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Chapitre 1 : Equations-Inéquations-Systemes

I. EQUATIONS

[ — Polynéme du second degré

1.1 — Définition :

On appelle polyndme ou trindme du second degré, toute fonction f définie par :

f(x)=ax? + bx +c (avec a # 0) ou a, b et c sont des nombres réels.

Exemple :
f(x) = 4x? —4\/3x + 3
g(x) = 5x% — 2x +5
h(x) =x%2-5
Ce sont donc des polynémes ou trindbmes du 2 degré.
1.2 —Racines d’un polynéme du 2™ degré.
1.2.1 —Forme canonique
Soit P un polyndme du 2" degré dans R défini par P(x) = ax? + bx + c et (a # 0).

2 2_
La forme canonique de P(x) s’écritdonc: P(x) = a [(x + %) — (b 4‘”)]

4q?

En posant A= b? — 4ac appelée discriminant du polyndme P(x), on réécrit P(x) sous

b\?> A
forme : P(x)=a[(x+z) ——|; avecaeR"etb €R

4a2|’

1 Démonstration:
P(x) =ax?*+bx+c

2 2 2 2
= a[xz +b_x+£]' Or (x+£) :xz +b_x+b_2:>x2 +b_X: (x_l_i) _b_z(]_)
a a 2a a 4a a 2a 4a
- _ A
Eninjectant (1) dans P(x), on a: P(x) = a [(x + Z) —is E]
2 2_
=a [(x + i) — (b tac)], or A= b% — 4ac
2a 4a

2
D’ ou P(x)=a[(x+zia) —4%]; aveca € R*etb € R

1.2.2 —Propriétés :

Soit P(x) = ax? + bx + c, un polyndme du second degré. Une équation du second degré a
coefficients réels a toujours deux racines qui sont soit distinctes, soit confondues ou soit
n’existent pas.

Les racines de P sont selon les cas suivants :

1°" Cas : Si A= b? — 4ac > 0, P(x) a deux racines distinctes x; et x, distinctes telles que :

—b—VA —-b+VA
X =—— et x; =—~-

Donc P peut s’écrire sous la forme : P(x) = a(x — x1)(x — x3)

2° Cas : Si A= b? — 4ac = 0, P(x)a deux racines x; et x, qui sont confondues telles que :

-b L. 2 . .
Xy =X = et P s’écrit sous la formeP(x) = a(x + 2%) . On dit que P a une racine double.



3°Cas : Si A= b? — 4ac < 0, alors P n’a pas de racines et donc n’est pas factorisable, x; et
X, n’existent pas, donc I'’équation P(x) = 0 n’admet pas de solutions dans R..

Exemple : Mettre sous forme canonique les trinbmes du 2 degré suivants :
a) P(x) = 4x? —4/3x + 3
b) Q(x) =5x%2—-2x+3
c) R(x)=2x*>+3x+2
1.2.2 —Résolution d’une équation du 2" degré.
On appelle équation du 2" degré, c’est une équation du type ax? + bx + ¢ = 0, (a # 0)
d’inconnue x.
Résoudre I'équation ax? + bx + ¢ = 0, (a # 0) équivaut a déterminer les racines du
polyndme du 2" degré P défini par: P(x) = ax? + bx + ¢, (a # 0)
En posant A= b? — 4ac appelée discriminant de P(x),

2 b\2 A
Ona:ax +bx+c=a(x+—) - =l
2a 4a
2 b\? A
donc ax +bx+c=0<:)a[(x+—) -—|=0
2a 4a

b\%> A .
(:)(x+z) —E—O,pwsquea;to

On envisage trois cas :
1% cas:SiA> 0,

onai (x+2) =2~ 0o (x+2) - (D) =0
Stz +D)(x+2-L)=p
<=)(x+lh2L;/Z)(x+b;;/Z =0
PR +b;r;/z=00ux+_—aA=0
_b—A —-b+VA
= X = ou X2 ==,
L’ensemble de solution est: S = {_bz_a\/z; _b;:/z}

2%cas:SiA= 0,
Ona:(x+%)2=0<=)(x+%)(x+%)=0

- , -b
& x, = x, = — etl’ensemble de solution est:S ={—
1 2 2a 2a

2 2
3°cas:SiA< 0,0na: (x+£) —i> 0= (x+£) —i< 0 impossible dans R car
—— 2a 2a

4q? " 4q2
le carre d’'un nombre n’est jamais négatif.
Propriété :

Pour résoudre I'équation x? + bx + ¢ = 0, (a # 0), on calcule le discriminant A= b? — 4ac
et on envisage les trois cas suivants :

. , . . . -b—VA —b+VA
- SiA> 0, alors I'équation admet deux solutions distinctes : x; = S OU Xy = —

. ) . . -b
- SiA= 0, alors I'équation admet une double solution: x; = x, = P



- SiA< 0, alors I'’équation n’a pas de solutions.

Exemple : Résoudre dans R les équations suivantes.
a) x2+x+3=0
b) (V2—-1)x2+2x+v2+1=0
c) x2-5x+6=0

Remarque :
- Le calcul de A n’est pas toujours indispensable pour résoudre une équation du 2 degré,

soit par exemple : 2x% + 5x = 0 & x(2x + 5) = 0. Donc cette équation a deux
solutions distinctes qui sont {—g; O}.

- Parfois on peut simplifier les calculs si b est pair en posant b = g. On aura donc:
A= b? — 4ac = 4(b” — ac). On utilise alors le discriminant réduit A’ tel que :
A" = b? — ac (A et A" ont méme signe).

- SiA"> 0, alors I'équation a deux solutions distinctes : x; =

—br—/Ar —br+VAr
et xz = 2

A . . . —br
- SiA =0, alors I'’équation a une double solution : x; = x, = —
1 2 P

- SiA'< 0, alors I'équation n’a de solution.

Exemple : résoudre dans R les équations ci- dessous en utilisant le discriminant réduit A",
a) x>+2x+3=0
b) 3x2—-12x+12=0
c) 2x>—10x+12=0

1.2.3 —Equation du 2" degré avec paramétre.

Exemple d’application :

Résoudre et discuter suivant les valeurs du parametrem I'équation

(Ep):(1—m)x?—2mx—(m+2)=0

Résolution :
Cette équation est du 1* ou 2" degré suivant que le coefficient de (E,,,) est nul. On a :
- Sil—m=0=m=1,/'équation (E,,) devient :
(Ep):—2x—3=0&x= —%, donc S = {—%}
- Sil—m=#0=m=# 1, 'équation (E,,) est une équation du 2" degré.
(Ep):(1—m)x?—2mx—(m+2)=0
OnposealorsA' =m? + (1 —m)(m + 2)
=m?+2-m-—m?

A'=—-m+ 2.
Signe de A’
M —00 1 2 +oo
—m + 2. + + O —
A + + -




- Sim € ]2; +eo[, A’ <0, alors ’équation (E,,) n’a pas de solutions.
- Sim = 2, alors A’ = 0 donc I'équation (E,) a une solution double :

—(-m)
X1 = Xy = 1-m = —2,
Donc S = {—2}.
- Sim € ]—o;1[U]1;2[, A" > 0 alors I'équation (E,,) admet deux solutions distinctes :
m—v—-m+2 m+v-m+2
x1 == —1_m et xZ ES —1_m
M—V=mFZ  mev_mi2
Donc S = { ; }
1-m 1-m

Propriété :
Pour résoudre dans R une équation (E):ax? + bx + ¢ = 0 ou a, b et c dépendent d’un
parameétre, on peut procéder de la maniére suivante :
- On étudie éventuellement les cas ol I'équation(E) n’est pas du 2" degré (a = 0).
- Dans le cas ol I'équation (E) est du 2™ degré (a # 0) :

e On calcule le discriminant A ;

e On étudie le signe de A suivant les valeurs du parametre.

e On détermine dans chaque cas le nombre de solutions et on calcule ces

solutions.

1.2.4 — Somme et produit des racines
Soit P le polyndme du 2" degré défini par : P(x) = ax? + bx + ¢ admettant deux
racines x; et x.
Si P admet deux racines x; et x,, alors on pose S leur somme et P leur produit.

Ona:S=x; +x, = (—bz—ax/Z)_|_ (_bzzﬂ) :_71,:)5 =_7b
o) P = = (F57) (57)

_ (-b—Vb%-4ac\ (-b+VbZ—4ac
- 2a 2a

b%—(b?%-4
_bP=(b?eac) _c_ p_ ¢
4a?

a a
Exemple : Soit (E): x> —3x+2=0
Calculer la somme S et le produit P des racines de (E).
Solution :

S$=3

Ona: a B :>{P:2

p=St=2_7
a 1
Propriété 2 : Deux nombres réels ont pour somme S et pour produit P si et seulement si, ils
sont solutions de I’équation:x? — Sx + P = 0.

Démonstration :

- Soit x4 et x, deux nombres réels telsque : S = x; + x, et P = x1x5.
Pout tout nombre réel x ona:
(x—x)(x—x3) =x2 — (1 + x)x + x1.%,
=x2—Sx+P,carS=x; +x,etP =x;x,

4



D’ou x; et x, sont les solutions de I'équation : x> —Sx + P =0
- Réciproquement, six; et x, sont les solutions de I'équation : x> — Sx + P = 0, alors
d’apres la propriété 1,ona:S =x; + x, et P = xyx,

Exemple : Déterminer deux nombres ayant pour somme 2+/3 et pour produit —1.
Résolution :

Soit x; et x, sont ces deux nombres, s’ils existent, sont solutions de I’équation :
x?2—2\V3x—1=0,

Ona:A'=4>0, doncx; =vV3—2etx, =3 +2.

Ces deux nombres cherchées sont x; = V3 — 2 etx, = V3 + 2

Il. INEQUATIONS

11, —Signe d’un polynéme du 2" degré.

Soit P le polyndme du second degré défini par P(x) = ax? + bx + c.

Le discriminant de P est le nombre réel A tel que : A= b? — 4ac.
Ona:P(x)=a [(x + i)2 -2
2a

4q?

2
e SiA<Oalors:Vx €R, (x + %) — 4% > 0, donc P(x) est du signe de a;

2
e SiA=0,alors:P(x)=a (x + 2%) , donc pour tout x # —%, P(x) est du signede a;

e SiA>0,alors: P(x) = a(x — x1)(x — x3), avec x; et x, les deux racines distinctes de P.

On étudie le signe de P(x) a I'aide d’un tableau. On suppose que : x; < x,

X —00 X1 Xy + oo
X — X — O+ +
X — X2 - - D+
(x —x1)(x — x) + - +
P(x) =a(x — x;)(x — x,) | Signedea Signe de —a Signe de a

Méthode : Soit P le polyndme du second degré défini par P(x) = ax? + bx + c, (a # 0).
Pour étudier le signe de P(x), on peut calculer son discriminant A= b? — 4ac et utiliser I'un
des tableaux ci-dessous.

A< 0, Pn’apas A= 0, P aune racine A> 0, P a deux racines distinctes
de racines double x; = x, = _% xq etx,
b
—00 —— 4

X | —o0 + o0 X 2a X | —% X1 X +®

P(x) | Signe de P(x)| Signe de | Signe de P(x) | Signe de | Signe de | Signe de
a a a a —a a

Exemple :

Déterminer suivant les valeurs de x, le signe du polyndme P defini dans les cas suivants :
1) P(x)=-2x2+x-1
2) P(x)=—2x*>+3x+2



3) P(x) =—-3x*>+6x—3

Résolution :
1) P(x)=—-2x*+x-1

A= —7 < 0, donc P n’a pas de racines.

Vx €R,P(x) =—2x%+ x — 1 estdusigne —2 < 0,donc P(x) <0,V x €R.
2) P(x) = —-2x*>+3x+2

A= 25 > 0, donc P a deux racines distinctes.

