)                                         1      

 

 

                                             

                                                     +∞ 

−∞                                                                                      −3 

 

 ∀𝑥 ∈ ]−∞;−1[ ∪ ]1;+∞[, 𝑓′(𝑥) > 0, alors 𝑓 est strictement croissante sur 

]−∞;−1[ ∪ ]1;+∞[ 

 ∀𝑥 ∈ ]−1; 1[, 𝑓′(𝑥) < 0, alors 𝑓 est strictement décroissante ]−1; 1[. 

𝑓 s’annule et change de signe en −1  𝑒𝑡 1, donc 𝑓 décrit au point 𝑀(−1
1
) un maximum relatif 

à la courbe  (𝐶𝑓) et au point 𝑚( 1
−3
) un minimum relatif à (𝐶𝑓). 

      

 

 

   Fi n 
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Chapitre 4 : Applications 

I. Généralités 

I1 − Fonctions et application 

1.1 − Fonctions: 

1.1.1 −Définition : 

Soient E et F deux ensembles. 

On appelle fonction de E dans F, toute relation entre ces deux ensembles E et F pour laquelle, 

à chaque élément de E, on associe au plus un élément de F. 

E est appelé ensemble de départ et F l’ensemble d’arrivée. 

Notation : 

Soit 𝑓 une fonction. 

On note : 
𝒇: 𝑬 ⟶ 𝑭          

 𝒙 ⟼ 𝒇(𝒙)
 

Remarque : 

∀𝑥 ∈ 𝐸, 𝑓(𝑥) ∈ 𝐹. On dit que 𝑓(𝑥) est l’image de , 𝑥 et que , 𝑥 est l’antécédent de , 𝑓(𝑥). 

1.2 − Application: 

1.2.1 −Définition : 

Soient E et F deux ensembles distincts ou non. 

On appelle application, c’est une relation d’un ensemble E vers un ensemble F telle que tout 

élément de E a une et une seule image F. 

Notation : 

Soit 𝑓 une application. 

On note : 
𝒇: 𝑬 ⟶ 𝑭          

 𝒙 ⟶ 𝒇(𝒙)
 

1.3 − Restriction et prolongement d’une fonction: 

1.2.1 −Définition : 

Soit 𝑓 une fonction de E vers F et a une partie de E. 

1) On appelle restriction de , 𝑓 à A, la fonction notée , 𝑔 définie par : 

 
𝒈:𝑨 ⟶ 𝑭          
 𝒙 ⟼ 𝒇(𝒙)

 

On restreint le domaine d’étude à une partie de E. 

2) On dit que 𝑓 est le prolongement de 𝑔 à E tel que : ∀𝑥 ∈ 𝐸, 𝑓(𝑥) = 𝑔(𝑥). 

1.4 − Composition des fonctions  

1.4.1 − Définition: 

Soient E, F et g trois ensembles. 

𝑓: 𝐸 ⟶ 𝐹 et 𝑔: 𝐹 ⟶ 𝐺 deux fonctions 

On appelle composée de 𝑓 par 𝑔, la fonction de E vers G notée 𝑔 ∘ 𝑓 définie pour tout x de E 

tel que ∀𝑥 ∈ 𝐷𝑓 et ∀𝑓(𝑥) ∈ 𝐷𝑔 par :  𝑔 ∘ 𝑓(𝑥) = 𝑔[𝑓(𝑥)]. 

1.4.2 − Propriété: 

Soient 𝑓: 𝐸 ⟶ 𝐹,  𝑔: 𝐹 ⟶ 𝐺 et ℎ: 𝐺 ⟶ 𝐻 trois fonctions, on a : 

 ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓. 

On dit que la composée des fonctions est associative et on écrit:  
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ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ 𝑔 ∘ 𝑓  

I2 − Applications particulières  

2.1 − Injections et surjections 

2.1.1 −Définitions et propriété:  

Soit 𝑓 une application de E vers F. 

- On dit que 𝑓 est une injection  ou injective, si tout élément de F a au plus un 

antécédent par 𝑓. 𝑓 est injective si et seulement si ; pour tous réels a et b de E, on a :  

𝑓(𝑎) = 𝑓(𝑏) ⟹ 𝑎 = 𝑏 

- On dit que 𝑓 est une surjection  ou surjective, si tout élément de F a au moins un 

antécédent par 𝑓 . 

2.2 − Bijections  

2.1.1 −Définition:  

Soit 𝑓 une application. 

On dit que 𝑓 est bijective ou est une bijection, si et seulemnt si 𝑓 est injective et surjective. 

2.3 − Bijection réciproque d’une bijection : 

2.3.1 −Propriété:  

Soit 𝑓 une application bijective de E vers F et 𝑔 une application de F vers E. 

Si 𝒇 ∘ 𝒈 = 𝑰𝒅𝑭 ou 𝒈 ∘ 𝒇 = 𝑰𝒅𝑬, alors 𝒈 est la bijection réciproque de 𝑓. On la note 𝑓−1. 

 2.4 − Composée de deux bijection : 

2.4.1 −Propriété:  

Soit 𝑓 une bijective de E vers F et 𝑔 l’autre bijection de F vers G. 

𝒈 ∘ 𝒇 est une bijection  de E vers G et on a : (𝒈 ∘ 𝒇)−𝟏 = 𝒈−𝟏 ∘ 𝒇−𝟏 

I3 − Comparaison des fonctions  

3.1 −Majoration, minoration:  

3.1.1 −Définition:  

Soit 𝑓 une fonction définie sur un ensemble E. 

- 𝑓 est minorée sur E, s’il existe un nombre réel 𝑚 tel que : ∀𝑥 ∈ 𝐸,𝑚 ≤ 𝑓(𝑥) ; 

- 𝑓 est majorée sur E, s’il existe un nombre réel 𝑀 tel que : ∀𝑥 ∈ 𝐸, 𝑓(𝑥) ≤ 𝑀 ; 

- 𝑓 est bornée sur E, si 𝑓 est à la fois minorée et majorée sur E : 

   ∀𝑥 ∈ 𝐸,𝑚 ≤  𝑓(𝑥) ≤ 𝑀. 

Exercice d’application : 

Exercice 1 

Soit 𝑓 la fonction numérique définie par : 𝑓(𝑥) =
3𝑥+5

2𝑥−3
 

1) Montrer que le réel 
3

2
 n’a pas d’antécédent par 𝑓. 

2) Montrer que le réel 
3

2
 n’a pas d’image par 𝑓 et en déduire l’ensemble de définition de 𝑓 

3) Montrer que 𝑓 est une bijection de ℝ ∖ {
3

2
} vers ℝ ∖ {

3

2
} et déterminer sa bijection réciproque. 

4) Déterminer la composée𝑓𝑜𝑓. 

5) Soit A  l’intervalle ; A= ]
3

2
; +∞[. 

Déterminer l’ensemble des réels 𝑥 tels que 𝑓(𝑥) >
3

2
 et en déduire l’image réciproque de A par 𝑓. 

Exercice 2 
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Soit E= {0; 1}. A tout couple (𝑎, 𝑏) d’éléments de E, on associe le nombre 𝑎 + 𝑏 − 𝑎𝑏 

1) Vérifier qu’on établit ainsi une application de 𝐸 × 𝐸 dans 𝐸. 

2) Cette application est-elle injective ? Est-elle surjective ? 

Exercice 3 

Soit 𝑓, 𝑔 et ℎ les applications de ℝ vers ℝ définies par : 

𝑓(𝑥) = 2𝑥 − 1 ; 𝑔(𝑥) = 𝑥2 − 2 ; ℎ(𝑥) =
1

𝑥−3
 

1) Déterminer l’ensemble de définition deℎ𝑜𝑔𝑜𝑓, puis calculer ℎ𝑜𝑔𝑜𝑓. 

Déterminer l’ensemble de définition de 𝑔𝑜ℎ𝑜𝑓 ; puis calculer 𝑔𝑜ℎ𝑜𝑓. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

41 
 

Chapitre 5 : Etude des fonctions 

I. Généralités sur les fonctions 

I1 − Domaine de définition 

1.1 − Définition: 

On appelle domaine de définition ou ensemble de définition, c’est l’ensemble des nombres 

réels sur lesquels la fonction est définie. Pour une fonction 𝑓, on le note : 𝐷𝑓 . 

1.2 − Domaine de définition des fonctions polynômes 

Toute fonction polynôme est toujours définie sur l’ensemble ℝ. 

Exemple : 

Déterminer le domaine de définition des fonctions suivantes : 

𝑓(𝑥) = 4𝑥2 − 4√3𝑥 + 3  

𝑔(𝑥) = 5𝑥2 − 2𝑥 + 3  

ℎ(𝑥) = 2𝑥2 + 3𝑥 + 2  

1.3 − Domaine de définition des fonctions rationnelles 

Une fonction rationnelle est une fonction du type : 𝐻(𝑥) =
𝐹(𝑥)

𝐺(𝑥)
 où F et G sont des 

polynômes. 

Pour qu’une fonction rationnelle existe, il faut et il suffit que son dénominateur soit différent 

de zéro. 

Exemple : 

Déterminer le domaine de définition des fonctions suivantes : 

𝑓(𝑥) =
5𝑥2−2𝑥+3

𝑥+2
  

𝑔(𝑥) =
5𝑥2+7𝑥−5

2𝑥+3
  

ℎ(𝑥) =
𝑥2−3𝑥+2

(𝑥+4)(𝑥−1)
  

1.4 − Domaine de définition des fonctions racines carrées 

Soit 𝑓(𝑥) = √𝑔(𝑥). 

Pour déterminer le domaine de définition de 𝑓, on pose  𝑔(𝑥) ≥ 0 et on résout cette 

inéquation. 

L’ensemble de solution de cette inéquation est l’ensemble de de définition de la fonction 𝑓. 

Exemple : 

Déterminer le domaine de définition de fonction  𝑓 dans les cas suivantes : 

a) 𝑓(𝑥) = √𝑥  

b) 𝑓(𝑥) = √𝑥2 − 3𝑥 + 2  

c) 𝑓(𝑥) = √
𝑥−1

𝑥−2
   

d) 𝑓(𝑥) =
√𝑥−3 

2𝑥+1
  

e) 𝑓(𝑥) =
√𝑥+2 

√𝑥−3
  

II. Parité, périodicité 

II1 − Définitions: 
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Soit 𝑓 une fonction ayant pour ensemble de définition 𝐷𝑓 et pour représentation graphique 

(𝐶𝑓). 

𝑓 est dite :  

- Paire : Si et seulement si, ∀𝑥 ∈ 𝐷𝑓, −𝑥 ∈ 𝐷𝑓 et 𝑓(−𝑥) = 𝑓(𝑥). 

- Impaire : Si et seulement si, ∀𝑥 ∈ 𝐷𝑓, −𝑥 ∈ 𝐷𝑓 et 𝑓(−𝑥) = −𝑓(𝑥). 

- Périodique de période P(𝑃 ≠ 0 ),Si et seulement si, ∀𝑥 ∈ 𝐷𝑓,  𝑥 − 𝑃 ∈ 𝐷𝑓 , 𝑥 + 𝑃 ∈

𝐷𝑓  et 𝑓(𝑥 − 𝑃) = 𝑓(𝑥 + 𝑃). 

Remarque :  

Les fonctions cosinus et sinus sont périodique, de période 2𝜋. 

Exemple : 

Etudier la parité de la fonction 𝑓 dans chacun des cas suivants :  

a) 𝑓(𝑥) = 2𝑥3 − 5𝑥  

b) 𝑓(𝑥) = 4𝑥4 + 3𝑥2 + 2  

c) 𝑓(𝑥) =
𝑥2−4

𝑥2+1
 

d) 𝑓(𝑥) = 𝑥(𝑥2 − 1) 

e) 𝑓(𝑥) = √2𝑥2 + 3 

III. Eléments de symétrie 

III1 − Axe de symétrie et centre de symétrie 

1.1 − Propriétés: 

Soit 𝑓 une fonction ayant pour ensemble de définition 𝐷𝑓 et (𝐶𝑓) sa représentation graphique 

dans un repère orthonormé. 

- Pour démontrer que la droite (𝐷) d’équation 𝑥 = 𝑎 est un axe de symétrie de (𝐶𝑓), on 

peut vérifier que ∀𝑥 ∈ ℝ,  tel que : 

𝒂 + 𝒙 ∈ 𝑫𝒇 , 𝒂 − 𝒙 ∈ 𝑫𝒇 et 𝒇(𝒂 − 𝒙) = 𝒇(𝒂 + 𝒙). 

- Pour démontrer que le point Ω(𝑎; 𝑏) est un centre de symétrie de (𝐶𝑓), on peut vérifier 

que : 

∀𝑥 ∈ 𝐷𝑓 tel que  𝒂 + 𝒙 ∈ 𝑫𝒇 , 𝒂 − 𝒙 ∈ 𝑫𝒇 et 𝒇(𝒂 − 𝒙) − 𝒇(𝒂 + 𝒙) = 𝟐𝒃. 

Exemple 1 : 

Le plan est muni d’un repère orthogonal (0; 𝑖; 𝑗) et (𝐶) est la représentation graphique de la 

fonction 𝑓. 

Démontrer que la droite (𝐷) est un axe de symétrie dans chacun des cas suivants : 

a) 𝑓(𝑥) = 𝑥2 − 4𝑥 − 1 ,   (𝐷): 𝑥 = 2 

b)  𝑓(𝑥) = −𝑥2 − 2𝑥 + 1, (𝐷) : 𝑥 = −1 

c) 𝑓(𝑥) =
3𝑥

𝑥+1
  ,                 (𝐷): 𝑥 = −2 

Exemple 2: 

Le plan est muni d’un repère orthogonal (0; 𝑖; 𝑗) et (𝐶) est la représentation graphique de la 

fonction 𝑓. 

Démontrer que le point Ω est un centre de symétrie dans chacun des cas suivants :

a) 𝑓(𝑥) = (𝑥 + 1)3 + 1 , Ω(−1; 1) 
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b) 𝑓(𝑥) =
1

𝑥−1
  ,             Ω(1; 0). 

c) 𝑓(𝑥) =
𝑥2

𝑥+2
 ,              Ω(−2;−4). 

𝐈𝐈𝐈𝟐 −Les asymptotes : 

𝟐. 𝟏 − Asymptote parallèle à l’un des axes 

Définition : 

Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

 Lorsque 𝑓 admet une limite finie 𝑙 en +∞ ou en −∞, c'est-à-dire : 𝐥𝐢𝐦
𝒙→+∞

𝒇(𝒙) = 𝒍 ou 

𝐥𝐢𝐦
𝒙→−∞

𝒇(𝒙) = 𝒍, alors la droite d’équation 𝒚 = 𝒍 est dite asymptote horizontale à 

(𝐶𝑓) ; 

 Lorsque 𝑓 admet une limite infinie à droite ou à gauche en 𝑥0, c'est-à-dire :    

𝐥𝐢𝐦
𝒙→𝒙𝟎+

𝒇(𝒙) = ∞ ou 𝐥𝐢𝐦
𝒙→𝒙𝟎−

𝒇(𝒙) = ∞, alors la droite d’équation 𝒙 = 𝒙𝟎 est dite 

asymptote verticale à (𝐶𝑓). 

Exemple : 

a) Soit 𝑓(𝑥) =
2𝑥

√𝑥+1
 

  𝑥 ∈ 𝐷𝑓 ⟺ 𝑥 + 1 > 0  

   ⟺ 𝑥 > −1  

   ⟺ 𝑥 ∈ ]−1; +∞[  

Donc 𝐷𝑓 = ]−1; +∞[ 

𝑥 ∈ 𝐷𝑓 ;  on a :  

lim
𝑥→−1+

𝑓(𝑥) = lim
𝑥→−1+

2𝑥

√𝑥+1
=

−2

0+
= −∞  

 ⟹ lim
𝑥→−1+

𝑓(𝑥) = −∞ 

Alors, on n’en déduit que la droite d’équation  𝒙 = −𝟏 est asymptote verticale à (𝐶𝑓). 

b) Soit 𝑓(𝑥) =
𝑥2−2𝑥+5

2𝑥2+1
 

𝑓 est définie sur ℝ. Calculons les limites de 𝑓 aux bornes de son 𝐷𝑓. 

 lim
𝑥→−∞

𝑓(𝑥) = lim
𝑥→−∞

𝑥2−2𝑥+5

2𝑥2+1
= lim

𝑥→−∞

𝑥2

2𝑥2
=

1

2
  

  ⟹ lim
𝑥→−∞

𝑓(𝑥) =
1

2
  

 lim
𝑥→+∞

𝑓(𝑥) = lim
𝑥→+∞

𝑥2−2𝑥+5

2𝑥2+1
= lim

𝑥→+∞

𝑥2

2𝑥2
=

1

2
  

  ⟹ lim
𝑥→+∞

𝑓(𝑥) =
1

2
  

⟹ lim
𝑥→−∞

𝑓(𝑥) = lim
𝑥→+∞

𝑓(𝑥) =
1

2
, alors la droite d’équation 𝒚 =

1

2
  est asymptote horizontale 

à (𝐶𝑓) en −∞ et en +∞. 

𝟐. 𝟐 − Asymptote oblique 

Définition : 
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Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

On dit que la droite d’équation 𝒚 = 𝒂𝒙 + 𝒃 est une asymptote oblique à (𝐶𝑓) lorsque : 

𝐥𝐢𝐦
𝒙→+∞

[𝒇(𝒙) − (𝒂𝒙 + 𝒃)] = 𝟎 ou 𝐥𝐢𝐦
𝒙→−∞

[𝒇(𝒙) − (𝒂𝒙 + 𝒃)] = 𝟎 

Méthode : 

Pour étudier les branches infinies de la courbe représentative d’une fonction rationnelle 

ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
 où (𝑑°𝑓 ≥ 𝑑°𝑔) en −∞ et en +∞, on peut effectuer la division euclidienne de 𝑓 

par 𝑔. 

Exemple : 

Soit 𝑓(𝑥) = 𝑥 − 2 +
2

𝑥2+1
.  

Démontrons que la droite d’équation :  𝑦 = 𝑥 − 2 est asymptote oblique à (𝐶𝑓) en en −∞ et 

en +∞.  