X, =2etx, = —%, alors P(x) = —2(x — 2) (x +%)

Tableau de signe de P(x)

1
X —o0 —g) 2 + oo

1 — + +

x+§
x—2 - - C +
1 + — +

<x+§>(x—2)
1 — + —
P(x)=-2 (x+§) (x—2)

1 1
Vxe ]—oo; _E[U]Z; +oo[, P(x) = —2(x — 2) (x +2) <0,
1 1

Vxe€ ]—5;2[,P(x) =—-2(x—2) (x+;) > 0.

3) P(x)=—-3x*+6x—3
A= 0, donc P a une racine double. x; = x, = 1 et P(x) = —3(x — 1)2.
Vx#1,P(x) =—3x%+ 6x —3estdusignede —3 < 0,doncVx #1,P(x) <O0.
1.1 — Résolution d’une inéquation du 2" degré.
Définition : Une inéquation d’inconnue x du type ax? + bx + ¢ > Oouax? +bx +¢c <0
ou encore (= 0,resp < 0) avec a # 0 est appelée inéquation du 2" degré.
Exemple :

a) 3x2—-6x—-7<0

b) x?—-7x—1>0

c) x?2+x—-9>0

d —2x2+2x—-1<0
Ce sont donc des inéquations du 2" degré.
Méthode :
Pour résoudre dans R une inéquation du type x? + bx + ¢ > 0, (a # 0), on étudie le signe
du polyndme P défini par : P(x) = ax? + bx + c.
Exercice d’application :
Résoudre dans R les inéquations suivantes :

a) —3x2+2x—-5>0

b) —3x2+6x—3>0

c) —3x2+6x—-3<0

d) —3x2+15x—18>0




e) —3x2+15x—18<0
Résolution :
Résolvons dans R les inéquations suivantes :

a) —3x2+2x—-5>0
Posons P(x) = —3x%2+2x—5
A= —56 < 0, alors P(x) estdusigne—3 < 0,donc Vx € R, P(x) = —3x2+2x—-5<0
mais —3x2 + 2x — 5 > 0, c’est absurde, par conséquent cette inéquation n’a pas de
solutions.

b) —3x2+6x—3>0
Posons P(x) = —3x2 + 6x — 3
A=0,ona: x; = x, = 1donc P(x) = —3(x — 1)2.
Vx#1,P(x) =—3x%+ 6x — 3 estdusignede —3 < 0, alorsV x = 1, P(x) < 0 mais
comme —3x? + 6x — 3 > 0, c’est absurde donc P(x) n’a pas de solution, par conséquent
cette inéquation n’a pas de solutions.

c) —3x>+6x—-3<0
A=0,0ona: x; = x, = 1 donc P(x) = —3(x — 1)2.
Vx#1,P(x) =—3x%+6x —3estdusignede —3 < 0,alorsV x # 1, P(x) < 0 et
comme —3x2 + 6x — 3 < 0, alors 'ensemble de solutions est S = R = ]|—o0; +oo].

d) —3x?2+15x—18>0
Posons P(x) = —3x? + 15x — 18
A=9>0,0ona: x; =3et x, =2,alors P(x) = —3(x —2)(x — 3)

Tableau de signe de P(x)

x —0o0 2 3 +
x—2 - 0 + +
x—3 - - C +
(x—=2)(x—-3) + - +
P(x) = —3(x —2)(x —3) — + <+> —

—3x2 + 15x — 18 = 0, alors S = [2; 3].
e) —3x2+15x—18<0.
De ce qui préceéde,ona:A=9>0,x; =3et x, =2,

Tableau de signe de P(x)

X —o00 2 3 + oo

X —2 — (J) +

x—3 — — C

(x—=2)(x-3) + —

n
P(x) = =3(x —2)(x — 3) Q + Q




—3x%2 4+ 15x — 18 < 0, alors S = |—o0; 2] U [3; +oo].
11, —Equation et inéquation se ramenant au 2" degré.
2.1 — Equation et inéquation de degré supérieur a 2.
Equations bicarrés.
On appelle équation bicarrée, toute équation de la forme : ax* + bx? + ¢ = 0 avec (a # 0).
Pour résoudre une telle équation, on est ramené a la résolution d’une équation du 2" degré
en posant X = x? et I'équation x* + bx? + ¢ = 0 devient alors aX? + bX + ¢ = 0; (a # 0).
Exemple :
Résoudre dans R les équations bicarrées suivantes.
1) (Ep):x*—5x2+4=0
2) (Ey):x*=x%2+12
Résolution :
Résolvons dans R les équations suivantes :
1) (E)):x*—5x2+4=0
Posons X = x2, alors (E;) devient :
(E)):X?—-5X+4=0
A= (=5)?—-4%x1x4=9>0
Ona:X,=1letX, =4
Alorsx* —5x?+4=0=2 X -1)X-4)=0
S xX2-1Dx%*-4)=0
S+Dx-Dx+2)(x—2)=0
S x;=1loux=—-1loux=2o0ux=-2
Donc I’ensemble de solution est :

S={-2;-1;1;2}
2) (By):x*—x?2-12=0

Posons X = x2, alors (E,) devient :
(E,): X2 —X—-12=0
A= (-1)2—4x1x (=12) =49 > 0
Ona:X; =—-3etX, =4
Alorsx*—x?—-12=0 (X+3)(X—-4)=0

& (x?2+3)(x2-4)=0

e @2 +3)x+2)(x-2)=0

& (x2+3)>0etx=2o0ux=-2
Donc I'ensemble de solution est :

S ={-2;2}

2.2 —Inéquations bicarrées.

Applications :

Résoudre dans R les inéquations suivantes :
1) (I):x*—5x2+4<0
2) (I):4x*—5x*+1>0

Résolution.

Résolvons dans R les inequations suivantes :
1) (I):x*—5x2+4<0




Posons X = x2, alors (I;) devient :
(E)):X*—-5X+4<0
A=(-5)2—-4x1x4=9>0
Ona:X;=1letX, =4

Alorsx* —5x2 +4=(x*-1Dx?-4)=(x+Dx-Dx+2)(x—-2)

Tableau de signe :

x - =2 -1

+00

x+1 - -

x—1 - —

x+2 — e} +

x—2 — —

P(x) + —

+| 4| +| +| +

(I): x* — 5x% + 4 < 0, alors 'ensemble de solution est :
S=1-2; -1[u]1;2[
2) (I):4x*—5x2+1<0
Soit P(x) = 4x* —5x% + 1
PxX)=0=4x*—-5x2+1=0
Posons X = x? & 4X* —5X? + 1 =0,
A=9>0 etX1=§, X, =1

P(x) = 4(X — %)(X —-1)

=@AX-1D)X-1)
= (4x? = 1D)(x* - 1)
Px)=2x—-1D2x+D(x-D(x+1)

Tableau de signe :

X —00 _1 —_

1
2
2x + 1 — — @)

2x —1 - -

x+1 — ') +

x—1 — —

P(x) + —

+| 4|+ +] +

Et comme 4x* — 5x%2 4+ 1 > 0, 'ensemble de solution est :
1 1
S =]-00;-1]U _E’E] U [1; +oof

I1; —Autres équation et inéquation de degré supérieur a 2.

3.1 — Equation de degré supérieur a 2.




Exemple :

Résolvons dans R I'équation: (E): x* —x3 —13x2+x+12=0

Posons : P(x) = x* —x3 — 13x%2 + x + 12

P(1) = 0 © 1 estuneracine de P donc il existe un polynéme Q de degré 3 tel que :

Vx ER, P(x) = (x—1)Q(x)

P(—1) = 0 & —1 est une racine de P donc il existe un polynéme R de degré 2 tel que :

Vx € R,Q(x) = (x + 1)R(x), parsuite,ona:Vx € R, P(x) = (x — 1)(x + 1)R(x)

= P(x) = (x? — 1DR(x)

Pour déterminer le polyndme R, on peut effectuer la division euclidienne de P(x) par x* — 1

x*—x3 - 13x* +x+12 [ x* -1
—x* + x? x*—x—12

—x3 —12x%+x+ 12

x3—x
—12x% + 12
12x% — 12
0

Donc R(x) = x* —x — 12
= P(x)=(x?-1)x*—-x—12)
On factorise R en utilisant 4
R(x) = x> —x- 12
Rx)=0= x2—-x-12=0
A=49>0x, =-3 etx, =4
= R(x)= (x+3)(x—4)
P(x)= x> - 1DRXx)=P(x)= (x—D(x+1D(x+5(x—4)
P(x) = 0, (E) admet pour ensemble de solution :
S= {-3; —-1;1;4}

3.1 — Inéquation de degré supérieur a 2
Exemple :
Soit P, le polyndme défini par; P(x) = x*+x3—-5x2+x—6
a) Calculer P(—3) et P(2), que peut-on conclure ? En déduire une factorisation de P(x);
b) RésoudredansR; (I):x*+ x3 — 5x2+x—-6 < 0
Solution :

a) Calculons P(=3) et P(2)

e P(-3)=81-27-45-3-6=0

P(-3)=0
e P(2)=16+8-20+2—-6=0
P(2) =0

P(—3) =0etP(2) =0, alors -3 et 2 sont les racines de P.
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Factorisons le polynome P.
Ona:P(x)=(x+3)(x—2).Q(x) ou Q est un polyndme du second degré.
Pour déterminer le polyndme Q, on se propose d’utiliser la méthode des coefficients
indéterminés.
Onpose:Q(x) = ax®>+ bx+ C
Ona: VXER,P(x) = (x+3)(x—2) (ax?*+ bx+c
= (x2+x—6) (ax?> + bx + ¢)
= ax*+ bx3+ Cx? + ax3+ bx? + Cx — 6ax? - 6bx — 6¢
P(x) = ax*+ (a+b)x>+ (-6a+b+C)x*+ (—6b+C) x— 6¢

( a=1
| a+b=1 a=1
Par identification, on a: 4 —-6a+b+c=-5=1b=0
L —6b+c=1 c=1
—6C = —6

DoncP(x) = (x+3)(x —2)(x*+ 1)
b) Résolvons dans R Iinéquation (E) :x* + x3 —5x? +x — 6 <0
x*+ x3-5x2 +x — 6<0S P(x) <0,
OrP(xX)=(x+3)(x—2)(x>+ DetVx€eR, x2+1 >0
Donc P(x) est du signe de (x + 3)(x — 2)

Tableau de signe

X —0 -3 2 +

x—2 - — q +

x+3 - C + +
(x+3)(x-2) + — +

2 ; - +

Comme x*+ x3 —5x% +x — 6 <0, alors 'ensemble des solutions de I'inéquation est :
S=1-3;2[
11, — Equation et inéquations irrationnelles

4.1 — Equation irrationnelle

On appelle équation irrationnelle, c’est une équation du type: \/p(x) = q(x)
Méthodes 1 :

p(x) = 0
Résoudre I'équation \/p(x) = q(x), revient a résoudre le systéme suivant:{ q(x) = 0
p(x) = ¢*(x)

Méthodes 2 : /p(x) = q(x) © p(x) = q?(x)

Résoudre I'équation p(x) = gq2(x) et prendre parmi les solutions, celles qui vérifient
I’équation m = q(x).