En effet, 𝑓(𝑥) − 𝑦 = 𝑥 − 2 +
2

𝑥2+1
− (𝑥 − 2) 

 𝑓(𝑥) − 𝑦 =
2

𝑥2+1
  

 lim
𝑥→−∞

[𝑓(𝑥) − (𝑥 − 2)] = lim
𝑥→−∞

(
2

𝑥2+1
) =

2

+∞
= 0  

 lim
𝑥→+∞

[𝑓(𝑥) − (𝑥 − 2)] = lim
𝑥→+∞

(
2

𝑥2+1
) =

2

+∞
= 0  

D’où la droite d’équation :  𝑦 = 𝑥 − 2 est asymptote oblique à (𝐶𝑓) en en −∞ et en +∞.  

Propriété : 

Soit 𝑓 une fonction et (𝐶𝑓) sa courbe représentative. 

la droite d’équation 𝒚 = 𝒂𝒙 + 𝒃 est une asymptote à (𝐶𝑓) si et seulement si : 𝐥𝐢𝐦
𝒙→±∞

𝒇(𝒙)

𝒙
= 𝒂 

et 𝐥𝐢𝐦
𝒙→±∞

(𝒇(𝒙) − 𝒂𝒙) = 𝒃. 

Remarque : 

Les courbes représentatives de deux fonctions 𝑓 et 𝑔 sont asymptotes lorsque :  

lim
𝑥→+∞

(𝑓(𝑥) − 𝑔(𝑥)) = 0 ou lim
𝑥→−∞

(𝑓(𝑥) − 𝑔(𝑥)) = 0. 

𝐈𝐈𝐈𝟑 − Fonctions polynômes, fonctions rationnelles 

Plan d’étude d’une fonction 

Pour étudier une fonction dans le cas général, on adopte le plan suivant : 

1) Déterminer l’ensemble de définition ; 

2) Déterminer les limites aux bornes du domaine de définition ; 

3) Déterminer la dérivée et le sens de variations ; 

4) Points et droites remarquables : asymptotes et tangentes; 

5)  Construire la courbe. 

Exemple d’étude de fonctions 

Exemple 1 : 

Soit 𝑓 la fonction définie par : 𝑓(𝑥) = 𝑥3 − 3𝑥 + 2, (𝐶𝑓) sa représentation graphique 

1) a) Déterminer l’ensemble de définition de f  

       b) Calculer les limites de 𝑓 aux bornes de son 𝐷𝑓 

2)   a) Déterminer la fonction dérivée 𝑓’ de 𝑓 en déduire le sens de variation de 𝑓 

      b) dresser le tableau de variation de 𝑓 
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3)   a) Déterminer une équation de la tangente (T) au point A d’abscisse 𝑥0 = 0 

      b) Etudier la position de (𝐶𝑓) par rapport à (T) ; 

4) Construire(𝐶𝑓). 

4) Démontrer que le point A (0
𝑦
) est un centre de symétrie de (𝐶𝑓). 

Exemple 2 : 

La fonction numérique f à variable réel x est définie par   𝑓(𝑥) =
𝑥2+2𝑥++2

𝑥+1
 

a) Quel est l’ensemble de définition 𝒟𝑓  de 𝑓. 

b) Déterminer les réels a, b et c tel que   𝑔(𝑥) = 𝑎𝑥 + 𝑏 + 
c

  x+1
 

c) calculer les limites de f aux bornes de son ensemble de définition 

d) Étudier le sens de  variations de f et construire la courbe (c) représentant la fonction f dans un 

repère orthonormé(0; 𝑖; 𝑗). 
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Chapitre 6 : Suites numériques 

 

I. Généralité 

I1 –Definition d’une suite numérique 

𝟏. 𝟏 − Definition: 

On appelle suite numérique, toute fonction de ℕ vers ℝ généralement notée(𝑢𝑛)𝑛, 𝑛 ∈ ℕ 

ou tout simplement(𝑢𝑛). 

 Une suite peut être définie par une formule explicite qui permet de calculer 𝑢𝑛 en 

fonction de 𝑛 telle que :   
ℕ⟶ ℝ                       

𝑛 ⟶ 𝑢𝑛 =
2𝑛+1

𝑛+2
  

 Une Suite peut-être définie par son premier terme et une formule de récurrence telle 

que :  {
𝑢𝑛 = 1                   

𝑢𝑛+1 =
1

3
𝑈𝑛 + 2 

; ∀𝑛 ∈ ℕ 

II. Etude d’une suite numérique 

𝐈𝐈𝟏 −Suites minorées, majorées et bornées. 

𝟏. 𝟏 − Définition : Soit(𝑢𝑛)𝑛, Une suite numérique. 

 (𝑢𝑛)𝑛, est dite minorée, s’il existe un nombre réel 𝑚 tel que : pour tout entier 

naturel  𝑛, on a : 𝑚 ≤ 𝑢𝑛 ; 

 (𝑢𝑛)𝑛, est dite majorée, s’il existe un nombre réel M tel que : pour tout entier 

naturel 𝑛, on a : 𝑢𝑛 ≤ 𝑀 ; 

 (𝑢𝑛)𝑛, est dite bornée, si elle est à la fois minorée et bornée i.e : 𝑚 ≤ 𝑢𝑛 ≤ 𝑀. 

Les nombres réels 𝑚 et 𝑀 sont respectivement appelés minorant et majorant de(𝑈𝑛)𝑛. 

𝟏. 𝟐 − Théorème : 

En général, pour démontrer qu’une suite (𝑈𝑛) est bornée, l’un des procédés ci-dessous 

est utile. 

 Encadrer le terme général de la suite (𝑈𝑛) par deux nombres réels. 

 Etudier la fonction 𝑓 lorsque (𝑈𝑛) est du type 𝑈𝑛 = 𝑓(𝑛). 

 Faire un raisonnement par récurrence. 

𝐈𝐈𝟐 −Sens de variations 

𝟐. 𝟏–Théorème : 

Soit(𝑢𝑛)𝑛, 𝑛 ∈ ℕ, une suite numérique. 𝑠𝑖 ∀𝑛 ∈ 𝑁 : 

 𝑢𝑛 ≤ 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est croissante ;  

 𝑢𝑛 ≥ 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est décroissante ;  

 𝑢𝑛 = 𝑢𝑛+1, alors la suite (𝑢𝑛 ) est constante. 

Remarque : 

 Une suite (𝑢𝑛) est dite monotone si elle est soit croissante, soit décroissante ; 

 Une suite (𝑢𝑛) est dite stationnaire, si elle est constante à un certain rang. 

𝐈𝐈𝟑 −Notion de convergence 

𝟑. 𝟏–Théorème : 

 Une suite (𝑈𝑛) est dite convergente lorsqu’elle admet une limite finie (𝑙) en +∞ 
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 Une suite (𝑈𝑛) est dite divergente lorsqu’elle admet une limite infinie (±∞) en +∞ 

III. Suites arithmétiques, suites géométrique  

𝐈𝐈𝐈𝟏 –Suites arithmétiques 

𝟏. 𝟏–Definition :  

Une suite (𝑈𝑛) est dite arithmétique lorsqu’il existe un nombre réel 𝒓 appelé raison tel que 

pour tous entiers naturels 𝑛, 𝑝; on a :  

 𝑢𝑛+1 = 𝑢𝑛 + 𝑟 : Formule de récurrence 

Si 𝑛 = 0, alors 𝑢𝑛 = 𝑢0 + 𝑛𝑟  

 Si 𝑛 = 1, alors 𝑢𝑛 = 𝑢1 + (𝑛 − 1)𝑟   

Si 𝑛 = 2, alors 𝑢𝑛 = 𝑢2 + (𝑛 − 2)𝑟 

D’une façon générale, pour tout entier naturel 𝑛 𝑒𝑡 𝑝, on a : 

     𝑈𝑛 = 𝑈𝑝 + (𝑛 − 𝑝)𝑟 : Formule explicite 

Retenons bien : 

Pour démontrer qu’une suite est arithmétique, il suffit de prouver que la différence entre 

deux termes consécutifs est constante, i.e. : 𝑈𝑛+1 − 𝑈𝑛 = 𝑟,𝑛 ∈ ℕ. 

𝟏. 𝟐 −Somme des termes consécutifs d’une suite arithmétique: 

(𝑢𝑛)𝑛,  est une suite arithmétique,∀ 𝑛 ∈ ℕ, on a : 

𝑼𝟏 + 𝑼𝟐 + …+ 𝑼𝒏 = 𝒏 ×
𝑼𝟏+𝑼𝒏

𝟐
   et 𝑼𝟎 + 𝑼𝟏 + 𝑼𝟐  …+ 𝑼𝒏−𝟏 = 𝒏 ×

𝑼𝟎+𝑼𝒏−𝟏

𝟐
  

En particulier : 1 + 2 + 3 + 4 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
. 

𝐈𝐈𝐈𝟐 – Suites géométriques 

𝟐. 𝟏– Définition :  

Une suite (𝑢𝑛) est dite géométrique lorsqu’il existe un nombre réel  𝒒 appelé raison tel que 

pour tout nombre entier naturel 𝑛, 𝑝; On a : 

       𝑢𝑛+1 = 𝑞𝑢𝑛 : Formule de récurrence) 

Si 𝑛 = 0, alors :  𝑢𝑛 = 𝑢0𝑞
𝑛   

 Si 𝑛 = 1, alors :  𝑢𝑛 = 𝑢1𝑞
𝑛−1 

Si 𝑛 = 2, alors :  𝑢𝑛 = 𝑢2𝑞
𝑛−2 

D’une façon générale, pour tout entier naturel 𝑛 𝑒𝑡 𝑝, on a : 

      𝑢𝑛 = 𝑢𝑝𝑞
𝑛−𝑝: Formule explicite 

Retenons bien :  

Pour démontrer qu’une suite est géométrique, il suffit de prouver que le quotient de deux 

termes consécutifs est constant, i.e. : 
𝑈𝑛+1

𝑈𝑛
= 𝑞,(𝑞 ∈ ℕ) 

𝐈𝟓.𝟐.𝟐 –Somme des termes consécutifs d’une suite géométrique: 

(𝑈𝑛)𝑛,  est une suite géométrique de raison  𝑞, (𝑞 ≠ 1),∀ 𝑛 ∈ ℕ, on a :  

𝑈1 + 𝑈2 + …+ 𝑈𝑛 = 𝑈𝑛 ×
1−𝑞𝑛+1

1−𝑞
   et 𝑈0 +𝑈1 + 𝑈2  …+ 𝑈𝑛−1 = 𝑈0 ×

1−𝑞𝑛

1−𝑞
 

IV. Limite d’une suite numérique :  

𝐈𝐕𝟏 –Calcul de limites 
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𝟏. 𝟏–Propriété: 

Soit (𝑢𝑛), une suite definie par : 𝑢𝑛 = 𝑓(𝑛) où 𝑓est une fonction numérique. Si 𝑓 a une 

limite en +∞, alors (𝑢𝑛) a une limite et on a : 

lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

𝑓(𝑥) , (𝑙𝑎 𝑟é𝑐𝑖𝑝𝑟𝑜𝑞𝑢𝑒 𝑒𝑠𝑡 𝑓𝑎𝑢𝑠𝑠𝑒) 

Exemple : 

 lim
𝑛→+∞

𝑙𝑛 (
𝑥2+1

𝑥2
) = 0, donc la suite (𝑣𝑛)𝑛, de terme général 𝑣𝑛 = 𝑙𝑛 (

𝑛2+1

𝑛2
) converge 

vers 0. 

 lim
𝑛→+∞

(𝑥 cos
1

𝑥
) = +∞, donc la suite (𝑤𝑛)𝑛 de terme général 𝑤𝑛 = 𝑛 𝑐𝑜𝑠

1

𝑛
 est 

divergente. 

𝟏. 𝟐–Convergence d’une Suite arithmétique et géométrique. 

Théorème :  

1) Soit (𝑢𝑛)𝑛,𝑛 ∈ ℕ, une suite arithmétique de raison 𝑟,∀ 𝑛 ∈ ℕ, 𝑢𝑛 = 𝑢0 + 𝑛𝑟 

 Si 𝑟 > 0, alors : lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

(𝑛𝑟) = +∞ ; (𝑢𝑛)𝑛,est divergente ; 

 Si 𝑟 = 𝑜, alors : lim
𝑛→+∞

𝑢𝑛 = 𝑢0   la suite (𝑢𝑛) converge donc vers 𝑢0 ; 

 Si 𝑟 < 0, alors : lim
𝑛→+∞

𝑢𝑛 = lim
𝑛→+∞

(𝑛𝑟) = −∞, (𝑢𝑛)𝑛,est divergente ; 

2) Soit(𝑢𝑛)𝑛,𝑛 ∈ ℕ, une suite géométrique de raison 𝑞 et de 1er terme 𝑢0 ≠ 0, 𝑢𝑛 = 𝑢0𝑞
𝑛 

 Si |𝑞| > 1, alors la suite (𝑢𝑛) est divergente. 

 Si |𝑞| < 1, alors la suite (𝑢𝑛) est convergente. 

 Si |𝑞| = 1, alors la suite (𝑢𝑛) est stationnaire (𝑢𝑛 = 𝑢0) 

𝟏. 𝟑 −Propriétés et comparaison: 

On considère les suites (𝑢𝑛) ,(𝑣𝑛) et(𝑤𝑛) et  𝑙 un nombre réel. 

 Si (𝑢𝑛) et (𝑢𝑛) sont convergentes et si à partir d’un certain indice (𝑟𝑎𝑛𝑔), 𝑢𝑛 ≤ 𝑣𝑛,  

alors lim
𝑛→+∞

𝑢𝑛 ≤ lim
𝑛→+∞

𝑣𝑛 ; 

 Si à partir d’un certain rang, 𝑢𝑛 ≥ 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑣𝑛 = +∞, alors lim
𝑛→∞

𝑢𝑛 = +∞ 

 Si à partir d’un certain rang, 𝑣𝑛 ≤ 𝑢𝑛 ≤ 𝑤𝑛 et lim
𝑛→+∞

𝑣𝑛 = lim
𝑛→+∞

𝑤𝑛 = 𝑙, 

alors lim
𝑛→+∞

𝑢𝑛 = 𝑙 ; 

 Si à partir d’un certain rang, 𝑢𝑛 ≤ 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑤𝑛 = −∞, alors lim
𝑛→+∞

𝑢𝑛 = −∞ ; 

 Si la suite (𝑣𝑛) est telle qu’à partir d’un certain rang partir, on ait : 

|𝑢𝑛 − 𝑙| < 𝑣𝑛 𝑒𝑡 lim
𝑛→+∞

𝑣𝑛 = 0, 𝑎𝑙𝑜𝑟𝑠 lim
𝑛→+∞

𝑢𝑛 = 𝑙 

Exercices d’application 

Exercice 1 

Soit (𝑢𝑛) la suite définie par : {
𝑢0 = 1

𝑢𝑛+1 =
𝑢𝑛−1

𝑢𝑛+3
, ∀ 𝑛 ∈ ℕ

 

1) Calculer 𝑢, 𝑢2, 𝑢3 et 𝑢4 et prouver que ∀ 𝑛 ∈ ℕ, 𝑢𝑛 + 1 > 0. 

2) Démontrer que la suite (𝑣𝑛) définie sur ℕ par : 𝑣𝑛 =
1

𝑢𝑛+1
 est une suite arithmétique. 

3) Exprimer 𝑣𝑛 puis 𝑢𝑛 en fonction de n et étudier la convergente de la suite (𝑢𝑛). 
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Exercice 2 

On considère la suite (𝑢𝑛) définie par : {
𝑢0 = 0

𝑢𝑛+1 =
3𝑢𝑛+2

𝑢𝑛+2

, ∀∈ ℕ 

1) Démontrer que pout entier 𝑛de ℕ, 𝑢𝑛 ≠ 2 

2) On pose : 𝑉𝑛 =
𝑢𝑛+1

𝑢𝑛+2
 ; ∀∈ ℕ 

a) Montrer que (𝑉𝑛) est une suite géométrique dont on précisera la raison et le  

premier terme 𝑣0. 

b) Exprimer 𝑉𝑛 en fonction de n 

c) En déduire 𝑢𝑛 en fonction de n 

d) Calculer la limite de (𝑉𝑛) lorsque n tend vers +∞ 
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Chapitre 7 : Dénombrement 

I. Analyse combinatoire 

I1 –Notation factorielle 

𝐈𝟏.𝟏 − Definition:  

Soit n un entier naturel non nul. 

On appelle factorielle de n, le produit des entiers positifs de 1 à n noté par :  

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2) × …× 2 × 1  

On lit «  factorielle n ». 

Exemple : 

3! = 3 × 2 × 1  

4! = 4 × 3 × 2 × 1  

Par convention : 0! = 1 

𝐈𝟐 –Permutation : 

𝟐. 𝟏 − Definition:  

Soit E un ensemble non vide de cardinal n ; ( un est un entier naturel). 

On appelle permutation de n éléments de E, toute suite ordonner formée à partir de de n 

éléments distincts de E.  

On la note :𝑃𝑛 = 𝑛(𝑛 − 1)(𝑛 − 2) × …× 2 × 1 = 𝑛!  

Exemple :  

Soit 𝐸 = {𝑎; 𝑏; 𝑐}  

Le nombre de permutation des éléments de E est :  

𝑃3 = 3! = 3 × 2 ×= 6  

Les permutations des éléments de E sont : 𝑎𝑏𝑐; 𝑎𝑐𝑏; 𝑏𝑎𝑐;  𝑏𝑐𝑎; 𝑐𝑎𝑏 𝑒𝑡 𝑐𝑏𝑎. 

𝐈𝟑 – Arrangement  avec répétition :  

𝟑. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle arrangement avec répétition de k éléments parmi les n éléments de E, toute suite 

ordonnée de  k éléments de E distincts ou non ( non nécessairement distinct).  

Le nombre est noté :  𝑨𝒏
𝒌 = 𝒏𝒑. 

𝐈𝟒 – Arrangement  sans répétition : 

𝟒. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle arrangement sans répétition de k éléments de E, toute suite ordonnée de  k 

éléments de E distincts deux à deux (𝑝 < 𝑛). 

On le note 𝑨𝒏
𝒌 =

𝒏!

(𝒏−𝒑)!
 

Exemple : 

On peut placer de 74 façons différentes 4 lettres  distinctes dans 7 boites aux lettres. 

Exercice d’application:  

1) De combien de façons différentes, peut-on placer 4 lettres distinctes dans 20 boites aux 

lettres ? 
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2) A Partir de 3 lettres a, b et c, combien de mots de 2 lettres non nécessairement distincte 

peut-on former ? 

3) De combien de façon différentes peut- on ranger 7 livres : 

a) Dans n’importe quel ordre ? 

b) Si 3 livres particuliers doivent rester ensemble ? 

c) Si 2 livres particuliers doivent prendre les positions extrêmes ? 

4) Une classe comporte 9 garçons et 3 filles. De combien de façons peut-on faire un choix 

de 4 élèves. 

a) Quelconques ? 

b) Comprenant au moins une fille ? 

c) Comprenant exactement une fille ? 

𝐈𝟓 – Combinaison : 

𝟓. 𝟏 − Definition:  

Soit E un ensemble non vide. 

On appelle combinaison de k éléments de E, toute partie de E à  k éléments. 

On le note 𝑪𝒏
𝒌 =

𝒏!

𝒑!(𝒏−𝒑)!
 

Exemple : 

De combien de façons peut-on former un comité de trois personnes dans une assemblée de 

10 hommes et 6 femmes ? 

C’est une combinaison de 3 personnes sur un total de 16. 

On a : 𝑪𝟏𝟔
𝟑 =

𝟏𝟔!

𝟑!(𝟏𝟔−𝟑)!
= 𝟓𝟔𝟎 

Il y a donc 560 façons différentes de former un comité de 3 personnes dans cette assemblée. 

Quelques valeurs particulières : 

𝑨𝒏
𝟎 = 𝟏  

𝑨𝒏
𝒏 = 𝒏!  

𝑨𝒏
𝟏 = 𝒏  

𝑪𝒏
𝟎 = 𝑪𝒏

𝒏 = 𝟏  

𝑪𝒏
𝟏 = 𝑪𝒏

𝒏−𝟏 = 𝒏  

Propriété : 

Pour tous entiers naturels n et p tel que p soit inférieur ou égal à n, on a : 

𝑪𝒏
𝒏−𝒑

= 𝑪𝒏
𝒑
  

Si de plus 𝟎 < 𝒑 < 𝒏, alors : 𝑪𝒏−𝟏
𝒑−𝟏

+ 𝑪𝒏−𝟏
𝒑

= 𝑪𝒏
𝒑
 

Résumé : 

Types de 
tirages 

Ordre Répétitions d'éléments Dénombrement 

Successifs 
Avec remise  On tient compte 

de l'ordre  

Un élément peut être 
tiré plusieurs fois  

𝑛𝑝 ( p-uplets) 

Successifs 
Avec remise  Un élément n'est tiré  

qu'une seule fois 

𝑨𝒏
𝒌 =

𝒏!

(𝒏−𝒑)!
  (arrangement) 

Simultanés  
L'ordre 
n'intervient pas 

𝑪𝒏
𝒌 =

𝒏!

𝒑!(𝒏−𝒑)!
  (Combinatoires) 
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𝐺 = 𝑏𝑎𝑟 

𝐺 = 𝑏𝑎𝑟 

Chapitre 8 : Barycentre 

I. Barycentre de deux points pondérés 

I.1- Théorème et définitions 

1.1-Théorème : soit A et B deux point du plan et ∝ 𝑒𝑡 𝛽 deux nombres réels. Si 𝛼 + 𝛽 ≠ 0, 

alors il existe un seul point G tel que : 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗  +𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗  = 0⃗⃗ 

Démonstration : 

𝛼GA⃗⃗⃗⃗⃗⃗ + βGA⃗⃗⃗⃗⃗⃗ = 0⃗⃗  

⇔  𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ +  𝛽(𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐴𝐵)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗  

⇔ 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + βGA⃗⃗⃗⃗⃗⃗ + βAB⃗⃗⃗⃗⃗⃗ = 0⃗⃗  

⇔ (𝛼 +  𝛽)𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗  

⇔ (𝛼 +  𝛽)𝐺𝐴⃗⃗⃗⃗⃗⃗ = −𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗   

⇔ −(𝛼 + 𝛽)𝐴𝐺⃗⃗⃗⃗⃗⃗ = −𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗   

⇔ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝛽

𝛼+𝛽
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  , (𝛼 + 𝛽 ≠ 0) 

Posons 𝑈⃗⃗⃗ =
𝛽

𝛼+𝛽
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

Etant donné un point 𝐴 et un recteur 𝑈⃗⃗⃗, il existe un point unique 𝐺 telque : 𝐴𝐺⃗⃗⃗⃗⃗⃗ = 𝑈⃗⃗⃗ 

Remarque : 

Si 𝛼 + 𝛽 = 0 ⇒ 𝛽 = −𝛼 𝑒𝑡 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

⇒ 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ − 𝛼𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗  

⇒ 𝛼(𝐺𝐴⃗⃗⃗⃗⃗⃗ − 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ) = 0⃗⃗  

⇒ 𝛼(𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐵𝐺⃗⃗⃗⃗ ⃗⃗ ) = 0⃗⃗   

⇒ 𝛼(𝐵𝐺⃗⃗⃗⃗ ⃗⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ ) = 0⃗⃗  

⇒ 𝛼𝐵𝐴⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗  

On distingue deux cas : 

1
er
 cas : Si 𝛼 = 0ou 𝛼 = 𝛽, alors tout point 𝐺 du plant vérifie l’égalité 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

2
e
cas : Si 𝛼 ≠ 0 𝑒𝑡 𝛼 ≠ 𝛽, alors aucun point du plan ne vérifie cette égalité. 

1.2-Définitions 
 On appelle point pondéré tout couple(𝐴, 𝛼) où 𝐴 est un point et 𝛼 un nombre réel ; 

𝛼 est appelé coefficient du point 𝐴. 

 Soit(𝐴, 𝛼) 𝑒𝑡 (𝐵, 𝛽) deux points pondérés tels que 𝛼 + 𝛽 ≠ 0 

On appelle barycentre des points pondérés (𝐴, 𝛼) 𝑒𝑡 (𝐵, 𝛽),  l’unique point 𝐺 telque :𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ +

𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

 On note 𝐺 = 𝑏𝑎𝑟{(𝐴, 𝛼), (𝐵, 𝛽)} ou 

Remarque : 

⇔ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝛽

𝛼+𝛽
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ : Cette égalité permet de construire G. 

 

- Si 𝐴 ≠ 𝐵, alors 𝐴, 𝐵, 𝐺 sont alignés c’est-à-dire 𝐺 ∈ (𝐴𝐵) 

- Si 𝐴 = 𝐵 ⇒ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝛽

𝛼×𝛽
𝐴𝐴⃗⃗⃗⃗⃗⃗        𝑜𝑟      𝐴𝐴⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ⇔ 𝐴𝐺⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ⇔ 𝐴 = 𝐺 

 

A B 

𝛼 𝛽 

A B 

𝛼 𝛽 
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𝐺 = 𝑏𝑎𝑟 

𝐺 = 𝑏𝑎𝑟 

𝐺 = 𝑏𝑎𝑟 

 

Exemple : Construire le barycentre des points 𝐺 suivants 

1)  

où𝐺 est le barycentre de (𝐴, 2) 𝑒𝑡 (𝐵, 3) 
 

𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝛽

∝+𝛽
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =

3

2+3
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =

3

5
𝐴𝐵⃗⃗⃗⃗ ⃗⃗   

 
②   G est le barycentre de (𝐴, 2)𝑒𝑡 (𝐵,−1), 

⇔ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
−1

2−1
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝐺⃗⃗⃗⃗⃗⃗ = −𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

 

 

③   

G est le barycentre de (𝐴, 1) 𝑒𝑡(𝐵, 1),  
 

⇔ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
1

1+1
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝐺⃗⃗⃗⃗⃗⃗ =

1

2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , G est le milieu du segment[𝐴𝐵] 

 

 

 

 
I.2-Propriété du barycentre de deux pondérés 

2.1-Homogéniété du barycentre 

𝐺 = 𝑏𝑎𝑟{(𝐴; 𝛼); (𝐵; 𝛽)}⇔𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

Pour tout nombre 𝑘 ≠0 𝑘𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝑘𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ ⟺ 𝐺 = 𝑏𝑎𝑟{(𝐴; 𝑘𝛼); (𝐵; 𝑘𝛽)} 
On a la propriété suivante : 

2-2-Propriété :  

Le barycentre de deux points pondérés  est inchangé lorsqu’on multiplie tous les coefficients 

par un même nombre réel non nul 

2-3-Ensemble de barycentre de deux points pondérés 

Un point G est barycentre de deux points A et B s’il existe un couple (a, b) de nombre réel tels 

que G soit l barycentre des points pondérés (a, ) et (b, ) 

2-4-Théoréme :  
Soit A et B deux distinct du plan. 

L’ensemble des barycentres des points A et B est la droite (AB) 

Démonstration :   

 SI 𝐺 = 𝑏𝑎𝑟{(𝐴; 𝛼); (𝐵; 𝛽)} alors G ∈ (𝐴𝐵) 

 Réciproquement, soit G un pont de la droite (AB). 

 Il existe 𝑘 ∈ ℝ 𝑡𝑒𝑙𝑞𝑢𝑒 ∶  𝐴𝐺⃗⃗⃗⃗⃗⃗ = 𝑘𝐴𝐵⃗⃗⃗⃗ ⃗⃗    ou encore 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝑘

1−𝑘+𝑘
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

⇔𝐴𝐺⃗⃗⃗⃗⃗⃗ =
𝑘

(1−𝑘)+𝑘
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .   

Donc : 𝐺 = 𝑏𝑎𝑟{(𝐴; (1 − 𝑘)); (𝐵; 𝑘)} 

2.5-Reduction de la somme 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗⃗⃗ ⃗⃗ ⃗ 

A B   

 2 3 

A B 

2 -1 

A B 

1 1 
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 Si𝛼 + 𝛽 ≠ 0 ⇒ ∃ 𝐺 𝑡𝑒𝑙 𝑞𝑢𝑒 𝐺 = 𝑏𝑎𝑟{(𝐴; 𝛼); (𝐵; 𝛽)}⇔𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

On a: 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛼(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ ) + 𝛽(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ), M est un point du plan. 

   = 𝛼𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗  

   = (𝛼 + 𝛽)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗  

⇔𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝛼 + 𝛽)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗; car 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

 Si 𝛼 + 𝛽 = 0, 𝑎𝑙𝑜𝑡𝑠 𝛼 = −𝛽 

⇔ 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −𝛽𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗   

     = 𝛽𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗  

⇔ 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛽(𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ + 𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗)  

⇔ 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗   

L’on conclut que le vecteur 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ est indépendant du point M, d’où la propriété 

suivante : 

2.6-Propriété : 

Soit(𝐴, 𝛼) et(𝐵, 𝛽) deux points pondérés. Pour tout point M du plan : 

-Si 𝛼 + 𝛽 ≠ 0, 𝑎𝑙𝑜𝑟𝑠 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝛼 + 𝛽)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ 𝑜ù 𝐺 = 𝑏𝑎𝑟{(𝐴; 𝛼); (𝐵; 𝛽)} 

-Si 𝛼 + 𝛽 = 0, 𝑎𝑙𝑜𝑟𝑠 𝑙𝑒 𝑣𝑒𝑐𝑡𝑒𝑢𝑟 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑑𝑢 𝑝𝑙𝑎𝑛 

2. 7- Cordonnées du barycentre de deux points 

Le plan est muni du repère (O, I, J) 

On considère le point 𝐴 (𝑥𝐴
𝑦𝐴
)  𝑒𝑡 𝐵 (𝑥𝐵

𝑦𝐵
) 

𝐺 = 𝑏𝑎𝑟{(𝐴; 𝛼); (𝐵; 𝛽)}⇔𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

⇔ 𝛼(𝐺𝑂⃗⃗⃗⃗ ⃗⃗ + 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ ) + 𝛽(𝐺𝑂⃗⃗⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ ) = 0⃗⃗  

⇔ 𝛼𝐺𝑂⃗⃗⃗⃗ ⃗⃗ + 𝛼𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝛽𝐺𝑂⃗⃗⃗⃗ ⃗⃗ + 𝛽𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗  

⇔ (𝛼 + 𝛽)𝐺𝑂⃗⃗⃗⃗ ⃗⃗ + 𝛼𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝛽𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗  

⇔ (𝛼 + 𝛽)𝐺𝑂⃗⃗⃗⃗ ⃗⃗ = −𝛼𝑂𝐴⃗⃗⃗⃗ ⃗⃗ − 𝛽𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   

⇔ (𝛼 + 𝛽)𝐺𝑂⃗⃗⃗⃗ ⃗⃗ = 𝛼𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝛽𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   

⇔ 𝑂𝐺⃗⃗⃗⃗ ⃗⃗ =
𝛼

𝛼+𝛽
𝑂𝐴⃗⃗⃗⃗ ⃗⃗ +

𝛽

𝛼+𝛽
𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗   

⇔ 𝑥𝐺 =
𝛼𝑥𝐴

𝛼+𝛽
+

𝛽𝑥𝐵

𝛼+𝛽
 𝑒𝑡 𝑦𝐺 =

𝛼𝑦𝐴

𝛼+𝛽
+

𝛽𝑦𝐵

𝛼+𝛽
  

⇔𝑥𝐺 =
𝛼𝑥𝐴+𝛽𝑥𝐵

𝛼+𝛽
 𝑒𝑡 𝑦𝐺 =

𝛼𝑦𝐴+𝛽𝑦𝐵

𝛼+𝛽
 

⇔𝐺(

𝛼𝑥𝐴+𝛽𝑥𝐵
𝛼+𝛽

 

𝛼𝑦𝐴+𝛽𝑦𝐵
𝛼+𝛽

)  

D’où la propriété suivante : 

2.8-Proprieté : 

Dans le plan muni repère (O, I, J), si A(𝑥𝐴
𝑦𝐴
)  𝑒𝑡 𝐵 (𝑥𝐵

𝑦𝐵
) et si G et le barycentre de 

(𝐴, 𝛼)𝑒𝑡 (𝐵, 𝛽), alors on a : 𝐺 (

𝛼𝑥𝐴+𝛽𝑥𝐵
𝛼+𝛽

 

𝛼𝑦𝐴+𝛽𝑦𝐵
𝛼+𝛽

)  

Exemple :  

Calculons les coordonnées de G du point suivant  

A(−1
2
) 𝑒𝑡 𝐵(3

2
), 𝐺 = 𝑏𝑎𝑟{(𝐴,−2), (𝐵, 4)} 
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On a : 𝑥𝐺 =
𝛼𝑥𝐴+𝛽𝑥𝐵

𝛼+𝛽
 𝑒𝑡 𝑦𝐺 =

𝛼𝑦𝐴+𝛽𝑦𝐵

𝛼+𝛽
   

 

⇔𝑥𝐺 =
2+12

2
= 7 𝑒𝑡 𝑦𝐺 =

−4+8

2
= 2 

⇔G(7
2
), d’où les coordonnées du point G. 

2.9-Conservation du barycentre par la projection 

2.9.1-Theorème :  

Le projet du barycentre de deux points pondérés est le barycentre des projetés de ces deux 

points affectés des mêmes coefficients 

II. Barycentre de plus de deux points pondérés 

II.1-Théorème et définition : 

1.1-Théorème : 

Soit (𝐴, 𝛼), (𝐵, 𝛽)𝑒𝑡 (𝐶, Ɣ) 𝑡𝑟𝑜𝑖𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑜𝑛𝑑é𝑟é𝑠. 

Si 𝛼 + 𝛽 + Ɣ ≠ 0, 𝑎𝑙𝑜𝑟𝑠 ∃! 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

Preuve : 

𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗  

⇔𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽(𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ) + Ɣ(𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐴𝐶⃗⃗⃗⃗⃗⃗ ) = 0⃗⃗ 

⇔𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐴⃗⃗⃗⃗⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

⇔(𝛼 + 𝛽 + Ɣ)𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

⇔-(𝛼 + 𝛽 + Ɣ)𝐺𝐴⃗⃗⃗⃗⃗⃗ = −(𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗ ) 

⇔(𝛼 + 𝛽 + Ɣ)𝐺𝐴⃗⃗⃗⃗⃗⃗ = 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗  

⇔AG =
𝛽

𝛼+𝛽+Ɣ
𝐴𝐵 +

Ɣ

𝛼+𝛽+Ɣ
𝐴𝐶 

Cette dernière égalité justifie l’existence de l’unicité de G  

1.2-Définition :  

Soit(𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡 (𝐶, Ɣ)𝑡𝑟𝑜𝑖𝑠 𝑝𝑜𝑖𝑛𝑡 𝑝𝑜𝑛𝑑é𝑟é𝑠 𝑡𝑒𝑙𝑠 𝑞𝑢𝑒 𝛼 + 𝛽 + Ɣ ≠ 0 

On appelle barycentre des points pondérés (𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡 (𝐶, Ɣ), l’unique point G tel que : 

𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

On note: 𝐺 = 𝑏𝑎𝑟{(𝐴, 𝛼), (𝐵, 𝛽), (𝐶, Ɣ)} 

Remarque : 

- Si l’un des coefficients est nul, par exemple 𝛼 = 0, 𝑎𝑙𝑜𝑟𝑠 𝐺 = 𝑏𝑎𝑟{(𝐵, 𝛽), (𝐶, Ɣ)} 
- Cette définition et la remarque précédente se généralisent à 4 points (et plus) 

Exemple :  

Soit ABC un triangle. 

Construire le point G barycentre des points pondérés (A,3), (B,-2) et (C,1) 

𝐺 = 𝑏𝑎𝑟{(𝐴, 3), (𝐵,−2), (𝐶, 1)} ⇔3𝐺𝐴⃗⃗⃗⃗⃗⃗ -2𝐺𝐵⃗⃗⃗⃗ ⃗⃗ +𝐺𝐶⃗⃗⃗⃗⃗⃗ =0⃗⃗ 

⇔3𝐺𝐴⃗⃗⃗⃗⃗⃗ -2(𝐺𝐴⃗⃗⃗⃗⃗⃗ +𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ) +𝐺𝐴⃗⃗⃗⃗⃗⃗ +𝐴𝐶⃗⃗⃗⃗⃗⃗  =0⃗⃗ 

⇔3𝐺𝐴⃗⃗⃗⃗⃗⃗ − 2𝐺𝐴⃗⃗⃗⃗⃗⃗ − 2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐴𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

⇔2𝐺𝐴⃗⃗⃗⃗⃗⃗ − 2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐴𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

⇔−2𝐴𝐺⃗⃗⃗⃗⃗⃗ − 2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐴𝐶⃗⃗⃗⃗⃗⃗ = 0⃗⃗ 

⇔−2𝐴𝐺⃗⃗⃗⃗⃗⃗ = 2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ − 𝐴𝐶⃗⃗⃗⃗⃗⃗  

⇔𝐴𝐺⃗⃗⃗⃗⃗⃗ = −𝐴𝐵⃗⃗⃗⃗ ⃗⃗ +
1

2
𝐴𝐶⃗⃗⃗⃗⃗⃗  

𝑜ù 𝐴𝐺⃗⃗⃗⃗⃗⃗ =
−2

3−2+1
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ +

1

3−2+1
𝐴𝐶⃗⃗⃗⃗⃗⃗  ⇔𝐴𝐺⃗⃗⃗⃗⃗⃗ = −𝐴𝐵⃗⃗⃗⃗ ⃗⃗ +

1

2
𝐴𝐶⃗⃗⃗⃗⃗⃗  
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II.2-Propriétés : 

2.1-Homogeniété : 

2.1.2-Proprieté :  

Le barycentre de trois points pondérés (ou plus) est inchangé lorsqu’on multiple tous le 

coefficient par un même réel non nul. 