Exemple :

Résoudre dans R I'équation : (E): \/(x +1)B—-x)=3x-1
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x+1DB-x==0
Jx+1DB-x)=3x-1 3x—1=0
(x+1)B—-x)= (3x—1)?

e x+1)3—=x) =0

Tableau de signede (x +1) (3 —x):

X —oo -1 3

x+1 — o +

3—x + + C

Comme (x +1) (3—x) = 0,alors S; =[—1; 3]
e 3x—1>20= x = é,alorsSl =E; +00[
e (x+1)B—x)= (3x—1)?
=3x—x?+3—x=9x?—6x+1
= 10x2—-8x—-2=0
=5x2—4x —1=0
1 1
D=9>0;x =—=etx,=1=5={-3;1}
L’ensemble de solution de cette équation est I'intersection de S; , S, et S3.
1 1
Ona:S= SiN SN S =[-13]N |55+ N {-3;1}

ons (13 [ - 1]

_ 3] { ALor —Le [bia] seut 16[L:3]

Donc I'ensemble de solution de I'équation (E): \/(x +1)(3—x) = 3x —1est:

s = {1}

4.1 — Inéquation irrationnelle

On appelle inéquation irrationnelle, c’est une inéquation du type : \/p(x) < q(x),
Méthode :
Résoudre cette inéquation, c’est résoudre le systéme suivant :

p(x)=0
Jr(x) <Q(x) &{q(x) =0
p(x) = q*(x)

Exemple :
Résolvons dans R I'inéquation (I):V—2x2+5x+3 < 2x + 1
Contraintes sur l'inconnue a préciser si nécessaire

(D:VJ-2x2+5x+3 < 2x + 1< 2x + 1
—2x245x+3>0
V=2x2+5x+3 < 2x + 1 & 2x +1 >0
—2x24+ 5x + 3 < (2x + 1)?
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e —2x>+5x +3 >0
A=49 >0;x, = 3 etx, =—%
Donc —2x% + 5x + 3 = —2(x +%)(x—3)

Tableau de signe

+ o0

x+% B CL *

L 3
(x +3) (- 3)

1
P(O) = —2(x +3) (x- 3) CD

—2x*+ 5x + 3 = 0,alorsS; = [—%;3]
e 2x+1 =20& x2 —%, anrsSz=[—%;+00[

e —2x? +5x +3 < (2x+1)?
& —2x% 4+ 5x + 3 < 4x® + 4x + 1
S —-6x2+x+2<0

A= 49 >0;x1=§ et x, = —

= —6x?> +x+2= —6(x_§>(x+%)

Tableau de signe

36D + :

e D | T | G

—6x%2 +x+2<0,alors: S; = ]—00; —1[ U]z; +00[
2 3
Alors I'ensemble de solution de (I) est :

s=snsns,= [-53] n -3 0o n (o - i 4]
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" 2

.....

P 3

Donc § = 2; 3]

Ill. SYSTEME LINEAIRES D’EQUATIONS ET D’INEQUATIONS
[1I; — Systeme de trois équations a trois inconnues

On appelle systéme linéaire ou systéme de trois équations du 1% degré a trois inconnues,
ax+by+cz=d
c’est le systéeme du Type (2):{ a'x+Db'y+c'z=d" ou x,yetzsont desinconnues
a'x+b"y+c"z=4d"
Résoudre ce systéeme, c’est déterminer tous les triplets ( x,y,z) de nombres réels qui
vérifient les trois équations.
Nous utiliserons quatre (4) méthodes pour la résolution d’un tel systéme.
e La méthode par Substitution ;
e La méthode par Pivot de GAUSS ;
e La méthode de CRAMER;
e La méthode de SAIRUS.
1.1 —Résolution par Substitution
Exemple :
Résoudre dans les systemes d’équations suivants :
x+y—2z=7
a) (E):{Zx—y+z =0
3x+y +z=28
2x—y—22=26
b) (E):{ x+y—z=1
x—5y—2z=9
Solution :
Résolvons les systémes d’équations suivants
x+y—-2z=7 (O
a) {2x—y+z=0 2
3x+y +z=8 (3
De I'équation (3), ontirez= —3x—y+8 (4)
On remplace z par —3x — y + 8 dans les équations (1) et (2)
x+y—2(-3x—-y+8)=7 (1)
2x—y—3x—y+8=0 (2"
(:){7x+3y=23 1h
—x—2y= -8 (2"
(2") = x = -2y + 8 (3') et on remplace x par —2y + 8 dans (1')
= 7(-2y+8)+3y =23
= —14y + 56 + 3y = 23
= —11y = =33

On obtient (E):{
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=y=3
Remplagons y par 3 dans (3").
(3):x=-2y+8=x= -2x3+8=2
= x=2
On remplace x et y par leurs valeurs dans (4).
(4)iz= -3x—y+8=>z=-3%x2-3+8=-1
=z=-1
Donc le triplet de solutionest : § = {(2;3;—1)}
2x—y—2z=6 (1)
b) )y x+y—z=12
x—5y—2z=9(3)
O=y=2x—-2y—6
Remplagons y par 2x — 2y —6 dans les équations (2) et (3)

. : x+2x—2z2—6—-z=1 3x=3z=7
On obtient (E).{x_5(2x_2x_22_6)_z=9 {—9x—9z=—21
3x—3z=17

Le systéme { a pour solutions, tous les couples (x; z) des nombres réels

—-9x —9z =-21
telsque:3x —3z=7
Donc on donne a l'une des inconnues une valeur arbitraire, par exemple :

7
Z=a<=>3x=3a+7=>x=a+§

Et:y=2x—-2z—-6 =>y=2(a+§)—2a—6
—y=2a+=—2a—6

_ 4

7
x=-+a

3
On obtient (X): _ 4 ,a€R
Yy=73
z=a

Donc I'ensemble des triplets de solutionsde (X) est: § = g +a, —%, a;, (xe R)}

1.2 —Résolution par le pivot de Gauss

La méthode par le Pivot de Gauss est aussi appelée méthode par combinaison qui nécessite
de vérification, mais qui transforme un systéme initial en un autre systéme équivalent ayant
méme ensemble de solutions.

Exemple :
Résoudre les systemes d’équations suivants :
x—5y—7z=3 x+y—2z=1
a) ):{5x+3y+z=3 b) )y x+2y+z=1
3x+y—2z=-1 —2x+y+z=1
Solution :

Résolvons les systémes d’équations suivants :
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x—5y—7z=3 ()
a) (@):{5x+3y+z=3(2)
3x+y—-2z=-103)
- On élimine x dans (2) et (3) par combinaison linéaire de chacune de ces deux équations
avec I'équation (1) :
x—5y—-7z=3 Q) x—5y—7z=3
Ona:(X):{ 5x+3y+z=3 Q2 < 28y +36z=-12 - (2)-5xQ)
3x+y—2z=-103) 16y +19z2=-10 - (3) -3 x (D)
x—5y—-7z=3 (1
&< 7y+9z=-3 (2
16y + 19z = —10 (3)’
- On élimine y dans (3)' par combinaison linéaire de (2)" et (3)’
x—5y—7z=3
On obtient le systéme triangulaire suivant : { 7y +9z=-3
z=2-7x3)'-16x 2

Systéeme de Gauss

x—5y—7z=3
7y +9z = -3
z=2

On résout le systeme triangulaire en commencant par z = 2, tout en remontant.
o 7y+9z=-3=7y=-3-9x%x2
= 7y =-21
=y=-3
o x—5y—-7z=3
=x—-5(-3)—-7%x2=3
=x+15-14=3
==x=3-1

= x=2
L’ensemble de triplets de solution est : § = {(2; —3; 2)}
x+y—2z=1
b) (E):{x+2y+z=1
—2x+y+z=1
x+y—2z=1 (D x+y—2z=1
Ona:{ x+2y+z=1 Q) o 3y—-3z=0-1)-Q)
i 3y—3Z:O , . \ x+y—22:1
Lesysteme{ __ . N’apas de solutions donc le systeme (£):{ x + 2y +z =1
3y—3z=3
—2x+y+z=1

n"admet pas de solutions. L’'ensemble de triplets de solution est un ensemble vide; S = @

16



1.3 —Résolution par la méthode de CRAMER
ax+by+cz=d
Considérons le systéme d’équations (2):{ a'x+b'y+c'z=d'
a'x+b"y+c"z=d"
Pour résoudre ce systéme par la méthode de CRAMER, on procéde de la maniére suivante :
- On calcule le déterminant du systeme Ag selon la disposition suivante :

a b c
b a’ b’
_ ’ ' 2
AS_ a” b” C” =a b’ CII|_b| 17 H|+C|au bu|
a’ b" ¢

|AS — a(k)l 12} b”C,) b(al n aIICI) + C(a’b” _ allbl) |

- On calcule les discriminants par rapport a x, y et z selon les dispositions ci-dessous :

d b ¢ / ro

A, = (;1,'1 tl))’,’ cC d|b,, |—b|d,, CC,,|+c|d‘%, E,,

=d(b'c" —b"c") —b(d<" —d"c") +c(d® - d"b)

o R ST LA R
a’ d’

Ay — a(d’CII dllcl) d(al n aIICI) + C(aldll — alldl)

a b d , o
Az = j,l, l}:”’ g,’, A d"|_b| d”|+d| z b”|

|Az — a(b/du _ budl) _ b(a/d/l _ a//dl) + d (a/b/r _ a//bl) |
- Enfin, on détermine les valeurs de x, y et z par les formules suivantes :
Ax Ay Az
== = —=; 7 = —
As Y As As

Remarques :
e SiAg # 0, alors le systeme admet un triplet de nombre réels {(x; y; z)}, solutions du
systéme et la méthode de CRAMER est applicable.
e SiAg =0, alors la méthode de CRAMER n’est pas applicable, par conséquent :
v Sil'un des déterminants par rapport a x, y et z est non nul, c'est-a-dire
Ay #0oul, #0ould, #0,alorsS =0;
v’ Sitous les déterminants par rapport a x, y et z sont nuls (A, = A, =A4,=0),

alors le systétme admet une infinité de solutions réelles et S = R3.

Exemple :
Résoudre dans R les systemes d’équations suivants :
x+2y+3z=14 2x+3y+4z=6 xX+y—z=2
() 2x—y+z=3 (Z,):4 x—y+3z=5 (Z3){2x+y—-3z=0
3x+2y—4z=-5 4x+11ly+6z=6 xX—y—3z=-6
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Solution :
Résolvons dans R les systéemes d’équations suivant :
x+2y+3z=14
(21);{ 2x —y+z=3
3x+2y—4z=-5
Procédons par la méthode de CRAMER :
- Calculons le discriminant du systeme Ag

1 2 3
-1 1 2 1 2 -1
as=|2 -1 1|=| |- 2] |+3 | |
3 2_24 2 —4 3 4 3 2
=4—-2-2(-8-3)+3(4+3)
AS:45
- Calculons le déterminant par rapport a x, y et z.
14 2 3
-1 1 31 3 -1
Ae=[3 -1 1|=14] |- 2] |+3 | |
_5 2 _ 4 2 —4 5 4 5 2
=14(4-2)—2(-12+5)+3(6—5)
A, =45
1 14 3
31 21 2 3
ay=l2 3 1|=] |- 14 |+3 | |
y _c  _ _ —
3 _5_4 5 4 3 4 3 5
=—-12+5-14(—-8—-3)+3(-10-9)
A, =90
1 2 14
-1 3 2 3 2 -1
p,=|2 -1 3|=| |- 2] |+ 14 | |
3 o _c& 2 5 3 5 3 2
=5-6—2(—10—-9) +14(4 + 3)
A, =135
- Déterminonsx,yetz.Ona:
Ay 45
[ x:—:—:l
As 45
— Ay _ %0 _
¢ y_A5_45_2
A; _ 135 _
* Z_A_S_45_3

L’ensemble de triplets de solutions est: S = {(1; 2;3)}
1.4 —Résolution par la méthode de SAIRUS
ax+by+cz=d
Considérons le systéme d’équations (£):{ a'x+b'y+c'z=d'
a'x+b'y+c'z=d"
Pour résoudre un systeme par la méthode de SAIRUS, on procede de la maniére suivante :
- On calcule le déterminant du systéme Ag selon la disposition suivante :
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a b
a’ b ¢ a b
a” b’ ol al b
|AS =ab’c” + bc’a” + ca’b” — (a"’b’c+ b"c’a+ c"a’'b) |

- On calcule les discriminants par rapport a x, y et z suivants, selon les dispositions

o

o

a

AS:

(@]

suivants et les procédures ci-dessus :
d b ¢ d b
d b ¢ d b
dII bll CII dll bII
= |Ax =db’c” + bc'd” + c¢d'b” — (d"b'c+b"'c’d + c"'d'b) |

Ay =

a d ¢ a d
a d ¢ a d
all dl/ CII all dII
= |A, =ad'c" +dc'a” +ca'd’ — (@"d'c+d"c’a+c"a'd)

A, =

a b d a b

al bl dl al bl

aII bII dll aII bII
= |AZ =ab’d” + bd'a” + da'b"” — (a’b’d + b""d’a + d"”a'b) |

- Enfin, on détermine les valeurs de x, y et z par les formules suivantes :

x=28y =222 a5 = {(;y;2)}

_As'y_As A_s

A, =

Remarques :
e SiAg # 0, alors le systeme admet un triplet de nombre réels {(x; y; z)}, solutions du

systéme et la méthode de SAIRUS est applicable.
e SiAg =0, alors la méthode de SAIRUS n’est pas applicable, par conséquent :
v Sil'un des déterminants par rapport a x, y et z est non nul, c'est-a-dire
Ay #0o0uld, #0oul, #0,alorsS=0;
v’ Sitous les déterminants par rapport a x, y et z sont nuls (A, = A, =4,=0),

alors le systéme admet une infinité de solutions réelles et S = R3.