Remarques :  

Le barycentre de point pondérés affectés de coefficients égaux est appelé isobarycentre de ces 

points. 

- L’isobarycentre de deux points A et B est le milieu du segment [𝐴𝐵] 
- L’isobarycentre de trois points A,B et C est le centre de gravité du triangle ABC. 

- L’isobarycentre des sommets d’un parallélogramme est le centre de ce 

parallélogramme. 

2.3-Reduction de la somme 𝜶𝑴𝑨⃗⃗⃗⃗⃗⃗⃗⃗ + 𝜷𝑴𝑩⃗⃗⃗⃗⃗⃗ ⃗⃗ + Ɣ𝑴𝑪⃗⃗ ⃗⃗ ⃗⃗ ⃗ 
2.3.1-Propriété :  

Soit (𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡 (𝐶, Ɣ) des points pondérés. Pour tout point M du plan, on a : 

- Si 𝛼 + 𝛽 + Ɣ ≠ 0, 𝑎𝑙𝑜𝑟𝑠 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ = (𝛼 + 𝛽 + Ɣ)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ 𝑜ù G est le 

barycentre de (𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡(𝐶, Ɣ). 

- Si 𝛼 + 𝛽 + Ɣ = 0, 𝑎𝑙𝑜𝑟𝑠 le vecteur 𝛼𝑀𝐴 + 𝛽𝑀𝐵 + Ɣ𝑀𝐶 est indépendant du point M. 

  Preuve : 

- Si 𝛼 + 𝛽 + Ɣ ≠ 0 ⇒ ∃!𝐺 = 𝑏𝑎𝑟{(𝐴, 𝛼), (𝐵, 𝛽), (𝐶, Ɣ)} telque : 

𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ = 𝛼(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ ) + 𝛽(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ) + Ɣ(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐶⃗⃗⃗⃗⃗⃗ ) 

                                               = 𝛼𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗  

= (𝛼 + 𝛽 + Ɣ)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗ , 

                      Or 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐺𝐶⃗⃗⃗⃗⃗⃗  

D’où 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ = (𝛼 + 𝛽 + Ɣ)𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ 

-Si 𝛼 + 𝛽 + Ɣ = 0 ⇒ 𝛼 = −𝛽 − Ɣ. 

Alors on a : 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ = (−𝛽 − Ɣ)𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ 

= (−𝛽 − Ɣ)𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽(𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ )Ɣ(𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐴𝐶⃗⃗⃗⃗⃗⃗ ) 

= (𝛽 − Ɣ)𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗  

= (−𝛽 − Ɣ + 𝛽 + Ɣ)𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗  

= 0 + 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗ = 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗  
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Donc 𝛼𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝛽𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + Ɣ𝑀𝐶⃗⃗⃗⃗ ⃗⃗⃗ = 𝛽𝐴𝐵⃗⃗⃗⃗ ⃗⃗ + Ɣ𝐴𝐶⃗⃗⃗⃗⃗⃗ . D’où le vecteur 𝛼𝑀𝐴 + 𝛽𝑀𝐵 + Ɣ𝑀𝐶 est 

indépendant du point M. 

2.4- Coordonnées du barycentre de trois points pondérés 

2.4.1-Propriété :  

Dans le plan muni d’un repéré orthonormé (O, I, J), on a :  

Si  donne trois points 𝐴 (𝑥𝐴
𝑦𝐴
) , 𝐵 (𝑥𝐵

𝑦𝐵
)  𝑒𝑡 𝐶 (𝑥𝐶

𝑦𝐶
) et si G est le barycentre de 

 (𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡(𝐶, Ɣ), alors 𝐺𝐺 (

𝛼𝑥𝐴+𝛽𝑥𝐵+Ɣ𝑥𝐶
𝛼+𝛽+Ɣ

 

𝛼𝑦𝐴+𝛽𝑦𝐵++Ɣ𝑦𝐵
𝛼+𝛽+Ɣ

) 

2.5-Barycentre parties : 

2.5.1-Theorème :  

Soit (𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡(𝐶, Ɣ) trois points pondérés tels que : 𝛼 + 𝛽 + Ɣ ≠ 0 𝑒𝑡 𝛼 + 𝛽 ≠ 0 

Si H est le barycentre (𝐴, 𝛼) 𝑒𝑡(𝐵, 𝛽), 𝑎𝑙𝑜𝑟𝑠 : 

𝐺 = 𝑏𝑎𝑟{(𝐴, 𝛼), (𝐵, 𝛽), (𝐶, Ɣ)} = 𝑏𝑎𝑟{(𝐻, (𝛼 + 𝛽)), (𝐶, Ɣ)} 

H est appelé barycentre partiel. 

Exemple :  

Soit ABC un triangle  

Construisons le barycentre G des points pondérés (A, 3), (B,-2) et (C,1) en utilisant le 

théorème des barycentre partiels. 

Soit H le barycentre de (A,3) et (B,-2) 

𝐻 = 𝑏𝑎𝑟{(𝐴, 3), (𝐵,−2)} ⇔𝐴𝐻⃗⃗⃗⃗⃗⃗⃗ =
−2

3−2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  ⇔ 𝐴𝐻⃗⃗⃗⃗⃗⃗⃗ = −2𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

Et 𝐺 = 𝑏𝑎𝑟{(𝐴, 3), (𝐵, −2), (𝐶, 1)}  

= 𝑏𝑎𝑟{(𝐻, 1), (𝐶, 1)} ⇔𝐻𝐺⃗⃗⃗⃗⃗⃗⃗ =
1

2
𝐻𝐶,⃗⃗⃗⃗⃗⃗⃗⃗  alors G est le milieu de [𝐻𝐶]. 

On en déduit, une construction du point H et le point G 

 

 

 

 

 

 

 

 

 

 

 

NB : Pour déterminer le barycentre de plusieurs points pondérés, on peut remplacer certains 

d’entre eux par leur barycentre partiel, affecté de la somme de leurs coefficients, à condition 

que cette somme soit diffèrent de zéro. (C’est-à-dire non nulle). 

Remarque :  

Soit un triangle ABC  et G le barycentre de(𝐴, 𝛼), (𝐵, 𝛽) 𝑒𝑡(𝐶Ɣ). 

Lorsque 𝛼 + 𝛽 ≠ 0,𝐻 est le barycentre de (𝐴, 𝛼) 𝑒𝑡 (𝐵, 𝛽) si et seulement si H est le point 

d’intersection des droites (AB) et (CG) 

III. Utilisation du barycentre : 

III.1 Problème d’alignement et de concours 
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On peut utiliser le barycentre pour démontrer l’alignement de trois points ou le concours de 

trois droites. Dans certains cas, cet outil permet de conclure rapidement. Nous allons en faire 

usage à travers quelques applications. 

 

1.1-Alignement de points : 

Application :  

Soit ABC un triangle et M le milieu du segment[𝐴𝐶]. Placer les points I et J tels que : 

𝐴𝐼⃗⃗⃗⃗⃗ =
2

3
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  𝑒𝑡 𝐶𝐽⃗⃗⃗⃗⃗ =

3

4
𝐶𝐼⃗⃗⃗⃗⃗.  

Démontrer que les points B, J, M sont alignés. 

NB : Pour démontrer que trois points sont alignés, il suffit de démontrer que l’un est le 

barycentre des deux autres. 

Solution : 

 𝐴𝐼⃗⃗⃗⃗⃗ =
2

3
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝐼⃗⃗⃗⃗⃗ =

2

1+2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .   

Donc 𝐼 = 𝑏𝑎𝑟{(𝐴, 1), (𝐵, 2)} 

 𝐶𝐽⃗⃗⃗⃗⃗ =
3

4
𝐶𝐼⃗⃗⃗⃗⃗ ⇒ 𝐶𝐽⃗⃗⃗⃗⃗ =

3

1+3
𝐶𝐼⃗⃗⃗⃗⃗.  

Donc 𝐽 = 𝑏𝑎𝑟{(𝐶, 1), (𝐼, 3)} 

𝐽 = 𝑏𝑎𝑟{(𝐶, 1), (𝐼, 3)}  

= 𝑏𝑎𝑟{(𝐶, 1), (𝐴, 1), (𝐵, 2)}  
 ⇒ J = 𝑏𝑎𝑟{(𝑀, 2), (𝐵, 2)} Car M est milieu de[𝐴𝐶], donc isobarycentre de points A et C. 

J est le barycentre des points M et J d’où les points B, J et M sont alignés. 

 

 

 

 

 

 

 

 

 

1.2-Concours de droites : 

Application : 

Soit ABC un triangle. On désigne par P, Q et R les points tels que : 

 𝐴𝑃⃗⃗⃗⃗⃗⃗ =
1

3
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , 𝐶𝑄⃗⃗⃗⃗ ⃗⃗ =

1

4
𝐶𝐵⃗⃗⃗⃗⃗⃗  𝑒𝑡 𝐶𝑅⃗⃗⃗⃗⃗⃗ =

2

5
𝐶𝐴⃗⃗⃗⃗⃗⃗   

Démontrer que les droites (AQ), (BR) et (CP) sont concourants. 

Solution : 

Démontrons que les droites (AQ), (BR) et (CP) sont concourants. 

 𝐴𝑃⃗⃗⃗⃗⃗⃗ =
1

3
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ⇒ 𝐴𝑃⃗⃗⃗⃗⃗⃗ =

1

2+1
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , donc 𝑃 = 𝑏𝑎𝑟{(𝐴, 2), (𝐵, 1)} 

 𝐶𝑄⃗⃗⃗⃗ ⃗⃗ =
1

4
𝐶𝐵⃗⃗⃗⃗⃗⃗ ⇒ 𝐶𝑄⃗⃗⃗⃗ ⃗⃗ =

1

3+1
𝐶𝐵⃗⃗⃗⃗⃗⃗ , donc 𝑄 = 𝑏𝑎𝑟{(𝐵, 1), (𝐶, 3)} 

 𝐶𝑅⃗⃗⃗⃗⃗⃗ =
2

5
𝐶𝐴⃗⃗⃗⃗⃗⃗ ⇒ 𝐶𝑅⃗⃗⃗⃗⃗⃗ =

2

3+2
𝐶𝐴⃗⃗⃗⃗⃗⃗ , donc 𝑅 = 𝑏𝑎𝑟{(𝐴, 2), (𝐶, 3)} 

Posons 𝐺 = 𝑏𝑎𝑟{(𝐴, 2), (𝐵, 1), (𝐶, 3)} = 𝑏𝑎𝑟{(𝑃, 3), (𝐶, 3)} 

 𝐺 = 𝑏𝑎𝑟{(𝐴, 2), (𝐵, 1), (𝐶, 3)} = 𝑏𝑎𝑟{(𝐶, 3), (𝑃, 3)} ⇒ 𝐆 ∈ (𝑪𝑷) 

 𝐺 = 𝑏𝑎𝑟{(𝐴, 2), (𝐵, 1), (𝐶, 3)} = 𝑏𝑎𝑟{(𝐴, 2), (𝑄, 4)} ⇒ 𝐆 ∈ (𝑨𝑸) 

 𝐺 = 𝑏𝑎𝑟{(𝐴, 2), (𝐵, 1), (𝐶, 3)} = 𝑏𝑎𝑟{(𝐵, 1), (𝑅, 5)} ⇒ 𝐆 ∈ (𝑩𝑹) 
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G appartient aux droites (CP), (AQ) et (BR), par conséquent, les droites (CP), (AQ) et (BR) 

sont concourantes en G. Barycentre des points pondérés (A, 2), (B, 1) et (C,3). 

 

 

 

 

 

 

 

 

 

 

III.2-ligne de niveau 

2.1-Définition : 

Soit  K un nombre réel et f une application du plan P dans ℝ. f : P→ ℝ 

   M→ 𝑓(𝑀). 

On appelle ligne de niveau K de f, l’ensemble (Ek) des points M tels que 𝑓(𝑀) = 𝑘 

2.2-Lignes de niveau de M→ 𝜶𝑴𝑨𝟐 + 𝜷𝑴𝑩𝟐 

Soit A et B deux points distincts du plan  𝛽, 𝛼 𝑒𝑡 𝛽 deux nombres réel non tous nuls et f 

l’application de P dans R définie par : f : P→ ℝ 

                                                                M→ 𝑓(𝑀) = 𝜶𝑴𝑨𝟐 + 𝜷𝑴𝑩𝟐  

Pour tout nombre réel k, on se propose de de déterminer la ligne de niveau (EA) des points M 

du plan tels que : 𝑓(𝑀) = 𝑘 

 Si 𝛼 + 𝛽 ≠ 0, désignons par G le barycentre des points 

pondérés(𝐴, 𝛼) 𝑒𝑡(𝐵, 𝛽). 𝑠𝑖 𝑒𝑡 𝑠𝑒𝑢𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖 𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

On a : (𝑀) = 𝛼𝑀𝐴² + 𝛽𝑀𝐵², (𝐸𝑘 ) est tel que: 𝑓(𝑀) = 𝑘 et  

𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 = 𝛼(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ )² + 𝛽(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ )²  

            = 𝛼(𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐺𝐴2) + 𝛽(𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐺𝐵2) 

    = 𝛼𝑀𝐺² + 2𝛼𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛼𝐺𝐴2 + 𝛽𝐺𝐵2 + 2𝛽𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + 𝛽𝐺𝐵2 

            = 𝛼𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗(𝛼𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝛽𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ) + 𝛽𝑀𝐺2 + 𝛼𝐺𝐴2 + 𝛽𝐺𝐵2 

         𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 = (𝛼 + 𝛽)𝑀𝐺2 + 𝛼𝐺𝐴2 + 𝛽𝐺𝐵2,  

𝑜𝑟 𝑓(𝑀) = 𝛼𝑀𝐴 + 𝛽𝑀𝐵 = 𝑘  

Donc (𝛼 + 𝛽)𝑀𝐺2 + 𝛼𝐺𝐴2 + 𝛽𝐺𝐵2 = 𝑘⇔𝑀𝐺2 =
𝑘−𝛼𝐺𝐴²−𝛽𝐺𝐵²

𝛼+𝛽
 

On pose 𝜌 =
𝑘−𝛼𝐺𝐴²−𝛽𝐺𝐵²

𝛼+𝛽
 

On envisage 3 cas  suivants : 

1
er

 cas : si 𝜌 < 0, (𝐸𝐾) est l’ensemble vide ; 

2
e
  cas : si 𝜌 = 0(𝐸𝐾) se réduit au point G ; 

3e cas : si 𝜌 > 0, (𝐸𝐾)est le cercle de centre G et de rayon √𝜌 

 Si 𝛼 + 𝛽 = 0 ⇒ 𝛽 = −𝛼 

⇒ 𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 = 𝛼𝑀𝐴2 − 𝛼𝑀𝐵2  

  = 𝛼(𝑀𝐴2 −𝑀𝐵2)  

⇒ 𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 = 𝛼(𝑀𝐴2 −𝑀𝐵2), 𝑜𝑟 𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 = 𝑘   

⇔ 𝛼(𝑀𝐴2 −𝑀𝐵2) = 𝑘  
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⇔𝑀𝐴² −𝑀𝐵2 =
𝑘

𝛼
  

On pose 𝑘′ =
𝑘

𝛼
⇔ 𝑀𝐴2 −𝑀𝐵2 = 𝑘′ 

Le problème revient à déterminer l’ensemble des points M du plan tels que :  

𝑀𝐴2 −𝑀𝐵2 = 𝑘′  
Soit I le milieu du segment [𝐴𝐵] 

 

On a: 𝑀𝐴² −𝑀𝐵² = 𝑀𝐴⃗⃗⃗⃗ ⃗⃗⃗ + 𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗)(𝑀𝐴⃗⃗⃗⃗ ⃗⃗ ⃗ − 𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

= (𝑀I⃗⃗⃗⃗⃗⃗ + 𝐼𝐴⃗⃗⃗⃗⃗ + 𝑀𝐼⃗⃗⃗⃗⃗⃗ + 𝐼𝐵⃗⃗⃗⃗⃗)(𝑀I⃗⃗⃗⃗⃗⃗ + 𝐼𝐴⃗⃗⃗⃗⃗ − 𝑀𝐼⃗⃗⃗⃗⃗⃗ − 𝐼𝐵⃗⃗⃗⃗⃗) 

  = (2𝑀I⃗⃗⃗⃗⃗⃗ + 𝐼𝐴⃗⃗⃗⃗⃗ + 𝐼𝐵⃗⃗⃗⃗⃗)(𝐼𝐴⃗⃗⃗⃗⃗ − 𝐼𝐵)⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑜𝑟 𝐼𝐴⃗⃗⃗⃗⃗ + 𝐼𝐵⃗⃗⃗⃗⃗ = 0⃗⃗ 𝑒𝑡 𝐼𝐴⃗⃗⃗⃗⃗ = −𝐼𝐵⃗⃗⃗⃗⃗ 

⇔𝑀𝐴2 −𝑀𝐵2 = 2𝑀𝐼⃗⃗⃗⃗⃗⃗ (𝐼𝐴⃗⃗⃗⃗⃗ − (−𝐼𝐴)⃗⃗⃗⃗ ⃗⃗⃗ 

   = 2𝑀𝐼⃗⃗⃗⃗⃗⃗ (2𝐼𝐴⃗⃗⃗⃗⃗) 

   = 2𝑀𝐼⃗⃗⃗⃗⃗⃗ . 2𝐼𝐴⃗⃗⃗⃗⃗; or 𝐼𝐴⃗⃗⃗⃗⃗ = −
1

2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  ⇔ 𝐼𝐴⃗⃗⃗⃗⃗ =

1

2
𝐵𝐴⃗⃗⃗⃗ ⃗⃗  

⇔𝑀𝐴2 −𝑀𝐵2 = 2𝑀𝐼⃗⃗⃗⃗⃗⃗ . 𝐵𝐴⃗⃗⃗⃗ ⃗⃗  ; or  𝑀𝐴2 −𝑀𝐵2 = 𝑘′ 

⇔2𝑀𝐼⃗⃗⃗⃗⃗⃗ (−𝐵𝐴⃗⃗⃗⃗ ⃗⃗ ) = 𝑘′ 

⇔2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ . 𝐼𝑀⃗⃗⃗⃗⃗⃗ = 𝑘′ 
Désignons par H le projet orthogonal de sur la droite (AB).  

On a: 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .𝐼𝑀⃗⃗⃗⃗⃗⃗  =𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .𝐼𝐻⃗⃗⃗⃗⃗ 

⇔2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .𝐼𝑀 ⃗⃗ ⃗⃗ ⃗⃗ ⃗=2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .𝐼𝐻⃗⃗⃗⃗⃗  

⇔2𝐴𝐵⃗⃗⃗⃗ ⃗⃗ . 𝐼𝐻⃗⃗⃗⃗⃗ = 𝑘′ ⇔𝐼𝐻 ⃗⃗⃗⃗⃗⃗⃗ =
𝑘′

2𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 

On en déduit que le point H est indépendant du point M ; (𝐸𝑘) est donc la droite 

perpendiculaire à (AB) passant par H. 

Propriété : 

Soit A et B deux points distincts du plan P,𝛼 𝑒𝑡 𝛽 deux nombres réel non tous nul et 

𝑓 l’application de P dans ℝ définie par : 𝑓(𝑀) = 𝛼𝑀𝐴² + 𝛽𝑀𝐵² 

 𝑆𝑖 𝛼 + 𝛽 ≠ 0, on désigne par G le barycentre de (A,𝛼) 𝑒𝑡 (𝐵, 𝛽); la ligne de niveau k 

de l’application 𝑓 est (𝐸𝑘) telle que : 

- (𝐸𝑘)  est ou bien l’ensemble vide ; 

- (𝐸𝑘) est ou bien le point G ; 

- (𝐸𝑘) est ou bien le cercle de centre G. et de rayon √⍴. 

 Si 𝛼 + 𝛽 = 0, la ligne de niveau k de l’application 𝑓 est une droite perpendiculaire à 

(AB) 

2.3-Ligne de niveau de M→
𝑴𝑨

𝑴𝑩
 

Soit A et B deux points distincts du plan et k un nombre réel strictement positif. On se pose 

propose de déterminer l’ensemble (Ek) des points M du plan tels que : 
𝑀𝐴

𝑀𝐵
= 𝑘 

 Si 𝑘 =  1, 
𝑀𝐴

𝑀𝐵
= 1 ⇔ 𝑀𝐴 = 𝑀𝐵, alors (Ek) est la médiatrice de [𝐴𝐵] 

 Si 𝑘 ≠ 1, 𝑜𝑛 𝑎 : 
𝑀𝐴

𝑀𝐵
= 𝑘 ⇔ 𝑀𝑎 = 𝑘𝑀𝐵 

⇔𝑀𝐴² = 𝑘²𝑀𝐵² 

⇔𝑀𝐴² − 𝑘²𝑀𝐵² = 0  
On se ramène au problème précédent qui est de déterminer la ligne de niveau (𝐸𝑘)  de 

l’application M→ 𝛼𝑀𝐴2 + 𝛽𝑀𝐵2 avec 𝛼 = 1 𝑒𝑡 𝛽 = −𝑘2 
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Soit G le barycentre (A,1) et (𝐵,−𝑘²) 

𝐺 = 𝑏𝑎𝑟{(𝐴; 1); (𝐵;−𝑘²)} ⇔𝐺𝐴⃗⃗⃗⃗⃗⃗ − 𝑘²𝐺𝐵⃗⃗⃗⃗ ⃗⃗ = 0⃗⃗ 

⇔𝐺𝐴⃗⃗⃗⃗⃗⃗ = 𝑘2𝐺𝐵⃗⃗⃗⃗ ⃗⃗  

⇔𝐺𝐴2 = 𝑘²𝐺𝐵2 

𝑀 ∈ (𝐸𝑘) ⇔  𝑀𝐴² − 𝑘²𝑀𝐵² = 0  

⇔(𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ )² − 𝑘2(𝑀𝐺⃗⃗⃗⃗ ⃗⃗ ⃗ + 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ) = 0⃗⃗ 

⇔ 𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐺𝐴2 − 𝑘2(𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ + 𝐺𝐵2) = 0⃗⃗ 

⇔𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐴⃗⃗⃗⃗⃗⃗ + 𝐺𝐴⃗⃗⃗⃗⃗⃗ − 𝑘2𝑀𝐺2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 2𝑘2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗. 𝐺𝐵⃗⃗⃗⃗ ⃗⃗ − 𝑘2𝐺𝐵2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = 0⃗⃗ 

⇔(1 − 𝑘²)𝑀𝐺2 + 2𝑀𝐺⃗⃗⃗⃗ ⃗⃗⃗(𝐺𝐴⃗⃗⃗⃗⃗⃗ − 𝑘²𝐺𝐵⃗⃗⃗⃗ ⃗⃗ ) + 𝐺𝐴² − 𝑘2𝐺𝐵² = 0⃗⃗ 

⇔(1 − 𝑘²)𝑀𝐺2 + 𝐺𝐴² − 𝑘2𝐺𝐵² = 0 

⇔𝑀𝐺2 =
−𝐺𝐴2+𝑘2𝐺𝐵2

1−𝑘2
 

⇔𝑀𝐺2 =
𝐺𝐴²−𝑘²𝐺𝐵²

𝑘²−1
, 𝑜𝑟 𝐺𝐴 = 𝑘²𝐺𝐵 ⇔ 𝐺𝐴² = 𝑘4𝐺𝐵² 

⇔ 𝑀𝐺2 =
𝑘4𝐺𝐵2−𝑘2𝐺𝐵2

𝑘2−1
 

   =
𝑘²(𝑘²−1)𝐺𝐵²

𝑘²−1
  

   = 𝑘²𝐺𝐵²  

          𝑀𝐺2 = 𝑘²𝐺𝐵²⇔𝑀𝐺 = 𝑘𝐺𝐵 

(𝐸𝑘) est le cercle de centre G et de rayons 𝑘𝐺𝐵 

Remarque :  

 G est extérieur au segment [𝐴𝐵] 

 𝑀𝐺² = 𝑘²𝐺𝐵. 𝐺𝐵, 𝑜𝑟 𝑘²𝐺𝐵 = 𝐺𝐴 

⇒𝑀𝐺² = 𝐺𝐴. 𝐺𝐵 

Donc 𝑀𝐺² = 𝐺𝐴̅̅ ̅̅ . 𝐺𝐵̅̅ ̅̅  
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Chapitre 9 : ANGLES ORIENTES ET TRIGONOMETRIE 

I. Angles orientés : 

I-1 Mesure d’un angle orienté 

1.1 Définition : soit(𝑢,⃗⃗⃗ ⃗ 𝑣⃗) un angle orienté et α sa mesure principale. On appelle mesure de 

l’angle orienté (𝑢⃗⃗ ; 𝑣̂⃗) tout nombre réel de la forme : 𝛼 + 𝑘2𝜋, 𝑜𝑢 𝑘 ∈ ℤ 

Remarque : 

 A tout nombre réel 𝑥 correspond un unique point M de (𝑐), donc un unique orienté 

(𝑂𝐼,⃗⃗ ⃗⃗ ⃗⃗ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗̂ ) donc 𝑥 est l’une mesure des mesures  

 Si 𝑥 est une mesure d’un angle orienté, les mesures de cet angle sont les nombres 

réels de la : 𝑥 + 𝑘2𝜋 𝑜𝑢 𝑘 ∈ ℤ. 

 Tous les nombres réels, mesure d’un même angle orienté, ont le même point image 

sur le cercle trigonométrique. ce point sera noté, selon les besoins, 𝑀(𝑥), 

𝑀(𝑥 + 2𝜋),𝑀(𝑥 − 2𝜋), etc …… 

 Deux angles orientés sont égaux si et seulement si une mesure de l’un est une 

mesure de l’autre. 

Notations : 

 L’angle orienté (𝑢,⃗⃗⃗ ⃗ 𝑣̂⃗) de mesure α sera noté 𝛼̂. 

 L’angle orienté nul et l’angle orienté plat seront notés respectivement 𝑂̂ 𝑒𝑡 𝜋̂. 

1.2. Congruence modulo 2π 

1.2.1- Définition : deux nombres réels 𝑥 𝑒𝑡 𝑦 sont congrus modulo 2π. S’ils diffèrent d’un 

multiple entier de 2π 

On note : 𝑥 ≡ 𝑦[2𝜋] 

On lit : « 𝑥 𝑒𝑠𝑡 𝑐𝑜𝑛𝑔𝑟𝑢 à 𝑦 𝑚𝑜𝑑𝑢𝑙𝑜 2𝜋 » 

Retenons bien : 

∃𝑘 ∈ ℤ, 𝑥 = 𝑦 + 2𝑘𝜋  
𝑥 ≡ 𝑦[2𝜋] ⇔ 𝑥 − 𝑦 = 2𝑘𝜋, 𝑘 ∈ ℤ  

⟺𝑥 = 𝑦 + 2𝑘𝜋, 𝑘 ∈ ℤ  

1.1.2- propriétés : 

Pour tous nombres réels 𝑥, 𝑦, 𝑧 𝑒𝑡 𝑎, on a : 

 𝑥 ≡ 𝑦[2𝜋] ⇔ 𝑥 + 𝑎 ≡ 𝑦 + 𝑎[2𝜋]  

  𝑥 ≡ 𝑦[2𝜋] ⇔ −𝑥 ≡ −𝑦[2𝜋] 

 {
𝑥 ≡ 𝑦[2𝜋]

𝑦 ≡ 𝑧[2𝜋]
⇔ 𝑥 ≡ 𝑧[2𝜋] 

1.2.3- Recherche de la mesure principale d’un angle. 

Application : 

1) Déterminer la mesure principale des angles orientés 
37𝜋

3
  et−

71𝜋

6
, 

2) Placer les points 𝑀1(
37𝜋

3
  )𝑀2(−

71𝜋

6
) sur le cercle trigonométrie. 

Résolution 

1) Déterminons la mesure principale des angles orientés 
37𝜋

3
  et−

71𝜋

6
, 

Nous remarquons que : 
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 
37𝜋

3
=

𝜋+36𝜋

3
=

𝜋

3
+ 6 × (2𝜋)  

Donc   
37𝜋

3
≡

𝜋

3
[2𝜋] 

37𝜋

3
=

𝜋

3
+ 2(6π), avec 𝑘 = 6 ; de plus 

𝜋

3
∈ ]−𝜋, 𝜋] donc la mère principale de cet angle est 

𝜋

3
 . 

 −
71𝜋

6
= 

−72𝜋+𝜋

6
= −12𝜋 +

𝜋

6
 

⟺ −
71𝜋

6
= 

𝜋

6
− 12𝜋 =

𝜋

6
 + 2(−6𝜋) 

⟺− 
71𝜋

6
= 

𝜋

6
+ 2(−6𝜋),  𝑘 = −6 

Donc la mesure principale de  −
71𝜋

6
 est 

𝜋

6
 

2) Plaçons les points 𝑀1(
37𝜋

3
  )𝑀2(−

71𝜋

6
) sur le cercle trigonométrie. 

 

 
Méthode :  

Pour déterminer la mesure principale θ d’un angle orienté, dont une mesure α est connue, 

on écrit : 

𝜃 = 𝛼 + 𝑘2𝜋   𝑜𝑢 − 𝜋 < 𝛼 ≤ 𝜋  , 𝑘 ∈ ℤ 

 Cette écriture peut être immédiate, sinon on détermine tout d’abord 𝑘 à l’aide des 

inégalités : −𝜋 < 𝛼 + 𝑘2𝜋 ≤ 𝜋   

 Puis on détermine θ en utilisant l’égalité θ=𝛼 + 𝑘2𝜋. 

Remarque : (passage de degré en radian) 

 Si 𝑥 est une mesure en radian d’un angle orienté, une mesure 𝑦 en degré de cet angle 

orienté est obtenue par  suivante : 
𝑥

𝜋
=

𝑦

180
 

 Sauf mention contraire, si non  l’unité l’égalité d’angle utilisé par la suite sera le radian. 

 soit 𝛼 la mesure principale (en radian) d’un angle orienté et M le point image de α sur le 

cercle trigonométrique, la longueur 𝐼𝑀̂   𝑒𝑠𝑡  |𝛼| 

𝑰𝟐 −Somme de deux angles orientés 

2.1- définition : 

Soit 𝛼 ̂𝑒𝑡 𝛽̂ deux angles orientés de mesure respective 𝛼 𝑒𝑡 𝛽 ,  

On appelle somme des angles orientés 𝛼 ̂𝑒𝑡 𝛽̂ 𝑒𝑡 𝑜𝑛 𝑛𝑜𝑡𝑒 ∶  𝛼 ̂ + 𝛽̂ , l’angle orienté dont 

l’une  des mesure est 𝛼 + 𝛽 
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Remarque : 

 Deux angles orientés sont supposés lorsque leur somme est l’angle nul, l’opposé 𝛼̂ 

est noté −𝛼̂. On a : 𝛼̂ + (−𝛼̂)=0̂ 

 La différence de deux angles orientés est la somme premier et de l’opposé de 

l’autre : 𝛼̂ − 𝛽̂ = 𝛼̂ + (−𝛽̂). 

 Les propriétés de l’addition des angles orientés sont celles de l’addition des nombres 

réels, en particulier, 𝛼̂ + 𝛽̂ = 𝛽̂ + 𝛼̂ 

II. Propriétés des angles orientés 

𝑰𝑰𝟏 − Relation de Charles 

𝟏. 𝟏 − Propriété : 

Pour tous vecteurs non nuls 𝑢⃗⃗, 𝑣⃗ 𝑒𝑡 𝑤⃗⃗⃗ 

(𝑢⃗⃗, 𝑣̂⃗) + (𝑣⃗, 𝑤̂) = (𝑢⃗⃗, 𝑤̂). (Appelé la relation de Chasles) 

𝟏. 𝟐 −Cconséquences de la relation de Chasles 

𝟏.2.1- Propriété 1 : 

𝑠𝑜𝑖𝑡 𝑢,⃗⃗⃗ ⃗  𝑣,⃗⃗⃗ ⃗ 𝑢′⃗⃗⃗ ⃗ et 𝑣 ⃗⃗⃗ ⃗′ quatre vecteurs non nuls. 

On a:  (𝑢⃗⃗, 𝑣̂⃗) = (𝑢⃗⃗′, 𝑣̂⃗′)⟺ (𝑢⃗⃗, 𝑢̂⃗⃗′) = (𝑣, 𝑣̂⃗′) 

Preuve :  

(𝑢⃗⃗, 𝑣̂⃗) = (𝑢⃗⃗′, 𝑣̂⃗′)⟺ (𝑢⃗⃗, 𝑢̂⃗⃗′) + (𝑢⃗⃗′, 𝑣̂⃗) = (𝑢⃗⃗, 𝑣̂⃗′) + (𝑣⃗, 𝑣̂⃗′)  

⟺(𝑢⃗⃗, 𝑢̂⃗⃗′) = (𝑣⃗, 𝑣̂⃗′)  

1.2.2- Propriété 2 

Soit 𝑢⃗⃗ 𝑒𝑡 𝑣⃗ deux vecteurs non nuls et 𝑘 un nombre réel non nul. 

 On a : 

 (𝑣⃗, 𝑢̂⃗⃗) = −(𝑢⃗⃗, 𝑣̂⃗) 

 𝑠𝑖 𝑘 > 0, 𝑎𝑙𝑜𝑟𝑠 (𝑘𝑢⃗⃗, 𝑣̂⃗) = (𝑢⃗⃗, 𝑘𝑣̂⃗) = (𝑢⃗⃗, 𝑣̂⃗) 

 𝑠𝑖 𝑘 < 0, 𝑎𝑙𝑜𝑟𝑠(𝑘𝑢⃗⃗, 𝑣̂⃗) = (𝑢⃗⃗, 𝑘𝑣̂⃗) = (𝑢⃗⃗, 𝑣̂⃗) + 𝜋̂ 

 (𝑘𝑢⃗⃗, 𝑘𝑣̂⃗) = (𝑢⃗⃗, 𝑣̂⃗) 

 
1.2.3- Propriété 3 

Pour tous réels 𝛼 𝑒𝑡 𝛽 d’images respectives A et B sur (𝐶) (cercle trigonometrique), alors :  

𝛽 − 𝛼 est une mesure de l’angle orienté(𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ ) c'est-à-dire : 𝑚𝑒𝑠(𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ )=𝛽 − 𝛼 

D’où   𝑚𝑒𝑠 (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ ) = 𝛽 − 𝛼 

𝑰𝑰𝟐 −𝑫ouble d’un angle orienté 

2.1- Définition 
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Soit (𝑢⃗⃗, 𝑣̂⃗) un angle orienté 

On appelle double de (𝑢⃗⃗, 𝑣̂⃗) et on note α(𝑢⃗⃗, 𝑣̂⃗), l’angle orienté défini par : 

2(𝑢⃗⃗, 𝑣̂⃗) = (𝑢⃗⃗, 𝑣̂⃗) + (𝑢⃗⃗, 𝑣̂⃗) 

Remarque : 

 Le double d’un angle orienté de mesure α a pour mesure 2α 

 Soit 𝛼̂ 𝑒𝑡 𝛽̂ deux angles orientés et on a : 2𝛼̂ + 2𝛽̂ = 2(𝛼̂ + 𝛽̂) 

2.2- Propriété 

Soit 𝛼̂ 𝑒𝑡 𝛽̂ deux angles orientés et 𝛿 l’angle orienté droit direct. On a : 

 2𝛼̂ = 0 ̂ ⇔ 𝛼̂ = 0̂ 𝑜𝑢 𝛼̂ = 𝜋̂ . 

 2𝛼̂ = 2𝛽 ̂ ⇔ 𝛼̂ = 𝛽̂ 𝑜𝑢 𝛼̂ = 𝛽̂ + 𝜋̂ . 