Exemple :
Résoudre dans R les systeme suivants
3x —2y+5z=7 2x+3y+4z=6 xX+y—z=2
(21):{2x+y—z=—6 (Z,):d x—y+3z=5 (Z){2x+y—-3z=0
x—y+z=0 4x + 11y + 6z =06 x—y—3z=-—6
Solution :

Résolvons dans R les systeme suivants en procédons par la méthode de SAIRUS :
3x —2y+5z=7

@Q{2x+y—z=—6
x—y+z=0

- Calculons le discriminant du systéme Ag
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=3+2-10—-(5+3-4)=-9
AS == —9
- Dela méme maniere, on calcule le déterminant par rapport a x, y et z.

7 -2 5 7 =2
Ay=[-6 1 -1 -6 1|=7+30-(7-12)
o -1 1 o0 -1
A, =18
3 7 5 3 7
Ay=2 -6 -1 2 —6|=-18-7—(-30+14)
1 0 1 1 0
A, =-9
3 -2 7 3 -2
A,b=12 1 -6 2 1|=12—-14—(7+18)
1 -1 0 1 -1

A,=—27=z="=-3

- Déterminons x,yetz.Ona:
Ay 18

. ===—=-2
As -9
A -9

— Y _ —

* y=n=5=1
S
A -27

° =“2=—""=3
Ag -9

L’ensemble de triplets de solutions est: S = {(—2;1;3)}

[1I, — Systeme d’inéquation linéaire

Exemple :
—-x+y+3=0
Résoudre dans R, le systeme d’inéquation suivant (E):{ x+y—12=
—2x+y—1=0
Diy:—x+y+3=0 Di:y=x-3
Soit : Dyx+y—1=0 =Dy =—x+1
Dy:—2x4+y—-1=0 Dy:y=2x+1
Diy=x-3, | x| 2|0
—1]-3
Dyy=-x+1, | % 1
y 1 0
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Chapitre 2 : Limites et continuité

I. Approche intuitive de la notion de limite
I; —Limite d’une fonction en l'infinie
1.1 —Limite infinie
Pour les grandes : valeurs de x, les fonctionx?, x3,x%, ..., x™(n € N) prennent des valeurs
Suffisamment grandes. On dit que ces fonctions tendent vers I'infini lorsque x tend vers
I'infini et on note :
o lim,_ ..x% = + oo
o lim,_..x%2 = +eo
NB : Le symbole oo = +o0 gy — oo
Notation :
On écrit: lim,_ (fx) = + oo,
On lite : « limite de f(x) lorsque x tend vers + oo est égale a co»
1.2 —Limite en infini des fonctions élémentaires
Nous Admettons les résultats suivants :

lim k=k nl_l)rPWB =3
° n-tee e Exemple: lim 7 = 7
lim k =k pm =
n——oo
° lim x = + o0 ° lim VE;: 400
n—+oo n—+eo
e limx=—o0 e lim x™ = +oo
n——oo n—+eo
o lim x3 = + oo o lim x" = +oo .?l xest.anj
n-+oo N——oo —oo Si x est inpair
e lim x3=—o0
n——oo

1 N .. s
On remarque que - est tres voisin de 0 pour des grandes valeurs positives de x.

Alors,on a:
L1 . .
e lim-=0 o hrnin=0,(nEN)
Nn—o+oo X Nn—o+oo X
1 . 1 .
e Jlim-=0 e lim —=0,(n€eN")
Nn——oo X NnN——oo X
Remarque :

e Une fonction lorsqu’elle admet une limite en 420, ou en —eo cette limite est unique.
e Certaines fonctions n"admettent pas de limite en infini, ainsi la fonction mantisse,
définie par m(x) = x — E(x), n’admet de limite ni en +oo, ni en —eoo,
I, —Limite d’une fonction en x,
2.1 —Limite infinie en x,
Soit f(x) = xiz, une fonction définie sur R*

On examine le comportement de f lorsque x se rapproche de 0.

x —0,01 —0,001 0 0,001 0,01
1 10° 10* +o0 10* 10°
x2
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e x=-001= x2=0,0001et —=——=10*
x 0,0001

e x=-0001= x%=0,000001et —=——=10°
x 0,000001

De méme pour x = 0,01 et x = 0,001, on obtient respectivement 10* et 10°

On Constate que f(x) prend des valeurs positives de plus en plus grandes lorsque x se
rapproche de 0. Donc f(x) tend vers +o0 x tend vers 0 et on écrit :

1 1
limf(x) =lim—= ===+
x—>0f( ) x—>0x% 0
Propriété :
Soit f une fonction définie en x,
Si f admet une limite en x,, alors : lirﬁlf(x) = f(x0)
X—

Généralement, nous admettons les résultats suivants :

(limkx=ka 1im23x=3><2=6
x—a X
. }Ci_rga” =a", (Sin € N) o Exemples : }Ciir%x3 =23=8
’lcirrcllx/fzx/a, (sia =0) 1irri\/§=\/1=2
- xX—>
Exemple :

Soit f(x) =x2+3;0na:
lin}f(x) =f(1)=12+3=4o0u lin}f(x) = lin%(x2 +3)=12+3=4
x— x> xX—
Remarque :
- Lorsqu’une fonction admet une limite en x,, cette limite est unique.
- Une fonction en x(, n"admet pas nécessairement une limite en x,. Ainsi la fonction g

sinx
x

glx) = ,n € R*
g9(0) =+

- Une fonction f n’admet pas de limite en x, s’il existe un intervalle ouvert K de

définie par: n’admet pas de limite en o.

centre xo telque Dy NK = @
2.2 —Limite a droite limite a gauche
Soit f une fonction numérique définie sur un intervalle I.
e Ondite que f admet une limite [ en x, a droite si et seulemnet si la restriction de f a
I N ]xg; +o°[ admet en x, cette limite.
Onnote: lim f(x) =lou lim_f(x) =1 (x > x;)
x-xpt xX-x0”

e Ondite que f admet en x, € I une limite I' a gauche si et seulement si la restriction
defaaln ]—oo ; Xo [admet en x, cette limite [’
Onnote: lim f(x) =1"ou lim f(x) =1; (x < xp)
xX—-xo~ x-x0<

Exemple :
Soit f(x) = iet Dy = ]—00; 0[ U ]0; +oo[
1) xl—l>¥;+f(x) - x1—1>¥01+ (x) - ot + ou xl_lgcr(} (x) 0> +
. . 1 1 . 1 1
2) lim f() = lim () == ~=ou lim_(}) ===



Il. Calculs de limites
I1,— Propriété de comparaison
1.1 — Majoration, minoration
Propriétés
Soit f une fonction.
S’il existe une fonction g telle que f > g sur un intervalle |xy; +oo[ et
lim g(x) = + oo, alors lim f(x) = + oo
X—>+oeo X—>+oeo
S’il existe une fonction g telle que f < g sur un intervalle ]x,; +oo et

lim g(x) = — oo, alors lim f(x) = — oo
X—+oo X—+00

Exemple :
Soit f(x) = |x|(x + 1)
Ona:Df =RetVx€ ]0;+<>°[,f(x) = x? + x.
DoncVx €]0; +oo[, lim f(x) = lim x? = +oo
X—+o0 X—+oo
On en déduit que : lirP flx) = lirﬁp x? = +oo,Vx € ]—00; 0]
X—4co X—+4cc

1.2- Encadrement
Propriété :
Soit f une fonction, g, h des fonctions telles que g < f < h sur un intervalle ]x,; +o<[ et
lim g(x) = lim h(x) =1, alors lim f(x) =1
X—+eo X—>+eo X—+eo
Cette propriété est connue sous le nom de théoreme de deux gendarmes ou théoréeme de
sandwich.
Exemple :
Soit f(x) = x2 + cos x.
Calculons la limite de f en +o et en —©
Df =RetVxER,Ona:—1<cosx<lox?—-1<x?>+cosx<x?>+1
Onpose g(x) =x?—1eth(x) =x?>+ 1tellesqueg<f<h
Or, lim g(x) = lim h(x) = 40, alors lim f(x) = +oo

X—>+o00 X—>+o0 X—>+o00
De méme: lim g(x) = lim h(x) = 40, alors lim f(x) = +

X——o0 X—>—o0 X——09
On en déduit que lirp f(x) =400
x—+too
1.3- Comparaison de limites:
Propriété
Soit fet g deux fonctions telles que: f < g sur un intervalle I = ]xo; +oo.
Si lim f(x) =let lim g(x) =10, alorsl <’
X— o0 X—+oo

11, — Limites et opérations sur les fonctions.
2.1- Limite de la somme de deux fonctions.

lim f(x) ! +00 —00 +00 —00 +00
X—Xg

lim g(x) I I U U —0o0 —0o0

X—Xg

Iim(f+g)(x) | =1 |+e0 —0 +oo —00 ?ind
X—Xq

Exemple :
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On considére les fonctions (x) = x? + xiz’ gx)y=x—-1 +% et h(x) =x?+x

. R P 2 1 _ 1_ 0o) — oo
1) Q}g(r)lj(x)—xlg(r)g(x +x—2)—0+0—+—0+(+ )=+

Donc lim f(x) = +oo
x—0t

2) limg(x)=xlir51_(x—1+§)=0—1+0—

x—-0"

Donc lim g(x) = —eo
x—0~

1

3) lim h(x) = lim (x%2 + x) = +o0 + (+o0) = +oo
X+ X—+oo

Donc lim f(x) = +o°
X—>+oo

2.2- Limite du produit de deux fonctions

lim f(x) [ |40 —o0 400 QU —oo | 400 | —00 | 400
X—Xg
lim g(x) I I'(l'+#0) U(U#0) | +o0 +oo | —00 | —o0
—X0
lim (fg)(x) Ll {+°°Sl' I'>0 {—OOSi I’>01|?ind +oo | 400 —00
oo —00,5i1'< 0 | 400,511 <0
Remarque :
On en déduit que si lim f(x) = [, alors Vx € N*,ona: lim f(x)" = ["
X—=Xo X—Xg
Exemple :
On considere les fonctions suivantes : f(x) = —3x°; g(x) = x> + x et h(x) = —3x;
1) lim f(x) = lim (—3x%) = —3(—00)% = —oo,
X——00 X—>—o0
= lim f(x) = —eo,
X—>—o0o

2) g(x) =x%?+x =x2(1+§)
= lim g(x) = lim x?(1+3) = (—=)? (14 72) = +oo(1 + (0)) = +o

X——o0
= lim g(x) = +oo
X—>—00
3) limh(x)=lim(3x)=3%x2=6
xX—->—2 xX—->—2
= lim h(x) =6
x—>—2
2.3- Limite de ’inverse d’une fonction.

lim £ (x) (U # 0)

X—=Xg

+00 QU —o° 0Oetf(x)>0 Detf(x)<O

+ oo

— 00

tim (7)) ; "

Exemple :

On donne f(x) = ﬁ .Df =R —{3}
f(x)<0,Si x<0
f(x)>0,Si x>0

Ona:lim(x —3) =0, or:{
x—3

25




. 1 . 1
Alors x2£n3+ === +oo etngg-f(x) = —=—o
Donc f(x) n’a pas de limite en 3.

NB : Cette propriété est aussi avalable pour la limite du quotient de deux fonctions.

Ona: lim (L) (x) = lim (f X l) (x) et on applique les mémes propriétés sur les deux
x—-xg \9 X—Xq g

fonctions.
2.4- Limite de la valeur absolue d’une fonction.

Exemple :

Soit f(x) = x2 — 2

Ona:lim|f(x)| =lim|x? - 2| =|-2| = 2| =2
x—0 x—0

2.5- Limite de la racine d’une fonction :
Propriété :
Soit f une fonction définie sur un intervalle I, x4 un élément de I et [ un réel donné.
e Silimf(x)=1= lim/f(x) =1
XX XX
e Silimf(x) =400 = lim/f(x) = VHoo = +eo
X—Xg X—Xo
Exemple :
Soit g(x) = x2 + 2
Calculons la limite de g en 0 et en +eo.
On a:

lirr(l)g(x) =2 & lin(l),/g(x =42
X— X—
11I_|I_1 g(x) = 400 & llIP 1/g(x = 4/+0o0 = oo
X—+oo o )
2.6- Limite de x — f(ax + b)
2.6.1- propriété :
Soit f une fonction, x, un nombre réel et x — ax + b une fonction affine non constante.

La fonction x — ax + b admet une limite en x, si et seulement si f admet une limite en

axy,+betona: limf(ax+b)= lim f(u),avecu=ax+bh
X—Xg u—-axg+b

NB: Dans f(ax + b), on pose u = ax + b et lorsque x — x,, alorsu - axy + b

. Sinx T Yy
lim = 1 est appelée limite de référence.
x—=0 X
Exemple:
.. . PP sin(3x-6)
Calculons la limite de la fonction f définie par f(x) = e " 2.
Pour calculer la lignf(x), onpose:u=3x—6
X—
. sin(3x-6 . Sinu
Alors quand x — 2, u — 0, donc th = lim
x-2 3x-6 u-0 u

D’apres la limite de référence, On a: lirra% = 1, et on en déduit que : lirré fx)=1
u-— P g

II3 —Exemple de recherché de limite:

3.1- limite d’une fonction polynéme en I’infini.

Soit a un nombre réel et n un entier naturel.

On écrite : }ci_)nolo(anx" +a, x4+ +axt +a,) = ylci_)lgana"
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On dit que la limite en I'infini d’un polynéme est égale a la limite en I'infini de son monéme
de plus haut degré.

Example:
1) lim (—x? +4x—1) = 11m ( x2) = —eo
Xx—>—oo
2) lim (—x*+3x—-5) = 11m | (—x%) = +eo
Xx—>—oo
3) lim (x* —5°+3) = hm | (=5x°) = =5(+e0)° =
X—+oo

3.2- Limite d’une fonction ratlonnelle en infini
Propriété :
Soit a et b deux nombres réels et n, m deux entiers naturels.

On écrite : lim
x—o0 by xM+by, 1 x™™ 14.. “+b, x—o0 by x™

On dit que la limite en l'infinie d’une fonction rationnelle est égale a la limite en infinie du
guotient des monOdmes de plus haut degré du numérateur et du dénominateur.

Exemple:

AnxX+ay_1x" 14 ta, — i a,x"

. 2x%4+2x5-14x . 3x° . 3x%2 -3
1) lim —————— = lim = lim — = —(—00)2 = —oo
x—ooo —7x4+11x2-17  xoo0o—7x%  xS00 =7 7
2x%+2x5-14x
Donc lim ———— =0
Xo—oo —7x*+11x2%2-17
. 4x°+x+4 . 4x° 4
2) lim ———— = lim —=—=2

X—+o02x0=5x+1  x4oo2x6 2

3x0+x+4
Donc lim ——— =
x—)+oo2x6 5x+1

3.3- Autre Exemple
1) Déterminons la limite en +eo de la fonction définie par: f(x) = Vx?2 + 1 —x
On a:xl_i)rllwf(x) =xl_i)er x2+1—x =+/to0—00=4o00— 00?7
(On ne peut conclure directement)

En effet, Vx € R,Vx2 + 1 + x # 0, alors on peut écrire :

A/ A/ x2
Pri-x=Y 11\/%;; +x) (expression conjuguée de Vx? + 1 — x)

x2+1-x?

T VxZH14x

2 e — _1
t1-x V241 +x°
= lim Vx2+4+1—x = lim ——— =1 =0

X—+oo X—o00 Vx2+1 +x + oo
Donc lim vx2+1—-x=0
X—>+oo
, . . . P 24
2) Déterminons la limite en 2 de la fonction g définie par: g(x) = m

Ona: hmg(x) = llIT% — 24 = % ?? (On peut conclure directement).
Ona: Dy = |—oo; 2[U]2; +oo[

(x=2)(x+2)
(x-2)
= limg(x) = lim(x + 2) = 4

X—2 X—2

VxeDy gx) = =x+2

= limg(x) = 4
X—2
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Ill. Continuité
III; — Définition et propriétés
1.1- Definition :
Soit f une fonction et x, un nombre réel. On dit que f est continue en x; si f est définie en

xo et lim £(x) = f(x0).

Exemple :
1) f(x) =k e f(xy) =k; (xy €R), f est une fonction constante.
lim f(x) = limk = f(x,).
XX

X—Xg
On n’en déduit que la fonction f(x) = k est constante en tout élément de R.
2) glx) =x*+1
Démontrons que g est continue en 3.
g est continue en 3 si et seulement si }Cilgg(x) =g(3)

gx)=x*+1=g(B)=32+1=10 etet lin%g(x) =324+1=10
X—

linég(x) = g(3) =10, d’ol g est continue en 3.

X—

1.2- Continuité en x, de fonctions élémentaires.

Propriété :

1) Les fonctions suivantes sont continues en tout élément x, de leur ensemble de
définition. Il s’agit de f(x) = |x |, g(x) = u™, (ne N), g(x) = V/x, p(x) = xin, (neN*),
w(x) = cosx, t(x) =sinx.

2) Soit f et g deux fonctions continues en x;.

Les fonctions f + g, kf, (k € R), et |f| sont continues en x.

e Sig(xy) # 0,alors la fonction g est continue en x,.

e Sif(xy) = 0,alors lafonction ﬁ est continue en tout nombre réel x,.

Exemple :

e Les fonctions polynémes et les fonctions rationnelles sont continues en tout élément

de leur ensemble de définition.

e Lafonction f, définie par f(x) = Vx2 + 1, est continue en tout nombre réel Xo-

e Lafonction tangente est continue en tout élément de son ensemble de définition.

e Lafonction g, definie par g(x) = |2x + 3|, est continues en tout nombre réel x,.
Propriété :
Soit a et b deux nombres réels avec (a # 0), f une fonction et g la fonction définie par :
g(x) = f(ax + b), f est continu en ax, + b si et seulement si g est continue en x,.
Exemple :

La fonction f définie par f(x) = cos (Zx + g) est continue tout nombre réel x,,.

III; — Prolongement d’une fonction par continuité.

2.1- Definition :

Soit f une fonction non définie en x,, et [ un nombre réel tel que: lim f(x) = L.
X—Xg
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On Appelle prolongement de f par continuité en x,, la fonction définie par :
{g(x) = f(x),six € Dy

g(xp) =1
Exemples :
1) Soit f(x) = Sizx,
Dy = ]—e2; 0[U]0, 42|
sinx .
Ona:limf(x) = lim =1, =1),alors: {g(x) = St F 0 est donc le
x—0 x—-0 X g(O) =1
prolongement par continuité de f en 0.
_VE-1
2) flx) ==
x=>0 x>0 x € [0; 4o
Xx) existe si et seulement si : et =4 et < { ’
1) =120 lxz1 *EIT1U]L +oof

& x € [0; 1[U]1; +oo
& Dy = [0; 1[U]1; +eo]

. e (VYx-1
}Cl_rgf(x) o }}Er} ( x—1 )
(D (EH)
= Im e E
= lim _x1
x—1 (x—1)(Vx+1)
- }Cl_r)r% Vx+1

1

2

= limf(x) = s
X—
glx) = %,six € Dy

) est le prolongement
g(1) =3

lirqf(x) = %, alors la fonction g définie par :
X—
de f par continuité en 1.

FIN
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Chapitre 3 : Dérivation

I. Dérivation en x,
I, — Nombre derivé d’une fonction en x,
1.1- Définition :
Soit f une fonction définie sur un intervalle ouvert K et x, un élément de K.
S (x0)—f (xo)
X—Xo

appelée nombre dérivé f en x, notée f'(x,).

Onaalors : lim,_,, w = f'(x0)
—A0

On dit que f est dérivable en x; si a une limite finie en x,. Cette limite est

Remarque :
Parfois on peut poser :h=x —xy © x = h + x,
Donc lorsquex — x;, alors h — 0.

f(h+x0)—f(x0) — f,(xo)

Onaalors : limy,_,q "

Exemple 1:
. _ X
Soit f(x) = pye
Etudions la dérivabilité de f en —1.
Ona:Vx € Ds\{-1},

FOO-F(=1) _ o1

x—(-1) x+1
_ —(x+1)
T x+D(x+1)
-1
T 2x+1
fG)-f(-1) _ -1
x—(-1)  2x+1’
. fFO-f(=D) _ . -1 _
= limy 4 x—(-1) limy oy o0 =
On en déduit que : lim fO-FCD 1, donc f est dérivable en -1 et f'(—1) = 1 est appelé

x-»—-1 x—(-1)
nombre dérivé de f en —1.
Exemple2 :
Soit g(x) = |x|
Etudions la dérivation de g en 0

Ona:Vxe R I¥-900) _ I«
) 7 x-0 x
—-X
—=-1,s5ix<0
(0)-g(0 :
AIors:gx) 90) _ o .
- —;=1, six>0
On en déduit que : lim,,_,y+ 9079 _ 4 gt lim,_, L2790 = _q

x—0 x—0

—g(x):g(o) # lim,, - %; donc g n’est pas dérivable en 0.

limx_,0+
1.2-Interprétation graphique :

Soit f une fonction, (C) sa présentation et A un point de (C) d’abscissex, . Si f est dérivable
en x,, alors (C) admet une tangente (T) en A dont le coefficient directeur est f'(x,).
Ona:(T):y = f'(x0)(x — x0) + f(x0), appelée équation de la tangente (T) au point

d’abscisse xj.
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Exemple :

Soit h une fonction définie par : h(x) = J:T_: .
Déterminons une équation de la tangente (T) au point A(1; —1) de la fonction h.
Ona:x, = 1eth(1)=5= -1=h(1)=-1
reo-h() _ S+
x—1 T ox-1
_ x2-4+4x+2
T (x+2)(x-1)
_ (x—1)(x+2)
T (x+2)(x—-1)
h(x)-h(1) _
x-1
= limxﬂ% -1 =>hr1)=1

Ona:h(l)=-1leth'(1) =1
onendéduitque: (T):y =h'(1)(x —1) + h(1)
sSy=1xx-1)-1=x-2
& (T):y = x — 2 est une équation de la tangente (T).
1.3- Dérivabilité et continuité en x,.
Propriété : Une fonction est dérivable en x,, alors elle est continue en x,.
Remarque : une fonction continue en x, n’est pas forcement dérivable en Xx,.
I, — Dérivabilité a gauche, dérivabilité a droite
2.1- Définitions et propriétés
a- Définitions :
Soit f une fonction définie en x,.
1) Ondit que f est dérivable a gauche en x, si f est définie sur un intervalle de la
fGO)—f(x0)
X—Xq

forme :]a; x,] et a une limite finie a gauche en x, (x5 ou xg)

y) T L 1: F(x)=f(x0) _ ’ _
C'est-a-dire : lim, _, < Ee fo'(x0) =1
Cette limite est appelée nombre dérivé de f a gauche ou (par valeur inférieur) en x, notée
fg,(xo)-
2) Ondit que f est dérivable a droite en x, si f est définie sur un intervalle de la
ot fG)—f(x0)
X—Xo

forme : [xq; b[ a une limite finie a droite en x, (x5 ou x™).