  2𝛼̂ = 𝜋 ̂ ⇔ 𝛼̂ = 𝛿 𝑜𝑢 𝛼̂ = −𝛿̂  

2.3-Exemple de l’alignement de points 

Trois points A,B et c distincts du plan sont alignés si et seulement si : 2 (𝐴𝐵,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) = 0̂ 

Démonstration 

2 (𝐴𝐵,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) = 0̂ ⇔ (𝐴𝐵,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) = 0̂  𝑜𝑢 (𝐴𝐵,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) = 𝜋̂  

⇔ 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  𝑒𝑡 𝐴𝐶⃗⃗⃗⃗⃗⃗  𝑠𝑜𝑛𝑡 𝑐𝑜𝑙é𝑛𝑎𝑖𝑟𝑒𝑠. 

⇔ 𝐴,𝐵 𝑒𝑡 𝐶 𝑠𝑜𝑛𝑡 𝑎𝑙𝑖𝑔𝑛é𝑠. 

2.3.1 Théorème : 

Pour démontrer que trois points A,B et C sont alignes, on peut établir que : 2 (𝐴𝐵,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝐶⃗⃗⃗⃗⃗⃗̂ ) = 0̂ 

𝑰𝑰𝟑 − Angles orientés et cercle 

3.1- Caractérisation d’un cercle 

3.1.1- Propriété :  

Soit (𝐶) un cercle de centre O ; A et B deux points distincts de ce cercle. 

Pour tout point M distinct de A et B, on a : 

𝑀 ∈ (𝐶)  ⇔ 2. (𝑀𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑀𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗̂ ) = (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ ) 

3.2- Points cocycliques 

- Deux points situés sur un même cercle sont cocycliques 

- Par deux points distincts A et B, il passe une infinité de cercles 

- Par trois points distincts et non alignes A, B et C, il passe un seul cercle : le cercle 

circonscrit à ABC 

3.2.1- Théorème 

Soit A, B, C, D quatre points distincts du plan tels que trois quelconques d’entre eux ne sont 

pas alignés. 

Les points A, B, C et D sont cocycliques si et seulement 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = 2(𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ) 

Démonstration 

Démontrons que A, B, C, D sont cocycliques si et seulement 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = 2(𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ) 
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⟹) Si A, B, C et D appartiennent à un même cercle (𝐶) de centre O, alors d’après la 

propriété précédente, on a : 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ )  et 2 (𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ) = (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ ) 

Donc : 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = 2(𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ) 

⟸ ) Réciproque si, 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = 2(𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ), désignons par (𝐶) le cercle circonscrit au 

triangle ABC et par O le centre de ce cercle. 

On a : 2 (𝐶𝐴,⃗⃗⃗⃗ ⃗⃗ ⃗ 𝐶𝐵⃗⃗⃗⃗⃗⃗̂ ) = (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ )  , donc 2 (𝐷𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐷𝐵⃗⃗⃗⃗⃗⃗⃗̂ ) et le point D appartient au cercle (𝐶).  

Les points A,B ,C et D sont cocycliques. 

 
Exercice  d’application : 

Sur le cercle trigonométrique, on considère les points A et B images respectives des nombres 

réels −
1999𝜋

6
  𝑒𝑡 

3𝜋

4
 

1) Placer les points A et B 

2) Quelle est la mesure principale de l’angle orienté (𝑂𝐴,⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗̂ ) 

III. Trigonométrie 

𝑰𝑰𝑰𝟏 − Lignes trigonométriques d’un angle orienté 

𝟏. 𝟏 − Cosinus et sinus d’un angle orienté 

Définition :  

Soit (𝑢⃗⃗, 𝑣⃗) un angle orienté de mesure α et M l’image de α sur (𝐶). 

 Le cosinus de (𝑢⃗⃗, 𝑣⃗) ou de α est l’abscisse de M. 

 Le sinus de (𝑢⃗⃗, 𝑣⃗) ou α est l’ordonnée M 

Remarque : 

Dans le repère (O,I,J), on a :  M(𝑐𝑜𝑠𝛼
𝑠𝑖𝑛𝛼

) 

Pour tout nombre réel α et pour tout entier relatif 𝑘, 

On a: 𝑐𝑜𝑠²𝛼 + 𝑠𝑖𝑛²𝛼 = 1 

−1 ≤ 𝑐𝑜𝑠𝛼 ≤ 1  

−1 ≤ 𝑠𝑖𝑛𝛼 ≤ 1  

cos(𝛼 + 2𝑘𝜋) = 𝑐𝑜𝑠𝛼   

sin(𝛼 + 2𝑘𝜋) 𝑠𝑖𝑛𝛼 
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1.2- Tangente d’un angle orienté 

1.2.1- Définition 

Soit (𝑢,⃗⃗⃗ ⃗ 𝑣̂⃗) un angle orienté non droit de mesure α. La tangente de (𝑢,⃗⃗⃗ ⃗ 𝑣̂⃗) ou de α est le 

nombre réel, noté tan (𝑢,⃗⃗⃗ ⃗ 𝑣̂⃗) ou tanα défini par : 𝑡𝑎𝑛(𝑢,⃗⃗⃗ ⃗ 𝑣̂⃗) = tanα =
𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛼
 

𝟏.3- Lignes trigonométriques des angles remarquables 

Le tableau ci-dessous indique les lignes trigonométriques remarquables à retenir  

 

 

 

 

 

 

 

 

 

1.4- Lignes trigonométriques d’angles associées 

Soit 𝛼̂ un angle orienté de mesure α.  

Les angles orientés de mesure –𝛼, 𝜋 − 𝛼, 𝜋 + 𝛼,
𝜋

2
 – 𝛼 𝑜𝑢 

𝜋

𝛼
 + 𝛼 sont habituellement appels 

angles associés à 𝛼̂ 

 
Les deux configurations géométriques ci-dessous, ainsi que les définitions des fonctions 

sinus, cosinus et tangente, justifient les propriétés suivantes : 

1.5- Propriétés : 

Pour tous nombres réels α, 

on a : 

 cos(−𝛼) = 𝑐𝑜𝑠𝛼 cos(𝜋 − 𝛼) = −𝑐𝑜𝑠𝛼  

 sin(−𝛼) = −𝑠𝑖𝑛αsin(𝜋 − 𝛼) = 𝑠𝑖𝑛𝛼 

 cos(𝜋 + 𝛼) = −𝑐𝑜𝑠𝛼  cos (
𝜋

2
− 𝛼) = 𝑠𝑖𝑛𝛼  

 sin(𝜋 + 𝛼) = −𝑠𝑖𝑛𝛼sin (
𝜋

2
−  𝛼)=cosα 

𝛼 1 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

𝑐𝑜𝑠𝛼 1 √3

2
 

√2

2
 

1

2
 

0 

𝑠𝑖𝑛𝛼 0 1

2
 √2

2
 

√3

2
 

1 

tan𝛼 0 1

√3
 

1 √3 ? 
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Remarque : 
𝜋

2
+ 𝛼 = 𝜋 − (

𝜋

2
− 𝛼), donc on a également les relations suivantes : 

 cos (
𝜋

2
+ 𝛼) = −𝑠𝑖𝑛𝛼  

 sin (
𝜋

2
+ 𝛼) = 𝑐𝑜𝑠𝛼  

Exemples : 

Les lignes trigonométriques des associées permettent de calculer les lignes 

trigonométriques, les nombres réels de l’intervalle]−𝜋, 𝜋[ representes sur la figure ci-

dessous, on a: 

 𝑐𝑜𝑠
5𝜋

6
= cos (𝜋 −

𝜋

6
) = −𝑐𝑜𝑠

𝜋

6
= −

√3

2
𝛼 =

𝜋

2
  

 𝑠𝑖𝑛
5𝜋

6
= sin (𝜋 −

𝜋

6
) = 𝑠𝑖𝑛

𝜋

6
=

1

2
 

 cos (−
2𝜋

3
) = 𝑐𝑜𝑠

2𝜋

3
= cos (𝜋 −

𝜋

3
) = −𝑐𝑜𝑠

𝜋

3
= −

1

2
 

 sin (−
2𝜋

3
)=-sin

2𝜋

3
=-sin(𝜋 −

𝜋

3
) = −𝑠𝑖𝑛

𝜋

3
= −

√3

2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑰𝑰𝑰𝟐 − Formule de trigonométrie : 

2.1- Formules d’addition 

2.1.1- Propriétés : 

Pour tous nombres réels a et b, on a : 

 cos(𝑎 − 𝑏) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 + 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏  

 sin(𝑎 − 𝑏) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 − 𝑠𝑖𝑛𝑏𝑐𝑜𝑠𝑎  

 𝑐𝑜𝑠(𝑎 + 𝑏) = 𝑐𝑜𝑠𝑎𝑐𝑜𝑠𝑏 − 𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑏  

 sin(𝑎 + 𝑏) = 𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑏 + 𝑠𝑖𝑛𝑏𝑐𝑜𝑠𝑎  

Exemple :  
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Calculer 𝑐𝑜𝑠
5𝜋

12
, sin

5𝜋

12
 𝑒𝑡 𝑡𝑎𝑛

5𝜋

12
 

On peut décomposer  
5𝜋

12
 de la façon suivante : 

5𝜋

12
=

2𝜋

3
−
𝜋

4
 𝑒𝑡 𝑐𝑎𝑙𝑐𝑢𝑙𝑒𝑟 cos(

2𝜋

3
−
𝜋

4
), sin(

2𝜋

3
−
𝜋

4
) et tan(

2𝜋

3
−
𝜋

4
) en utilisant les formules 

d’addition. 

Donc  𝑐𝑜𝑠
5𝜋

12
= cos (

2𝜋

3
−
𝜋

4
) 

= 𝑐𝑜𝑠
2𝜋

3
𝑐𝑜𝑠

𝜋

4
+ 𝑠𝑖𝑛

2𝜋

3
𝑠𝑖𝑛

𝜋

4
  

= −
1

2
×
√2

2
+
√3

2
   

𝑐𝑜𝑠
5𝜋

12
=

√3

2
(√3 − 1)  

𝑠𝑖𝑛
5𝜋

12
= 𝑠𝑖𝑛 (

2𝜋

3
−
𝜋

4
) 

= 𝑠𝑖𝑛
2𝜋

3
𝑐𝑜𝑠

𝜋

4
− 𝑐𝑜𝑠

2𝜋

3
𝑠𝑖𝑛

𝜋

4
 

                                 =
√3

2
×
√2

2
−
√2

2
× (

−1

2
) 

  𝑠𝑖𝑛
5𝜋

12
=

√2

4
(√3 + 1) 

𝑡𝑎𝑛
5𝜋

12
=
𝑠𝑖𝑛

5𝜋

12

𝑐𝑜𝑠
5𝜋

12

 

=
√2

4
(√3+1)

√2

4
(√3−1)

  

=
√3+1

√3−1
  

=
(√3 + 1)(√3 + 1)

(√3 + 1)(√3 − 1)
 

=
3+2√3+1

3−1
  

=
4+2√3

2
  

= 2 + √3  

𝑡𝑎𝑛
5𝜋

12
= 2 + √3 

2.2- Formules de duplication et de linéarisation 

2.2.1-Proprietes 

Pour tout nombre réel a, on a : 

 Formule de duplication : {𝑐𝑜𝑠2𝑎 = 𝑐𝑜𝑠²𝑎 − 𝑠𝑖𝑛²𝑎
𝑠𝑖𝑛2𝑎 = 2𝑠𝑖𝑛𝑎𝑐𝑜𝑠𝑎       

 

 Formule de linéarisation : {
𝑐𝑜𝑠²𝑎 =

1+𝑐𝑜𝑠2𝑎

2
   

𝑠𝑖𝑛²𝑎 =  
1−𝑐𝑜𝑠2𝑎

2
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Exemple : 

Calculons 𝑐𝑜𝑠
𝜋

12
 et 𝑠𝑖𝑛

𝜋

12
  en utilisant les formules de linéarisation. 

On sait : 

 Cos²
𝜋

12
=

1+𝑐𝑜𝑠2×
𝜋

12

2
=

1+𝑐𝑜𝑠
𝜋

6

2
=

1+
√3

2

2
=

4+2√3

8
=

(√3+1)²

8
 

Cos²
𝜋

12
=

(√3+1)
2

8
 

Cos
𝜋

12
=

√3+1

2√2
 

 sin²
𝜋

12
=

1−𝑐𝑜𝑠
𝜋

6

2
=

1−
√3

2

2
=

4−2√3

8
=

(√3−1)²

8
 

Sin²
𝜋

12
=

(√3−1)
2

8
 

Sin
𝜋

12
=

√3−1

2√2
 

2.3- Expression de cosα, sinα et tanα en fonction de tan
𝜶

𝟐
 

2.3.1- Propriétés : 

Pour tout nombre réel  α tel que tan
𝛼

2
 soit défini, en passant = 𝑡𝑎𝑛

𝛼

2
 , on a : 

 cosα=
1−𝑡²

1+𝑡²
 ,  

 𝑠𝑖𝑛𝛼 =
2𝑡

1+𝑡2
 

Si, de plus, tanα est infini, 

 𝑡𝑎𝑛𝛼 =
2𝑡

1+𝑡²
 

IV. Equations trigonométriques 

𝑰𝑽𝟏 − Equation de types : 𝒄𝒐𝒔𝒙 = 𝒂, 𝒔𝒊𝒏𝒙 = 𝒂, 𝐭𝐚𝐧𝐱 = 𝒂 

𝟏. 𝟏 − Equation du type : 𝒄𝒐𝒔 = 𝒂 

𝑐𝑜𝑠 = 𝑎 ou 𝑥 est l’inconnue et a un nombre réel donné, on distingue deux cas : 

1er cas : si 𝑎 < −1  𝑜𝑢 𝑎 > 1, cette équation n’a pas de solution puis que ∀𝑥 ∈ ℝ, 𝑜𝑛 𝑎 ∶

−1 ≤ 𝑐𝑜𝑠𝑥 ≤ 1 

2e  cas : si 𝑎 ∈ [−1,1], il existe un nombre réel α tel que 𝑐𝑜𝑠𝛼 = 𝑎 

𝑐𝑜𝑠𝑥 = 0 ⇔    𝑐𝑜𝑠𝑥 = 𝑐𝑜𝑠𝛼  

⇔ 𝑥 = 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 𝑜𝑢 𝑥 = −𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ  

On dit que 𝑥 ≡ 𝛼[2𝜋] 𝑜𝑢 𝑥 ≡ −𝛼[2𝜋] 

L’ensemble de solution de cette équation est : 𝑆 = {𝛼 + 2𝑘𝜋,−𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ} 

Propriété :  

Pour tous nombres 𝑥 𝑒𝑡 𝛼, on a : 

𝑐𝑜𝑠𝑥 = 𝑎 ⇔ 𝑥 = 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 𝑜𝑢 𝑥 = −𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 

Exemple :  

Résoudre dans ℝ l’équation (E) : 𝑐𝑜𝑠2𝑥 =
√3

2
 

On a 𝑐𝑜𝑠
5𝜋

6
= −

√3

2
, alors : 

𝑐𝑜𝑠2𝑥 =
√3

2
 ⇔ 𝑐𝑜𝑠2𝑥 = 𝑐𝑜𝑠

5𝜋

6
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⇔ 2𝑥 =
5𝜋

6
+ 2𝑘𝜋   𝑜𝑢 2𝑥 = −

5𝜋

6
+ 2𝑘𝜋, 𝑘 ∈ ℤ 

⇔ 𝑥 =
5𝜋

12
+ 𝑘𝜋   𝑜𝑢 𝑥 = −

5𝜋

12
+ 𝑘𝜋, 𝑘 ∈ ℤ 

𝑆 = {−
5𝜋

12
+ 𝑘𝜋,

5𝜋

12
+ 𝑘𝜋, 𝑘 ∈ ℤ} 

𝟏. 𝟐 − Equation du type : sin𝒙 = 𝒂 

Pour résoudre dans ℝ l’équation : 𝑠𝑖𝑛𝑥 = 𝑎, 𝑜𝑢 𝑥 est l’inconnue et a un nombre réel donné, 

on distingue deux cas : 

1er cas : si 𝑎 < −1 𝑜𝑢 𝑎 > 1, cette équation n’a pas de solution puisque ∀𝑥 ∈ ℝ, on a :  

−1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 

2e cas : si 𝑎 ∈ [−1,1],il existe un nombre réel α tel que sinα=𝑎 

𝑠𝑖𝑛𝑥 = 𝑎 ⇔ 𝑠𝑖𝑛𝑥 = 𝑠𝑖𝑛𝛼 

⇔ 𝑥 = 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 𝑜𝑢 𝑥 = 𝜋 − 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 

On dit que 𝑥 ≡ 𝛼[2𝜋] 𝑜𝑢 𝑥 ≡ 𝜋 − 𝛼[2𝜋] 

L’ensemble de solution de cette équation est : 𝑆 = {𝛼 + 2𝑘𝜋; 𝜋 − 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ} 

Propriété : 

Pour tous nombres réels𝑥 𝑒𝑡 𝛼, 𝑜𝑛 𝑎 : 

𝑠𝑖𝑛𝑥 = 𝑠𝑖𝑛𝑎 ⇔ 𝑥 = 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 𝑜𝑢 𝑥 = 𝜋 − 𝛼 + 2𝑘𝜋, 𝑘 ∈ ℤ 

Exemple :  

Résoudre dans ℝ l’équation (E) : sin (𝑥 −
𝜋

4
)=
1

2
 

sin (𝑥 −
𝜋

4
) =

1

2
⇔ sin (𝑥 −

𝜋

4
) = sin

1

2
 

⇔

{
 

 𝑥 −
𝜋

4
=
𝜋

6
+ 2𝑘𝜋, 𝑘 ∈ ℤ

𝑜𝑢

𝑥 −
𝜋

4
= 𝜋 −

𝜋

6
+ 2𝑘𝜋, 𝑘 ∈ ℤ

 

⇔

{
 
 

 
 𝑥 =

𝜋

6
+
𝜋

4
+ 2𝑘𝜋, 𝑘 ∈ ℤ

𝑜𝑢

𝑥 =
5𝜋

6
+
𝜋

4
+ 2𝑘𝜋, 𝑘 ∈ ℤ

 

⇔

{
 
 

 
 𝑥 =

5𝜋

12
+ 2𝑘𝜋, 𝑘 ∈ ℤ

𝑜𝑢

𝑥 =
13𝜋

12
+ 2𝑘𝜋, 𝑘 ∈ ℤ

 

𝑆 = {
5𝜋

12
+ 2𝑘𝜋,

13𝜋

12
+ 2𝑘𝜋, 𝑘 ∈ ℤ} 

𝟏. 𝟑 − Equation du type :𝒕𝒂𝒏𝒙 = 𝒂 

Pour résoudre dans ℝ l’équation 𝑡𝑎𝑛𝑥 = 𝑎, 𝑜𝑢 𝑥 est l’inconnue et a un nombre réel donné, 

tout en sachant que la fonction tangente prend ses valeurs dans ℝ, ∀𝑎 ∈ ℝ, il existe un 

nombre réel α tel que 𝑡𝑎𝑛𝛼 = 𝑎 

𝑡𝑎𝑛𝑥 = 𝑎 ⇔ 𝑡𝑎𝑛𝑥 = 𝑡𝑎𝑛𝛼 
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⇔ 𝑥 = 𝛼 + 2𝑘𝜋 𝑜𝑢 𝑥 = 𝜋 + 𝛼 + 2𝑘𝜋 

C'est-à-dire : 𝑥 = 𝛼 + 𝑘𝜋, 𝑘 ∈ ℤ  

L’ensemble de solution de cette équation est : 𝑆 = {𝛼 + 𝑘𝜋, 𝑘 ∈ ℤ} 

Propriété :  

Pour tous nombres réels 𝑥 𝑒𝑡 𝛼 telsque 𝑡𝑎𝑛𝑥 𝑒𝑡 𝑡𝑎𝑛𝛼 sont définis, on a : 

𝑡𝑎𝑛𝑥 = 𝑡𝑎𝑛𝛼 ⇔ 𝑥 = 𝛼 + 𝑘𝜋, 𝑘 ∈ ℤ 

Exemple :  

Résoudre dans ℝ l’équation : 𝑡𝑎𝑛3𝑥 = −√3 

Nous savons que 𝑡𝑎𝑛
2𝜋

3
= −√3 

Alors l’équation devient : 𝑡𝑎𝑛3𝑥 =  𝑡𝑎𝑛
2𝜋

3
 

⇔ 3𝑥 =
2𝜋

3
+ 𝑘𝜋, 𝑘 ∈ ℤ  

⇔ 𝑥 =
2𝜋

9
+ 𝑘

𝜋

3
, 𝑘 ∈ ℤ  

𝑆 = {
2𝜋

9
+ 𝑘

𝜋

3
, 𝑘 ∈ ℤ} 

Les imagines des solutions sont des sommets d’un hexagone régulier inscrit dans le cercle 

trigonométrique. 