C'est-a-dire : lim,_, > %ﬁix(’) = fla(xy) =1

Cette limite est appelée nombre dérivée de f a droite ou (par valeur supérieur) en x, notée
fa' (xo).

Remarque :

Soit f une fonction et (C) sa courbe représentative si f est dérivable a gauche
(respectivement, a droite) en x,, alors (C)) admet une demi-tangente a gauche
(respectivement, a droite) au point d’abscisse x,, dont le coefficient directeur est le nombre
dérivé de f a gauche (respectivement, a droite) en x,.

Exemplel :
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Soit f une fonction définie sur [0; +e<[ par: f(x) = x* et (Cf) sa représentation
graphique.
f)-£(0)

2
Ona:lim,_,+ = lim,_, g+ — — = 0, alors f est dérivable a droite en x,, donc (Cf)

admet une demi-tangente a droite au point 0, de coefficient directeur f' d(O) =0

Exemple2 :
x%Six € |—0,1]

,Six € [1; 4o,

g)-g) _ x*-1
x-1 limys- x—1
— 1im (x—1)(x+1)
x-1" x—1

= limx_,l—(x + 1) =2
= 0, donc (Cg) admet une demi-tangente a gauche au point A(1; 1), de

Soit g la fonction définie par: g(x) = { et (Cg) sa courbe représentative.

e Ona:lim,, -

g(x)-g(1)
x—1
coefficient directeur g’4 (1) = 2.

lim, _,4_

(x)-g(1) : 1
X . ~
g9 = lim *—

- x—1t x—1

= Jim (-3)=-1

e Ona:lim,_ 4+

lim, _,+ % = —1, donc (Cg) admet une demi-tangente a droite au point A de
coefficient directeur g’4(1) = —1.
Remarque :

On en déduit que les fonctions f et g ne sont pas dérivables en 0 (respectivement, en 1).
Exemple 3 :

_ x?—1,six € ]—o0;1] ) .
Soit h(x) = 9 _ E,Si x € [1; +oof, et (Cy,) sa courbe représentative.
) Ona:limxﬁl—% l1 o llm(x+1)—2
_ s

h(x)—-h(1)
x—1
coefficient directeur 2.

lim,_,4- = 2, donc (C;) admet une demi-tangente au point I a gauche de

2
- 2-=
e Ona :limx_)1+M= lim — = lim (E) —
x—1 x—-1+t x—1 x—o1t
. h(x)—h(1)
lim,_,+ Q1 = 2, donc (C;) admet une demi-tangente a droite au point I de

coefficient directeur 2.
h(x)—-h(1) — lim h(x)—h(l)

h(x) —h(1)

On remarque que : lim,_,;- = 2, alors lim,_,, =2et

la fonction h est dérivable en 1, sa courbe (Ch) admet au point I une tangente de coefficient
directeur 2.

b- Propriétés :

Une fonction f est dérivable en x, si et seulement si, elle est dérivable a gauche et a droite

et les nombres dérivés a gauche et a droite sont égaux.
FO)—f(x0) _ fG)—f (xo)

X—Xo X—Xo

C'est-a-dire si: lim = limy .~ , c'est alors qu’on dit que f est

x-xg
dérivable en x,, sinon elle ne I'est pas en x;.
I3 —Fonctions dérivées
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3.1- Définitions :
Soit f une fonction.

e L'ensemble des nombres réels en les quels f est dérivable appelé ensemble de
dérivabilités de f.
e Lafonction x = f'(x) est appelé fonction dérivée de f.

Il. Calculs de dérivées
II; — Dérivées des fonctions élémentaires
On appelle dérivée de la fonction f(x) et on note : f’(x)
Tableau récapitulatif des dérivées des fonctions élémentaires

Fonction f(x) Domaine de définition | Domaine de dérivabilité | Dérivée f'(x)
de f de f
f(x) =k;(k € R) | f estdéfiniesur R f est dérivable sur R ff(x)=0
flx)=x f est définie sur R f est dérivable sur R fllx) =1
f(x) =x"(n>1) | f estdéfiniesur R f est dérivable sur R f'(x) =n.x"1
1 est définie sur R* est dérivable sur R* , 1
o=y | ! f@=-=
f(x) =+x f est définie sur R} f est dérivable sur R} £(x) =
2vx

1.1 —Dérivée de la fonction sinus, cosinus et tangente

Propriété

sinx

e La fonction sinus est dérivable en 0 et a pour nombre dérivé 1 et lim,_,q —~ = 1

. . ;. ;e 7 . cosx—1
e La fonction cosinus est dérivable en 0 et a pour nombre dérivé 0 et lim,,_,,——— =

X
Ces deux résultats sont appelés limites de références. On pourrait les démontrer a partir de

la classe de terminale S.

Tableau récapitulatif des dérivées des fonctions sinus, cosinus et tangente

Fonction f(x)

Domaine de définition

de f

Domaine de dérivabilité

de f

Dérivée f'(x)

R\{%+kn,k ez}

R\{g+k7r,k ez}

f(x) = sinx R R f'(x) = cosx
f(x) = cosx R R f'(x) = —sinx
f(x) = tanx f'(x) =1+ tan’x

II, —Derivées et opération sur les fonctions

Tableau récapitulatif
Dans ce tableau U et V sont des fonctions dérivables sur un intervalle ouvert K.

Operations sur les fonctions Fonctions Dérivées des fonctions
Dérivée de la somme de deux fonctions Uu+Vv u+v
Dérivée du produit de deux fonctions uv u'v+uv'
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Dérivée de la puissance d’une fonction U™, (neN),n=>2 nu. g1
Dérivée de I'inverse d’une fonction 1 4

v 2
Dérivée du quotient de deux fonctions u u'v—-uv’

V V2
Dérivée de la racine carrée d’une fonction VU U’

20U

Dérivée de la fonction : x - U(ax + b) U(ax + b) aU'(ax + b)
Dérivée de cos o (u) cos(ax + b) —a.sin(ax + b)
Dérivée de sin o (u) sin(ax + b) a.cos(ax + b)
Dérivée du produit d’une fonction par un kV; (k € R) 4744
scalaire
Exemples :

Calculons la dérivée de la fonction f dans les cas suivants :
a) f(x)= 2x+% .
U(x) = 2x U'(x) =2
On pose : { V(x) :% = {V’(x) _ _xlz

Donc f'(x) =2 — % = 21

x2
2x%-1
= f'(x) = =5

b) f(x) = x*cosx
U(x) = x2 :{ U'(x) =2x
V(x) = cosx V'(x) = —sinx
f est dérivable sur Ret f'(x) = U'V + UV’
= f'(x) = 2xcosx — x%sinx

; f est dérivable sur chacun des intervalles | —oo; O[ et ]0; +e<[, donc sur R*

On pose : {

c) f(x)=3x*
f est dérivable sur Ret f'(x) = 3 X 2x = 6x, donc f'(x) = 6x
d) f(x) = sin®*x
f est dérivable sur R et f'(x) = 2(sinx)’. (sinx)?~?!
= f'(x) = 2cosx.sinx
e) f(x)= (2x+1)3
f est dérivable sur Ret f'(x) =3 X (2x + 1)". (2x + 1)371
= f'(x) = 6(2x + 1)?

1

fy f(x)=

x2+1°
. ’ _ (x2+1)' _ _T2x
f estderivable sur R et f'(x) = P - i)
2x
g f)=—;
C(U(x) = 2x {U’(x) =2
On pose : {V(x) x4 = V'(x) = 1

f(x) = %, f est dérivable sur R\ {—2}etona:

, _UW-VIU _ 2(x+2)-2x
fx) = v (x+2)2
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1] _ 2x+4-2x ’ 4
f (x) - (x+2)2 = f (x) - (x+)?

h) f(x) =vx2+1
f est dérivable sur Retona:
_(x241)

fO) =
12 _ 2x ] _ X

&)= ea =) = 5
- = _r
i) f(x)=cos (2x 3)
f est dérivable sur Ret f'(x) = —2sin (Zx - g)
: . 2m
i) f(x)=sin (4x + 3)
f est dérivable sur R et f'(x) = 4cos (4x + 2?”)

lil. Applications de la dérivée :
III; — Sens de variation d’une fonction
1.1 —Théoréme:
Soit f une fonction définie sur sur un intervalle ouvert K.
e f estcroissante sur K si et seulement si f~ est positive sur K

x €K

f(x) +

f)

e f estdite décroissante sur K si et seulement si f” est négative sur K.

x€EK

f(x) -

f)

e f est constante sur K si et seulement si f” est nulle K.
Exemple :
soit f la fonction définie par f(x) = x3 — 3x — 1.
f est dérivable sur Ret f'(x) = 3x2 =3 =3(x — 1)(x + 1).
Ona:f'(x) =3(x—1(x+1),doncf'(x)=0=3#0etx=1oux =-1
Tableau de signe

x —00 -1 1 + o

x+1 — 3 + +

x—1 — - C +
x—-Dkx+1) + — +
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ff(x)=3(x—1(x+1) + - +

Calcul de limites et d’images :

e f(-1)=1
. f()=-3
® liqu_wf(x) = —°

limy 4o f(x) = 4o

Tableau de variation

X —o00 -1 1
+ o
flex) |+ ?— O +
f(x) 1 o
—00 -3

Sens de variation
o Vx €]—00;—1[U]1;+ee[, f'(x) > 0, alors f est strictement croissante sur
]=00; —=1[ U ]1; +oof
e Vxe]|-1;1[, f'(x) <0, alors f est strictement décroissante |—1; 1].
Remarque:

e Sif'(x) > 0surK, alors f est strictement croissante sur K ;

o Sj f’(x) < 0 surK, alors f est strictement décroissante sur K ;

e Si f’(x) aunsigne constant sur K et ne s’annule en un nombre fini d’élément de K,
alors f est dite strictement monotone si et seulement si f est soit croissante ou soit
décroissante.

1.2 —Extremum relatif d’'une fonction

Propriété :

Soit f une fonction dérivable sur un intervalle |a; b[ et x, un élémentde]a; b[. Si f s’annule
et change de signe en x,, alors f admet un extremum relatif en xg.