𝑰𝑽𝟐 − Equation du type : 𝒂𝒄𝒐𝒔𝒙 + 𝒃𝒔𝒊𝒏𝒙 + 𝒄 = 𝟎 

Méthode de résolution : 

Pour résoudre dans ℝ une équation du type :𝑎𝑐𝑜𝑠𝑥 + 𝑏𝑠𝑖𝑛𝑥 + 𝑐 = 0 

On distingue deux cas 

1er cas : 𝑠𝑖 𝑎 = 0 𝑜𝑢 𝑏 = 0 𝑜𝑛 𝑠𝑒 𝑟𝑎𝑚é𝑛𝑒 à 𝑢𝑛𝑒 é𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑑𝑢 𝑡𝑦𝑝𝑒 ∶ 𝑐𝑜𝑠𝑥 = 𝑎 𝑜𝑢 𝑠𝑖𝑛𝑥 = 𝑎 

2e cas : 𝑠𝑖 𝑎 ≠ 0 𝑒𝑡 𝑏 ≠ 0, 𝑎𝑙𝑜𝑟𝑠 𝑎2 + 𝑏2 ≠ 0𝑒𝑡 𝑜𝑛 𝑎 ∶ 

𝑎𝑐𝑜𝑠𝑥 + 𝑏𝑠𝑖𝑛𝑥 = √𝑎2 + 𝑏2(
𝑎

√𝑎2+𝑏2
𝑐𝑜𝑠𝑥 +

𝑏

√𝑎²+𝑏²
𝑠𝑖𝑛𝑥  

Or (
𝑎

√𝑎2+𝑏2
)
2

+ (
𝑏

√𝑎2+𝑏2
)
2

= 1, donc il existe un nombre réel  ∅ tel que :  

𝑐𝑜𝑠∅ =
𝑎

√𝑎2 + 𝑏2
 𝑒𝑡 𝑠𝑖𝑛∅ =

𝑏

√𝑎2 + 𝑏2
 

Alors on en déduit que ; 

𝑎𝑐𝑜𝑠𝑥 + 𝑏𝑠𝑖𝑛𝑥 = √𝑎2 + 𝑏2(𝑐𝑜𝑠∅𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛∅𝑠𝑖𝑛𝑥)  

   = √𝑎2 + 𝑏2 cos(∅ − 𝑥)  

Ainsi : 𝑎𝑐𝑜𝑠𝑥 + 𝑏𝑠𝑖𝑛𝑥 = √𝑎2 + 𝑏2 cos(∅ − 𝑥) , 𝑜𝑟 𝑎𝑐𝑜𝑠𝑥 + 𝑏𝑠𝑖𝑛𝑥 = −𝑐 

Alors √𝑎2 + 𝑏2 cos(∅ − 𝑥) = −𝑐 <=> cos(∅ − 𝑥) = −
𝑐

√𝑎2+𝑏2
 

On est donc ramené à résoudre l’équation : cos(∅ − 𝑥) = −
𝑐

√𝑎2+𝑏2
 

Application 1 :  

Résolvons dans ℝ l’équation : 
1

2
𝑐𝑜𝑠𝑥 −

√3

2
𝑠𝑖𝑛𝑥 =

√2

2
 

On a : 𝑎 =
1

2
 , 𝑏 = −

√3

2
 et 𝑐 = −

√2

2
 

𝑎 ≠ 0 𝑒𝑡 𝑏 ≠ 0, 𝑎𝑙𝑜𝑟𝑠 𝑎2 + 𝑏2 =
1

4
+
3

4
= 1 ≠ 0 ⟹ √𝑎2 + 𝑏2 = √1 = 1  
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Donc il existe un nombre réel ∅ tel que : 𝑐𝑜𝑠∅ =
1

2
  𝑒𝑡 𝑠𝑖𝑛∅ =

−√3

2
, 

On en déduit que : ∅ = −
𝜋

3
 

⟹
1

2
𝑐𝑜𝑠𝑥 −

√3

2
𝑠𝑖𝑛𝑥 = 𝑐𝑜𝑠∅𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛∅𝑠𝑖𝑛𝑥  

= cos (−
𝜋

3
) 𝑐𝑜𝑠𝑥 + sin (−

𝜋

3
)𝑠𝑖𝑛𝑥  

= cos (
𝜋

3
) 𝑐𝑜𝑠𝑥 − sin (

𝜋

3
)𝑠𝑖𝑛𝑥  

1

2
𝑐𝑜𝑠𝑥 −

√3

2
𝑠𝑖𝑛𝑥 = cos (

𝜋

3
+ 𝑥) , 𝑜𝑟 

1

2
𝑐𝑜𝑠𝑥 −

√3

2
𝑠𝑖𝑛𝑥 =

√2

2
= 𝑐𝑜𝑠

𝜋

4
  

⟹ cos (
𝜋

3
+ 𝑥) =  𝑐𝑜𝑠

𝜋

4
  

⟹
𝜋

3
+ 𝑥 =

𝜋

4
+ 2𝑘𝜋  𝑜𝑢  

𝜋

3
+ 𝑥 = −

𝜋

4
+ 2𝑘𝜋, 𝑘 ∈ ℤ  

⟹ 𝑥 =
𝜋

4
−
𝜋

3
2𝑘𝜋  𝑜𝑢 𝑥 = −

𝜋

4
−
𝜋

3
2𝑘𝜋  

⟹ 𝑥 = −
𝜋

12
+ 2𝑘𝜋   𝑜𝑢 𝑥 = −

7𝜋

4
−
𝜋

3
+ 2𝑘𝜋, 𝑘 ∈ ℤ  

𝑥 ≡ −
𝜋

12
[2𝜋] 𝑜𝑢  𝑥 ≡ −

7𝜋

12
  

𝑠 = {−
𝜋

12
+ 2𝑘𝜋, −

7𝜋

12
+ 2𝑘𝜋, 𝑘 ∈ ℤ}  

Application 2 : 

Résoudre dans ℝ l’équation : 𝑐𝑜𝑠𝑥 + √3𝑠𝑖𝑛𝑥 − √2 

𝑰𝑽𝟑 − Autres exemples d’équation trigonométrique 

Application : 

1) Résoudre dans ℝ l’équation (E) : 𝑐𝑜𝑠2𝑥 + √3𝑠𝑖𝑛2𝑥 = −1 et représenter ses solutions 

sur le cercle trigonométrique. 

2) Donner les solutions de (E) appartenant à l’intervalle ]−
3𝜋

2
; 2𝜋[ 

V. Inéquations trigonométriques 

Pour la résolution des inéquations trigonométriques, on se limitera aux inéquations simples 

de types : 𝑐𝑜𝑠𝑥 ≤ 𝑏 𝑜𝑢 𝑐𝑜𝑠𝑎𝑥 ≤ 𝑏 𝑜𝑢(sin 𝑜𝑢 tan ). 

Application : 

1) Résoudre dans R l’inéquation (I) : 𝑠𝑖𝑛𝑥 > −
1

2
 sur chacun des intervalles suivants : 

a) ]-𝜋; 𝜋] ; 

b) [0; 2𝜋 [ ;  

c) ℝ 

2) Résoudre dans R l’inéquation (I) ; 𝑐𝑜𝑠2𝑥 ≥
1

2
. On représentera l’ensemble de 

solutions appartenant à l’intervalle ]−𝜋; 𝜋] sur le cercle trigonométrique. 

3) Résoudre dans ]−𝜋; 𝜋], l’inéquation(I) : tan 𝑥 < 1. Représenter l’ensemble de 

solution sur le cercle trigonométrique. 
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Chapitre 10 : GEOMETRIE ANALYTIQUE DU PLAN 

I. Orthogonalité et droites du plan  

𝑰𝟏 − Droite définie par un point et un vecteur normal 

On sait que pour tout A et tout vecteur non nul 𝑛⃗⃗, il existe une et une seule droite passant  

par A et de vecteur normal 𝑛⃗⃗. Cette droite est l’ensemble des points M du plan tels que : 

𝑄𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⏊𝑛⃗⃗ 

𝟏. 𝟏 −Equation cartésienne d’une droite. 

Propriétés : soit a et b deux nombres réels tels que (𝑎, 𝑏) ≠ (𝑜, 0) 

 Pour tout nombre réel c, la droite (𝐷)d’équation cartesienne 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 

admet 𝑛⃗⃗(𝑎
𝑏
) pour vecteur normal. 

 Réciproquement, toute droite de vecteur normal  𝑛⃗⃗(𝑎
𝑏
) admet une équation 

cartesienne de la forme : 𝑎𝑐 + 𝑏𝑦 + 𝑐 =    𝑜𝑢 𝑐 ∈ ℝ 

On note 𝑢⃗⃗(−𝑏
𝑎
) est un vecteur directeur de (𝐷) 

Exemples : 

1) Soit (𝐷) : 2𝑥 − 3𝑦 + 4 = 0. Determiner une équation cartesienne de la droite (∆) 

perpendiculaire à (𝐷) et passant par point A(-1,2) ; 

2) On donne les points 𝐴(−3
4
)  𝑒𝑡 B(1

2
). Déterminer une équation cartésienne de la 

médiatrice du segment [𝐴𝐵].  

Résolution : 

1) (𝐷): 2𝑥 − 3𝑦 + 4 = 0. Le vecteur directeur de (𝐷) 𝑒𝑠𝑡 𝑢⃗⃗(3
2
) 

Déterminons une équation cartésienne de la droite (∆) 

Soit M(𝑥
𝑦
)  un point de la droite (∆); on a :  𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ (𝑥+1

𝑦−2
) 

𝑀 ∈ (∆) ⇔ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗. 𝑢⃗⃗ = 0 

⇔(𝑥+1
𝑦−2

) (3
2
) = 0 

⇔3(𝑥 + 1) + 2(𝑦 − 2) = 0 

⇔3𝑥 + 2𝑦 − 1 = 0 

D’où la droite (∆) 𝑎 𝑝𝑜𝑢𝑟 é𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑒𝑛𝑛𝑒 ∶ 3𝑥 + 2𝑦 − 1 = 0 de vecteur normal 𝑛⃗⃗(3
2
) 

2) On donne les points 𝐴(−3
4
)  𝑒𝑡 B(1

2
). Déterminons une équation cartésienne de la 

médiatrice du segment [𝐴𝐵].  

Soit (𝐷) la mediatrice du segment [𝐴𝐵] 𝑑𝑒 𝑣𝑒𝑐𝑡𝑒𝑢𝑟 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑙𝑒 𝑣𝑒𝑐𝑡𝑒𝑢𝑟 𝐴𝐵.⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

On a : 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ( 4
−2
), donc (𝐷) admet une équation de la forme :  4𝑥 − 2𝑦 + 𝑐 = 0, 𝑐 ∈ ℝ 

Soit 𝐼 𝑚𝑖𝑙𝑖𝑒𝑢 𝑑𝑒 [𝐴𝐵], alors 𝐼(−1
3
) 

(𝐷) Passe par 𝐼,𝑚𝑖𝑙𝑖𝑒𝑢 𝑑𝑒 [𝐴𝐵], 𝑑𝑜𝑛𝑐 𝑜𝑛 𝑎 :  

4𝑥 − 2𝑦 + 𝑐 = 0 ⇔ 4(−1) − 2(3) + 𝑐 = 0 ⇔ 𝑐 = 10  

On n’en déduit que (D) a pour équation cartésienne suivante (D) : 4𝑥 − 2𝑦 + 10 = 0 
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𝟏. 𝟐 −Parallélisme et orthogonalité de droites. 

Propriétés :  

Soit (𝐷) 𝑒𝑡 (𝐷′) deux droites d’équations cartésiennes respectives 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 et 

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′ = 0 
1) 𝐷) ∕∕ (𝐷′) ⇔ 𝑎𝑏′− 𝑎′𝑏 = 0 

2) (𝐷) ⏊ (𝐷′) ⇔ 𝑎𝑎′ + 𝑏𝑏′ = 0 

𝑰𝟐 − Equation normal d’une droite 

𝟐. 𝟏 −Propriété :  

Soit(D) une droite, n un vecteur normal à (D) et O une mesure de l’angle orienté (𝑖, 𝑛⃗⃗).̂  On 

considère le vecteur 𝑣⃗ tel que : 𝑣⃗ =
𝑛⃗⃗

‖𝑛⃗⃗‖
. 𝑣⃗ est un vecteur unitaire colinéaire à 𝑛⃗⃗, donc 

𝑣⃗ (
cos 𝜃
𝑠𝑖𝑛𝜃

). 𝑣⃗ est un vecteur normal à (D), donc (D) admet une équation de la forme : 

𝑥𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃 + 𝑘 = 0 

On écrit :(𝐷): 𝑥 cos 𝜃 + 𝑔 sin 𝜃 + 𝑘 = 0 appelée équation normale de (D) 

Démonstration  

Soit une droite (D) d’équation cartésienne : 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 ; 

Si 𝑎 ≠ 𝑜 𝑒𝑡 𝑏 ≠ 0, alors    𝑎2 + 𝑏2 = 0 et 𝑛 ⃗⃗⃗⃗ (𝑎, 𝑏) tel que : ‖𝑛⃗⃗‖ = √𝑎2 + 𝑏2 ≠ 0. 

 On a : 𝑎𝑥 + 𝑏𝑦 + 𝑐 = √𝑎2 + 𝑏2 (
𝑎

√𝑎2+𝑏2
x + 

𝑏

√𝑎2+𝑏2
y +

𝑐

√𝑎2+𝑏2
) 

Or (
𝑎

√𝑎2+𝑏2
)
2

+ (
𝑏

√𝑎2+𝑏2
)
2

= 1, donc il existe un nombre réel 𝜃 tel  que :  

cos 𝜃 =
𝑎

√𝑎2+𝑏2
  et sin 𝜃 =

𝑏

√𝑎2+𝑏2
 

On en déduit que : 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = √𝑎2 + 𝑏2 (xcos 𝜃 + 𝑦 sin 𝜃 +
𝑐

√𝑎2 + 𝑏2
) 

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 ⟺ √𝑎2 + 𝑏2 (xcos 𝜃 + 𝑦 sin 𝜃 +
𝑐

√𝑎2 + 𝑏2
) = 0 

⟺ xcos 𝜃 + 𝑦 sin 𝜃 +
𝑐

√𝑎2+𝑏2
= 0 et √𝑎2 + 𝑏2 ≠ 0. 

En posant 𝑘 =
𝑐

√𝑎2+𝑏2
, on a : xcos 𝜃 + 𝑦 sin 𝜃 + 𝑘 = 0 

D’où (𝐷): xcos 𝜃 + 𝑦 sin 𝜃 + 𝑘 = 0 appelée équation normale de (D).  
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REMARQUE : 

Toute droite (D) admet deux équations normales.  

En effet, il existe deux vecteurs unitaires opposés, normaux à (D) qui font avec 𝑖 des 

angles de mesures respectives 𝜃 et 𝜃 + 𝜋. 

Les équations normales correspondantes à ces deux valeurs sont : 

 xcos 𝜃 + ysin 𝜃 + 𝑘 = 0 et xcos( 𝜃 + 𝜋) + 𝑦 sin( 𝜃 + 𝜋) − 𝑘 = 0 

Exemple : 

Soit (D) la droite passante par le point A (-2 ; 3) et de vecteur directeur 𝑢⃗⃗(1 ;√3) 

Déterminer une équation normale de (𝒟) 

Résolution 

 A (-2 ; 3) un  point de (𝔇)  et 𝑢⃗⃗(1 ; √3) un vecteur directeur de (𝔇). 