Tableaux de variations

X a X b
fl |+ P ~
fe) M ()

T

f admet un maximum M relatif en x
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X a Xo b

f) | - P +

G0 /'
m (fé?o))

f admet un minimum m relatif en x,

Exemple :
Soit f(x) =x3—3x—1
D’apres I'exemple précédent, on a le tableau de variation suivante :

X —00 -1 1 + oo
oo |+ ? - O n
f(x) 1 +00

N

e Vx€]—00;—1[U]1;+ee[, f'(x) > 0, alors f est strictement croissante sur
]—00; —1[ U ]1; +oo]

e Vxe]|-1;1[, f'(x) <0, alors f est strictement décroissante |—1; 1].
f s’annule et change de signe en —1 et 1, donc f décrit au point M(_ll) un maximum relatif
a la courbe (Cf) et au point m(_lg) un minimum relatif a (Cf).

3
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Chapitre 4 : Applications

Généralités
[, — Fonctions et application

1.1 — Fonctions:
1.1.1 —Définition :
Soient E et F deux ensembles.
On appelle fonction de E dans F, toute relation entre ces deux ensembles E et F pour laquelle,
a chaque ¢élément de E, on associe au plus un élément de F.
E est appelé ensemble de départ et F I’ensemble d’arrivée.
Notation :
Soit f une fonction.

:E— F
On note : ! x — f(x)
Remarque :
Vx €E, f(x) € F.Ondit que f(x) est 'image de, x et que, x est 'antécédent de, f(x).
1.2 — Application:
1.2.1 —Définition :
Soient E et F deux ensembles distincts ou non.
On appelle application, c’est une relation d’un ensemble E vers un ensemble F telle que tout
¢lément de E a une et une seule image F.
Notation :
Soit f une application.
fE—F

x — f(x)

1.3 — Restriction et prolongement d’une fonction:
1.2.1 —Définition :
Soit f une fonction de E vers F et a une partie de E.

On note :

1) On appelle restriction de , f a A, la fonction notée , g définie par:
gA—F
x— f(x)

On restreint le domaine d’étude a une partie de E.

2) Ondit que f est le prolongement de g a Etelque:Vx € E, f(x) = g(x).
1.4 — Composition des fonctions
1.4.1 — Définition:
Soient E, F et g trois ensembles.

f:E — F et g: F — G deux fonctions
On appelle composée de f par g, la fonction de E vers G notée g o f définie pour tout x de E

tel que Vx € Dy et Vf(x) € Dy par: go f(x) = g[f(x)].

1.4.2 — Propriété:
Soient f:E — F, g:F — G et h: G — H trois fonctions, on a:

ho(gef)=(heg)ef.

On dit que la composée des fonctions est associative et on écrit:
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ho(gef)=(hog)of =hegeof
[, — Applications particuliéres

2.1 — Injections et surjections

2.1.1 —Définitions et propriété:

Soit f une application de E vers F.
- On dit que f est une injection ou injective, si tout élément de F a au plus un
antécédent par f. f est injective si et seulement si ; pour tous réelsaetbde E, on a:
fl@=fb)=a=b
- On dit que f est une surjection ou surjective, si tout élément de F a au moins un
antécédent par f .
2.2 — Bijections
2.1.1 —Définition:
Soit f une application.
On dit que f est bijective ou est une bijection, si et seulemnt si f est injective et surjective.
2.3 — Bijection réciproque d’une bijection :
2.3.1 —Propriété:
Soit f une application bijective de E vers F et g une application de F vers E.
Sifog =1Idgougo f=Idg,alors g estla bijection réciproque de f. On la note f 1.
2.4 — Composée de deux bijection :
2.4.1 —Propriété:
Soit f une bijective de E vers F et g I’autre bijection de F vers G.
g © f est une bijection deEversGetona:(gof) l=glof"
I3 — Comparaison des fonctions

1

3.1 —Majoration, minoration:

3.1.1 —Définition:

Soit f une fonction définie sur un ensemble E.
- f est minorée sur E, s’il existe un nombre réel m tel que : Vx € E,m < f(x) ;
- f est majorée sur E, s’il existe un nombre réel M tel que : Vx € E, f(x) < M ;
- f estbornée sur E, si f est a la fois minorée et majorée sur E :

Vx EEm< f(x) <M.
Exercice d’application :

Exercice 1
3x+5
2x—-3

Soit f la fonction numérique définie par : f(x) =
1) Montrer que le réel 2 n’a pas d’antécédent par f.
2) Montrer que le réel ; n’a pas d’image par f et en déduire I’ensemble de définition de f

3) Montrer que f est une bijection de R \ {%} vers R\ {%} et déterminer sa bijection réciproque.
4) Déterminer la composéefof .
5) Soit A P’intervalle ; A= E, +00[.

Déterminer I’ensemble des réels x tels que f(x) > % et en déduire I’image réciproque de A par f.

Exercice 2
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Soit E= {0; 1}. A tout couple (a, b) d’¢éléments de E, on associe le nombre a + b — ab
1) Vérifier qu’on établit ainsi une application de E X E dans E.
2) Cette application est-elle injective ? Est-elle surjective ?

Exercice 3

Soit f, g et h les applications de R vers R définies par :

f)=2x—1;9(x) =x*—2;h(x) = —

x-3
1) Déterminer I’ensemble de définition dehogof, puis calculer hogof .

Déterminer I’ensemble de définition de gohof ; puis calculer gohof .
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Chapitre 5 : Etude des fonctions

I. Généralités sur les fonctions
[, — Domaine de définition
1.1 — Définition:
On appelle domaine de définition ou ensemble de définition, c’est I’ensemble des nombres
réels sur lesquels la fonction est définie. Pour une fonction f, on le note : Df.

1.2 — Domaine de définition des fonctions polyndmes

Toute fonction polyndme est toujours définie sur I'ensemble R.
Exemple :
Déterminer le domaine de définition des fonctions suivantes :
f(x) = 4x? —4\/3x + 3
g(x) =5x2—-2x+3
h(x) = 2x?> +3x + 2
1.3 — Domaine de définition des fonctions rationnelles

. . . F .
Une fonction rationnelle est une fonction du type : H(x) = % ou F et G sont des
polynémes.
Pour qu’une fonction rationnelle existe, il faut et il suffit que son dénominateur soit différent

de zéro.

Exemple :
Déterminer le domaine de définition des fonctions suivantes :
2_
f(X) — 5x2x+22x+3
gx) = —5’:2:1’;_5
h(x) = (;+;)3(f:21)

1.4 — Domaine de définition des fonctions racines carrées

Soit f(x) = /g (x).

Pour déterminer le domaine de définition de f, on pose g(x) = 0 et on résout cette

inéquation.

L’ensemble de solution de cette inéquation est I’ensemble de de définition de la fonction f.
Exemple :

Déterminer le domaine de définition de fonction f dans les cas suivantes :

a) f(x)=+x
b) f(x) =vx?—-3x+2

0 fO)= [

Vx=3

d) FO) =5

_ Vx+2

e) f(X) - m

Il. Parité, périodicité
[I; — Définitions:
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Soit f une fonction ayant pour ensemble de définition Dy et pour représentation graphique
(G)-
f estdite :
- Paire : Si et seulement si, Vx € Dy, —x € Dy et f(—x) = f(x).
- Impaire : Si et seulement si, Vx € Dy, —x € Dy et f(—x) = —f(x).
- Périodique de période P(P #0 ),Si et seulement si, Vx € Df, x — P € D,,x+PE€
Df et f(x —P) = f(x+P).
Remarque :
Les fonctions cosinus et sinus sont périodique, de période 2.
Exemple :
Etudier la parité de la fonction f dans chacun des cas suivants :
a) f(x)=2x3-5x
b) f(x) = 4x*+3x%+2
x4
c) flx)= i1
d) fO)=x(x*-1)
e) f(x)=+v2x2+3

liIl. Eléments de symétrie
[II; — Axe de symétrie et centre de symétrie
1.1 — Propriétés:
Soit f une fonction ayant pour ensemble de définition Dy et (C f) sa représentation graphique

dans un repére orthonormé.
- Pour démontrer que la droite (D) d’équation x = a est un axe de symétrie de (Cf), on
peut vérifier que Vx € R, tel que :
a+x€D;,a—x€Dgetf(a—x) = f(a+x).
- Pour démontrer que le point Q(a; b) est un centre de symétrie de (C f), on peut vérifier
que :
Vx € Dy tel que a+xEDf,a—x€Dfetf(a—x)—f(a+x) = 2b.
Exemple 1 :
Le plan est muni d’un repére orthogonal (0; ;) et (C) est la représentation graphique de la
fonction f.
Démontrer que la droite (D) est un axe de symétrie dans chacun des cas suivants :
a) f(x)=x*—4x—-1, (D):x=2
b) f(x)=—-x?>-2x+1,(D):x=-1
3x
c) f(x)=m, (D):x=-2
Exemple 2:
Le plan est muni d’un repére orthogonal (0; 7; ) et (C) est la représentation graphique de la
fonction f.

Démontrer que le point () est un centre de symétrie dans chacun des cas suivants :

a) f)=&+1D3+1,0(-1;1)
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1
b) flx)=—, Q(1;0).
xZ
C) f(X) = m, Q(—Z, —4)
III, —Les asymptotes :
2.1 — Asymptote paralléle a I'un des axes
Définition :
Soit f une fonction et (Cf) sa courbe représentative.
e Lorsque f admet une limite finie [ en +00 ou en —oo, c'est-a-dire : lil+n f(x)=1lou
X—+ 00
lim f(x) = [, alors la droite d’équation y = l est dite asymptote horizontale 3
X—>—00
(C);
e Lorsque f admet une limite infinie a droite ou a gauche en x,, c'est-a-dire :
lim f(x) = cou lim f(x) = o, alors la droite d’équation x = x, est dite
x-xot x—-xg~

asymptote verticale a (C;).

Exemple :
. _ 2x
a) Soit f(x) = s
xEDf@x+1>0
x> -1

S x € ]-1; +oof
Donc Df =]-1; +oof

X €Ds; ona:
. . 2x -2
L
= lim f(x) = —
x——1%
Alors, on n’en déduit que la droite d’équation x = —1 est asymptote verticale a (Cf).
. x%-2x+5
b) Soit f(x) = T
f est définie sur R. Calculons les limites de f aux bornes de son Dy.
. . X%-2x+5 . x?
o im0 = lim e = M e =

= lim f(x) = =
X——00 2

x%2-2x+5 . x?

. . 1
e lim f(x) = lim ———= lim ==
x—+00 x—+00 2x4+1 x—+00 2X 2

, _1
= lim f (x) =3

= lim f(x) = lir_P f(x) = %, alors la droite d’équation y = ; est asymptote horizontale
X—>—00 X—>4+00

a (Cf) en —oo et en +o.

2.2 — Asymptote oblique

Définition :
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Soit f une fonction et (Cf) sa courbe représentative.

On dit que la droite d’équation y = ax + b est une asymptote oblique a (Cf) lorsque :
Jim [£(x) ~ (ax +b)] = O ou lim [f(x) ~ (ax + b)] = 0

Méthode :

Pour étudier les branches infinies de la courbe représentative d’une fonction rationnelle

h(x) = (x) ou (d°f = d°g) en —oo et en +0, on peut effectuer la division euclidienne de f
parg.