𝑢⃗⃗(1 ; √3)  ⟺ 𝔫 ⃗⃗⃗(-√3 ; 1) est un vecteur normal de (𝔇)  de norme ∥ 𝔫⃗⃗ ∥= 2, donc le vecteur 

unitaire normal à  (𝔇) est 𝒱⃗⃗ =
𝔫⃗⃗

∥𝔫⃗⃗⃗⃗⃗⃗⃗ ∥
 ⟺ 𝒱⃗⃗(−

√3

2
; 
1

2
) 

Soit M (x ; y) ∈(𝔇) ⟺ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ ⊥ 𝜈⃗ 

⟺ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗. 𝜈⃗=0 

 ⟺ (𝑥+2
𝑦−3

) (
−√3

2
1

2

) = 0  

⟺−
√3

2
(𝑥 + 2) +

1

2
(𝑦 − 3) = 0  

⟺−
√3

2
𝑥 +

1

2
𝑦 −

2√3 +3

2
= 0   

Donc l’équation normale de (𝔇) est :−
√3

2
𝑥 +

1

2
𝑦 −

2√3 +3

2
= 0  

METHODE :  

Pour obtenir une équation normale d’une droite ayant pour équations cartésienne :  

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 ; il suffit de diviser   les deux membres de cette équation par la norme du 

vecteur normale 𝔫⃗⃗(𝑎
𝑏
) ; ∥ 𝔫⃗⃗ ∥=√𝑎2 + 𝑏2 

On obtient : 
𝑎

√𝑎2+𝑏2
𝑥 +

𝑏

√𝑎2+𝑏2
𝑦 +

𝑐

√𝑎2+𝑏2
= 0 

𝟐. 𝟐 −Distance d’un point à une droite 

Soit (𝔇) une droite, A un point du plan et H le projeté  

orthogonal de A sur ( 𝔇) 
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Pour tous point M et  (𝔇), on a AH≤AM. 

AH est appelée distance de A  à (𝔇) noté 𝑑(𝐴,𝔇) 

Propriété 1 

Soit A(𝑥0
𝑦0
) un point du plan et (𝒟) une  droite d’équation normale : 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 + 𝑘 = 0 

On a: 𝑑(𝐴,𝔇) = |𝑥0cos𝜃 + 𝑦0sin𝜃| 

Propriété 2 

Soit A(𝑥0
𝑦0
) un point du plan et (𝒟) une  droite d’équation cartésienne : a𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 

On a: 𝑑(𝐴,𝔇) =
|𝑎𝑥0+b𝑦0+c|

√𝑎2+𝑏2
 

 

Exemple :  

On considère  les points A(−1
2
), B(

−3
2⁄

−3
2⁄
) et C(3

0
) 

Calculons la distance  du point A à la droite (BC).  

Par définition 𝑑(𝐴, (𝐵𝐶)) =
|𝑎𝑥0+b𝑦0+c|

√𝑎2+𝑏2
,  

Déterminons 𝐵𝐶⃗⃗⃗⃗⃗⃗ .𝐵𝐶⃗⃗⃗⃗⃗⃗ (
3+

3

2

0+
3

2

) ⟹ 𝐵𝐶⃗⃗⃗⃗⃗⃗ (
9

2
3

2

) 

La droite (BC)  a pour vecteur directeur 𝐵𝐶⃗⃗⃗⃗⃗⃗ (
9

2
3

2

) et donc pour vecteur normal 𝔫⃗⃗ (
3

2

−
9

2

). 

Soit M(𝑥
𝑦
) un point du plan 

M  ∈ (BC)⟺det (𝐶𝑀⃗⃗⃗⃗ ⃗⃗⃗, 𝐵𝐶⃗⃗⃗⃗⃗⃗ )=0 

⟺ |
𝑥 − 3

9

2

𝑦
3

2

| = 0  

⟺
3

2
(𝑥 − 3) −

9

2
𝑦 = 0  

⟺
3

2
(𝑥 − 3𝑦 − 3) = 0  

Donc une équation cartésienne de (BC) est : 𝑥 − 3𝑦 − 3 = 0 et 𝑝⃗( 1
−3
) 

On a :  A(-1,2) et ‖𝑝‖=√1² + (−3)² = √10 

Alors : 𝑑(𝐴, (𝐵𝐶)) =
|1×(−1)−3×2−3|

√1²+(−3)²
=

|−10|

√10
=

10√10

10
= √10 

Donc 𝑑(𝐴, (𝐵𝐶)) = √10 

II. Cercle 

𝖑𝖑𝟏−Représentation paramétrique d’un cercle 



 

78 
 

1.1- Cercle centre à l’origine 

Soit (C) un cercle de centre O et de rayon r pour tout point M (
𝑥

𝑦
), on a :  

M𝜖 (C) ⇔ 𝑂𝑀 = 𝑟 

⇔ √𝑥2 + 𝑦2 = 𝑟  

⇔ 𝑥2 + 𝑦2 = 𝑟²   

⇔ (
𝑥

𝑟
)
2

+ (
𝑦

𝑟
)
2

= 1  

⇔ ∃𝜃𝜖ℝ ,
𝑥

𝑟
= cos 𝜃et

𝑦

𝑟
= 𝑟 sin 𝜃 

⇔ ∃𝜃𝜖ℝ,  x= 𝑟 cos 𝜃 et y= 𝑟 sin 𝜃 ⇒M(𝑟 cos𝜃
𝑟 cos𝜃

) 

1.2- Définition 

Soit (𝒞)un cercle de centre 0 et de rayon 𝑟.  

Le système {
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

 ,(𝜃𝜖 ℝ), est appelé représentation paramétrique de (𝒞) dans le 

repère (0; 𝑖 ; 𝑗 ). 

 

 

Exemple 

1) On considère une représentation paramétrique: {
𝑟 = cos 𝜃
𝑦 = sin 𝜃

 (𝜃𝜖ℝ) d’un cercle 

trigonométrique (𝒞) . 

Déterminons une équation de ce cercle. 

Soit M𝜖(𝒞) ⇔ OM= 𝑟 

⇔ 𝑥² +  𝑦² = 𝑟² 

⇔ 𝑥² + 𝑦² =  𝑐𝑜𝑠²𝜃 + 𝑠𝑖𝑛²𝜃  

⇔ 𝑥²+ 𝑦² = 1.  

C’est un cercle de centre O et de rayon 𝑟 = 1. 

2) L’ensemble des points M(𝑋
𝑌
) tels que 𝑥² +  𝑦² = 8 est le cercle de centre O et rayon            

𝑟 = 2√2 

Déterminons une représentation paramétrique de (C) on a : 

𝑥 = 𝑟 𝑐𝑜𝑠 𝜃  𝑒𝑡 𝑦 = 2√2 𝑠𝑖𝑛 𝜃  

⇔  𝑥 = 2√2 𝑐𝑜𝑠 𝜃  𝑒𝑡 𝑦 = 2√2𝑠𝑖𝑛 𝜃  

⇔ {
𝑥 = 2√2 cos 𝜃

𝑦 = 2√2 sin 𝜃
  (𝜃 𝜖 ℝ ) est cette représentation. 

1.3- Cercle de centre quelconque 

Soit  (C ) un cercle de centre Ω(𝑎
𝑏
) et de rayon 𝑟 pour tout point M(𝑥

𝑦
), on a : 

M𝜖( 𝐶 ) ⇔ Ω𝑀 = 𝑟 

 ⇔ (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟  

 ⇔ (
𝑥−𝑎

𝑟
)
2

(
𝑦−𝑏

𝑟
)
2

= 1  

 ⇔ ∃𝜃𝜖ℝ ,
𝑥−𝑎

𝑟
= cos 𝜃 𝑒𝑡 

𝑦−𝑏

𝑟
= 𝑠𝑖𝑛𝜃  
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 ⇔ ∃𝜃𝜖ℝ ,   𝑥 = 𝑎 + 𝑟 cos 𝜃 et 𝑦 = 𝑏 + 𝑟 sin 𝜃 

 ⇔ {
𝑥 = 𝑎 + 𝑟 cos 𝜃
𝑦 = 𝑏 + 𝑟 sin 𝜃

 , 𝜃 ∈ ℝ 

1.4- Définition 

Soit (C) un cercle de centre Ω(𝑎, 𝑏) et de rayon r. 

Le système :{
𝑥 = 𝑎 + cos 𝜃
𝑦 = 𝑏 + 𝑟 sin 𝜃

, (𝜃𝜖ℝ), est appelé représentation paramétrique (C) dans le 

repère (0; 𝑖 ; 𝑗 ). 

Exemple 

1) Le cercle de centre A (−3,4) et de rayon 2 a pour représentation paramétrique : 

 {
𝑥 = −3 + 2 cos 𝜃
𝑌 = 4 + 2 sin 𝜃

 ,  (𝜃 ∈ ℝ) 

2) Soit (E) l’ensemble des points dont les coordonnes (x, y) vérifient l’équation : 

𝑥2 + 𝑦2 − 2𝑥 + 𝑦 − 1 = 0  

Déterminons les éléments caractéristiques de (E) 

On a: 𝑥2 + 𝑦2 − 2𝑥 + 𝑦 − 1 = 𝑥2 − 2𝑥 + 𝑦2 + 𝑦 − 1  

 = (𝑥 − 1)2 − 1 + (𝑦 +
1

2
)
2

−
1

4
− 1   

 = (𝑥 − 1)2 + (𝑦 +
1

2
)
2

− 2 −
1

4
 

                 𝑥²+ 𝑦²− 2𝑥 + 𝑦 − 1 = (𝑥 − 1)2 + (𝑦 +
1

2
)
2

−
9

4
 

𝑥²+ 𝑦²− 2𝑥 + 𝑦 − 1 = 0 ⇔ (𝑥 − 1)2 + (𝑦 +
1

2
)
2

=
9

4
  

Donc (E) est  un cercle de centre  Ω (1,−
1

2
) et de rayon 

3

2
 et la représentation paramétrique 

de (E) est : {
𝑥 = 1 +

3

2
cos 𝜃

𝑦 = −
1

2
+
3

2
sin 𝜃

 ,   𝜃 ∈ ℝ 

3) Le système {
𝑥 = 3 cos 𝜃 

𝑦 = −1 + 3 sin 𝜃
 , (𝜃𝜖ℝ ) est une représentation paramétrique du 

cercle de centre Ω(0;−1) et de rayon 3. 
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Chapitre 11 : TRANSFORMATIONS DU PLAN 

I. Translations et symétries orthogonales 

𝐈𝟏 − Translation 

𝟏. 𝟏 −Propriété 

Soit 𝑓 une application du plan dans lui-même. 

𝑓 est une translation si et seulement si pour tous points 𝑀 et 𝑁 d’images respectives 𝑀′ et 

𝑁′, on a : 𝑀𝑁⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑀′𝑁′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

  

 

 

 

 

 

On note la translation de vecteur 𝑢⃗⃗ par 𝑡𝑢⃗⃗⃗. 

 Si 𝑢⃗⃗ = 0⃗⃗, alors 𝑡𝑢⃗⃗⃗  est l’application identique (ou identité). Tous les points sont 

invariants.  

 Si 𝑢⃗⃗ ≠ 0⃗⃗, alors aucun point n’est invariant. 

𝟏. 𝟐 − Composée de deux translations 

Soit 𝑢⃗⃗ et 𝑣⃗ deux vecteurs. 

La composée 𝑡𝑢⃗⃗⃗ ∘ 𝑡𝑢⃗⃗⃗ des translations de vecteurs respectifs 𝑢⃗⃗ et 𝑣⃗ est la translation de 

vecteurs 𝑢⃗⃗ + 𝑣⃗.  

On a : 𝑡𝑢⃗⃗⃗ ∘ 𝑡𝑣⃗⃗ = 𝑡𝑢⃗⃗⃗+𝑣⃗⃗  

Demonstration : 

𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀1𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

  = 𝑢⃗⃗ + 𝑣⃗  

      ⟹ 𝑡𝑢⃗⃗⃗ ∘ 𝑡𝑢⃗⃗⃗ = 𝑡𝑢⃗⃗⃗+𝑣⃗⃗   

 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝑀2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀2𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

  = 𝑢⃗⃗ + 𝑣⃗  

      ⟹ 𝑡𝑢⃗⃗⃗ ∘ 𝑡𝑢⃗⃗⃗ = 𝑡𝑢⃗⃗⃗+𝑣⃗⃗   

Nous avons pour tous vecteurs 𝑢⃗⃗ et 𝑣⃗ , 𝑢⃗⃗ + 𝑣⃗ = 𝑣⃗ + 𝑢⃗⃗ 

D’où :  𝑡𝑢⃗⃗⃗ ∘ 𝑡𝑣⃗⃗ = 𝑡𝑣⃗⃗ ∘ 𝑡𝑢⃗⃗⃗ = 𝑡𝑢⃗⃗⃗+𝑣⃗⃗ , on dit que la composée de la translation est commutative. 

 Si 𝑢⃗⃗ = −𝑣⃗, alors 𝑡𝑢⃗⃗⃗ ∘ 𝑡−𝑢⃗⃗⃗ = 𝑡−𝑢⃗⃗⃗ ∘ 𝑡𝑢⃗⃗⃗ = 𝐼𝑑. 

Cette relation caracterise les bijections reciproques. 

Exemple : 

 𝑡𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ∘ 𝑡𝐴𝐷⃗⃗⃗⃗⃗⃗⃗ = 𝑡𝐴𝐶⃗⃗⃗⃗⃗⃗   

 𝑡𝐵𝐶⃗⃗⃗⃗⃗⃗ ∘ 𝑡𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ = 𝑡𝐷𝐶⃗⃗ ⃗⃗ ⃗⃗ ∘ 𝑡𝐴𝐷⃗⃗⃗⃗⃗⃗⃗   

             (𝑡𝐴𝐷⃗⃗⃗⃗⃗⃗⃗)
−1
= 𝑡𝐶𝐵⃗⃗⃗⃗⃗⃗   

𝟏. 𝟑 − Expression analytique d’une translation 

L’expression analytique de la translation de vecteur 𝑣⃗(𝑎; 𝑏)  est : {
𝑥′ = 𝑥 + 𝑎
𝑦′ = 𝑦 + 𝑏
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𝐈𝟐 − Symétrie orthogonale : 

Toute symetrie définie par une droite est appelée symetrie orthogonale. La droite est dite 

axe de symetrie. 𝑆𝐷 est la symetrie d’axe (𝐷). 

 Si 𝑀 ∈ (𝐷), alors 𝑀′ = 𝑀 

 Si 𝑀 ∉ (𝐷), alors 𝑀′ est le point tel que la droite (𝐷) est la médiatrice de [𝑀𝑀′]. 

L’ensemble des points invariants de 𝑆𝐷 est la droite (𝐷). 

 

 

 

 

 

 

𝟐. 𝟏 −  Composée de deux symétries orthogonales d’axes parallèles: 

Propriété : 

Soit (∆) et (∆′) deux droites parallèles. 𝑂 ∈ (∆), et 𝑂’ est le projeté orthogonal de 𝑂 sur 

(∆′). La  composée 𝑆∆′ ∘ 𝑆∆ des symétries orthogonales d’axes (∆) et (∆′) est la translation 

de vecteur 2𝑂𝑂′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ . 

Demonstration : 

Soient  𝑆∆(𝑀) = 𝑀1 

             𝑆∆′(𝑀1) = 𝑀′ 

𝐻 ∈ (∆) et 𝐻’ est le projeté orthogonal de 𝐻 sur ∆′ ; les points H et H’ sont les milieux 

respectifs de [𝑀𝑀1] et [𝑀1𝑀′] 

On a : 𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑀𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀1𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ′ 

  = 2𝐻𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 2𝑀1𝐻⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗ ′  car 𝑀𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 2𝐻𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  et 𝑀1𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 2𝑀1𝐻′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

  = 2(𝐻𝑀1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑀1𝐻⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗ ′)  

  = 2𝐻𝐻⃗⃗⃗⃗⃗⃗⃗′; or 𝐻𝐻⃗⃗⃗⃗⃗⃗⃗′ = 𝑂𝑂⃗⃗⃗⃗⃗⃗⃗′ = 𝑢⃗⃗ 

         ⟹𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 2𝑂𝑂⃗⃗⃗⃗⃗⃗⃗′  

D’où  𝑆∆′ ∘ 𝑆∆ = 𝑡2𝑂𝑂⃗⃗⃗⃗⃗⃗⃗′  
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Remarque : 

 Si (∆) = (∆′), alors 𝑆∆′ ∘ 𝑆∆ = Id 

 La reciproque de la transformation 𝑆∆ est 𝑆∆. 

 La reciproque de 𝑆∆′ ∘ 𝑆∆ est 𝑆∆ ∘ 𝑆∆′ = t2𝑂′𝑂⃗⃗⃗⃗⃗⃗⃗⃗⃗ 

𝟐. 𝟐 −  Décomposition d’une translation : 

Soit 𝑡𝑢⃗⃗⃗ une translation de vecteur non nul 𝑢⃗⃗. Pour toute droite (∆) de vecteur normal 𝑢⃗⃗, il 

existe une droite (∆′) et une seule telle que 𝑆∆′ ∘ 𝑆∆ = t 𝑢⃗⃗⃗. 

II.  Rotations :  

Une rotation de centre O et d’angle 𝜃 est l’application dans lui-même noté 𝑟(𝑂;  𝜃) qui, à 

tout point M associe un plan M’. 

 Si 𝑀 = 0, alors 𝑀′ = 0 

 Si 𝑀 ≠ 0, alors 𝑂𝑀 = 𝑂𝑀′ et (𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗;  𝑂𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗⃗̂
) = 𝜃 

 Si 𝜃 = 0̂, alors 𝑟 est l’application identique du plan ; 

 Si 𝜃 ≠ 0̂, alors le seul point invariant est le centre O ; 

 Si 𝜃 = 𝜋̂, alors 𝑟 est symétrie de centre O ; 

Toute rotation est une transformation du plan. La transformation réciproque de 𝑟(𝑂;  𝜃) est 

𝑟(𝑂; −𝜃). 

𝟏 − Composée de symétrie orthogonale d’axe sécants  

Soit (∆) et (∆′) deux droites sécantes en un point O, de vecteurs directeurs respectifs 𝑢⃗⃗ et 

𝑢⃗⃗′. La composée 𝑆∆′ ∘ 𝑆∆ des symétries orthogonales d’axes respectifs (∆′) et (∆) est la 

rotation de centre O et d’angle  2 (𝑢⃗⃗;  𝑢′⃗⃗⃗̂⃗ ). 

𝑆∆′ ∘ 𝑆∆ = 𝑟 (𝑂;  2 (𝑢⃗⃗;  𝑢′⃗⃗⃗̂⃗ ))  
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