Exemple :

Smtf(x) =x—2+ 2+1

Démontrons que la droite d’équation : y = x — 2 est asymptote oblique a (Cf) en en —oo et

en +oo.
En effet, f(x)—yzx—Z 2)
fG) -y ==
e lim [f0) - (=2 = lim (F5)=15=0
o lim [f@) - (=] = lim () =75=0

D’ou la dr0|te d’équation : y = x — 2 est asymptote oblique a (Cf) en en —oo et en +00.
Propriété :
Soit f une fonction et (Cf) sa courbe représentative.

la droite d’équation y = ax + b est une asymptote a (Cf) si et seulement si: lim f& _ a

x—>+oo X
et lim (f(x) —ax) =
x—>+oo

Remarque :
Les courbes représentatives de deux fonctions f et g sont asymptotes lorsque :
Jim (£() ~g() = 0ou lim (f(x) ~ g(x)) = 0.
III; — Fonctions polynomes, fonctions rationnelles
Plan d’étude d’une fonction
Pour étudier une fonction dans le cas général, on adopte le plan suivant :
1) Déterminer I’'ensemble de définition ;
2) Déterminer les limites aux bornes du domaine de définition ;
3) Déterminer la dérivée et le sens de variations ;
4) Points et droites remarquables : asymptotes et tangentes;
5) Construire la courbe.
Exemple d’étude de fonctions
Exemple 1:
Soit f la fonction définie par : f(x) = x3 — 3x + 2, (Cr) sa représentation graphique
1) a) Déterminer I'ensemble de définition de f
b) Calculer les limites de f aux bornes de son D
2) a) Déterminer la fonction dérivée f’ de f en déduire le sens de variation de f
b) dresser le tableau de variation de f
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3) a) Déterminer une équation de la tangente (T) au point A d’abscisse x, = 0
b) Etudier la position de (Cf) par rapport a (T) ;
4) Construire(Cr).

4) Démontrer que le point A (3) est un centre de symétrie de (Cr).
Exemple 2 :

2
La fonction numérique f a variable réel x est définie par f(x) = %

a) Quel est I'ensemble de définition Dy de f.
C
X+1

c) calculer les limites de f aux bornes de son ensemble de définition

b) Déterminer lesréels a, betctelque g(x) =ax+ b+

d) Etudier le sens de variations de f et construire la courbe (c) représentant la fonction f dans un
repére orthonormé(0; 7; 7).
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Chapitre 6 : Suites numériques

I. Généralité
[, -Definition d’une suite numérique
1.1 — Definition:
On appelle suite numérique, toute fonction de N vers R généralement notée(u,,),, n € N
ou tout simplement(u,,).

e Une suite peut étre définie par une formule explicite qui permet de calculer u,, en

N — R

i . 2n+1
fonction de n telle que : n— u, =2

e Une Suite peut-étre définie par son premier terme et une formule de récurrence telle

u, =1
ue: 1 ;Vn€eN
9 {un+1=§Un+2

Il. Etude d’une suite numérique
II; —Suites minorées, majorées et bornées.
1.1 — Définition : Soit(u,),, Une suite numérique.

® (uy)y, estdite minorée, s’il existe un nombre réel m tel que : pour tout entier

naturel n,ona:m < u, ;

o (uy)q, est dite majorée, s'il existe un nombre réel M tel que : pour tout entier

natureln,ona:u, < M;

o (uy)q, estdite bornée, si elle est a la fois minorée et bornéei.e: m < u, < M.
Les nombres réels m et M sont respectivement appelés minorant et majorant de(U,,),-
1.2 — Théoréme:

En général, pour démontrer qu’une suite (U,,) est bornée, I'un des procédés ci-dessous
est utile.

e Encadrer le terme général de la suite (U, ) par deux nombres réels.

e Etudier la fonction f lorsque (U,,) est du type U,, = f(n).

e Faire un raisonnement par récurrence.

II, —Sens de variations
2.1-Théoréme:
Soit(uy),, 1 € N, une suite numérique. si Vn € N :

® U, < Uy, alorslasuite (u, ) est croissante ;

® U, > Uy, alors lasuite (u, ) est décroissante ;

® U, = Uy, alors la suite (u, ) est constante.

Remarque :
e Une suite (u,) est dite monotone si elle est soit croissante, soit décroissante ;
e Une suite (u,) est dite stationnaire, si elle est constante a un certain rang.
II; —Notion de convergence
3.1-Théoréme:
e Une suite (U,) est dite convergente lorsqu’elle admet une limite finie (1) en +
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e Une suite (U,) est dite divergente lorsqu’elle admet une limite infinie (£ o) en +o
lIl. Suites arithmétiques, suites géométrique
III; -Suites arithmétiques
1. 1-Definition :
Une suite (U,,) est dite arithmétique lorsqu’il existe un nombre réel r appelé raison tel que
pour tous entiers naturels n,p; ona:
Up4q1 = Uy + 7 : Formule de récurrence
Sin=0,alorsu, =uy +nr
Sin=1,alorsu, =u; +(n— Dr
Sin=2,alorsu, =u, + (n—2)r
D’une fagon générale, pour tout entier naturel n et p,ona:
Up = Uy + (n — p)r : Formule explicite
Retenons bien :
Pour démontrer qu’une suite est arithmétique, il suffit de prouver que la différence entre
deux termes consécutifs est constante, i.e. : Up,1 — U, =7,n € N.
1.2 —Somme des termes consécutifs d’une suite arithmétique:

(up)y, estune suite arithmétique,vn € N,ona:
Ui+Up+ o +U, =nxZ%" otUy+ U, +Uy ..+ U,  =nxL20nt

2

n(n+1)

En particulier:1+2+3+4+--+n= >

III, - Suites géométriques
2.1- Définition :
Une suite (u,) est dite géométrique lorsqu’il existe un nombre réel q appelé raison tel que
pour tout nombre entier naturel n,p; On a:
Up41 = qUy, : Formule de récurrence)
Sin=0,alors: u, = uyq"
Sin=1,alors: u, = u;q" !
Sin =2,alors: u, = u,q"?
D’une fagon générale, pour tout entier naturel n et p,ona:
u, = u,q™ P: Formule explicite
Retenons bien :
Pour démontrer qu’une suite est géométrique, il suffit de prouver que le quotient de deux

A .U
termes consécutifs est constant, i.e. : == = q,(q € N)

Un
I5 , » -Somme des termes consécutifs d’'une suite géométrique:
(Up)n, est une suite géométrique de raison q,(q # 1),vyn € N,ona:

1—gn*1 n

q
1-q

1-q
1-q

U1+U2+...+Un=UnX etU0+U1+U2 ...+Un_1=U0X

IV. Limite d’une suite numérique :
IV; -Calcul de limites
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1.1-Propriété:
Soit (u,,), une suite definie par : u,, = f(n) ou fest une fonction numérique. Si f a une
limite en +o0, alors (u,,) a une limite eton a:

lim u, = nl_i)rlloof(x) , (la réciproque est fausse)

n—-+oo
Exemple :
. x%+1 . . n%+1
e lim ln( > ) = 0, donc la suite (v,,), de terme général v, = ln( > ) converge
n-+oo X ’ n
vers 0.

. 1 . . 1
e lim (xcos ;) = 400, donc la suite (w,), de terme généralw,, = n cos —est
n-+oo

divergente.
1. 2-Convergence d’une Suite arithmétique et géométrique.
Théoréme :
1) Soit (uy)nn € N, une suite arithmétique de raison r,v n € N,u,, = uy + nr

e Sir>0,alors: lim u, = lim (nr) = +o; (u,),est divergente ;
n—-+oo n—-+oo ’

e Sir=o,alors: lim u, = u, lasuite (u,) converge donc vers u, ;

n—+oo
e Sir<o0,alors: lim u, = lim (nr) = —o, (u,), est divergente ;
n—-+oo n—-+oo ’

2) Soit(u,),n € N, une suite géométrique de raison g et de 1* terme uy # 0,u, = ueq™
e Si|ql| > 1, alors la suite (u,) est divergente.
e Silg| < 1, alors la suite (u,,) est convergente.
e Si|g| =1, alors la suite (u,,) est stationnaire (u,, = ug)
1.3 —Propriétés et comparaison:
On consideére les suites (u,) ,(v,) et(w,) et [ un nombre réel.
e Si(uy) et (u,) sont convergentes et si a partir d’un certain indice (rang), u, < v,

alors lim u, < lim v,;

n—-+oo n—-+oo
e Sia partir d'un certain rang, u, = v, et lim v, = +oo, alors limu, = +o
n—-+oo n—oo
e Sia partird'un certain rang, v, < u, <w, et lim v, = lim w, =1,
n—-+oo n-—-+oo
alors lim u, =1;
n—+oo
e Sia partir d'un certain rang, u, < v, et lim w, = —oo, alors lim u, = —oo;
n-—-+oo n—-+oo

e Silasuite (v,) est telle qu’a partir d’un certain rang partir, on ait :

lu, —l| <v, et lim v, =0,alors lim u, =1
n—+oo n—+oo

Exercices d’application
Exercice 1
uo = 1
) o e ] .
Soit (u,) la suite définie par : {un+1 _ Zn+3 VneN
n

1) Calculer u,u,,uz et uy et prouverqueVn € N,u, +1 > 0.

2) Démontrer que la suite (v,,) définie sur N par: v, = est une suite arithmétique.

Up+1
3) Exprimer v, puis u,, en fonction de n et étudier la convergente de la suite (u,,).
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Exercice 2

uO == 0
On considére la suite (u,,) définie par : _ 3up+2,VEN
Upt+1 = Utz

1) Démontrer que pout entier nde N, u,, # 2
unp+1

2) Onpose:V, = ; VEN

Up+2

a) Montrer que (V},) est une suite géométrique dont on précisera la raison et le
premier terme v,.

b) Exprimer V}, en fonction de n

c) En déduire u, en fonction de n

d) Calculer la limite de (1},) lorsque n tend vers +oo
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Chapitre 7 : Dénombrement

I. Analyse combinatoire
[, -Notation factorielle
I, 1 — Definition:
Soit n un entier naturel non nul.
On appelle factorielle de n, le produit des entiers positifs de 1 a n noté par :
nn=nn-1)(n-2)x..x2x1
On lit « factorielle n ».
Exemple :
31=3x2x%x1
4!1=4x3x2x1
Par convention: 0! = 1
I, -Permutation :
2.1 — Definition:
Soit E un ensemble non vide de cardinal n ; ( un est un entier naturel).
On appelle permutation de n éléments de E, toute suite ordonner formée a partir de de n
éléments distincts de E.
Onlanote:B,=n(n—1)(n—2) X..x2Xx1=n!
Exemple :
Soit E = {a; b; ¢}
Le nombre de permutation des éléments de E est :
P; =31=3X2X=6
Les permutations des éléments de E sont : abc; acb; bac; bca;cab et cha.
I3 - Arrangement avec répétition :
3.1 — Definition:
Soit E un ensemble non vide.
On appelle arrangement avec répétition de k éléments parmi les n éléments de E, toute suite
ordonnée de k éléments de E distincts ou non ( non nécessairement distinct).
Le nombre est noté : AX = nP,
I, - Arrangement sans répétition :
4.1 — Definition:
Soit E un ensemble non vide.
On appelle arrangement sans répétition de k éléments de E, toute suite ordonnée de k

éléments de E distincts deux a deux (p < n).

|
On le note Ak = (n%'p)'

Exemple :

On peut placer de 7% facons différentes 4 lettres distinctes dans 7 boites aux lettres.

Exercice d’application:

1) De combien de fagons différentes, peut-on placer 4 lettres distinctes dans 20 boites aux
lettres ?
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2) A Partir de 3 lettres a, b et ¢, combien de mots de 2 lettres non nécessairement distincte
peut-on former ?

3) De combien de facon différentes peut- on ranger 7 livres :
a) Dans n’importe quel ordre ?
b) Si 3 livres particuliers doivent rester ensemble ?
c) Si2 livres particuliers doivent prendre les positions extrémes ?
4) Une classe comporte 9 garcons et 3 filles. De combien de fagons peut-on faire un choix
de 4 éléves.
a) Quelconques ?
b) Comprenant au moins une fille ?
c) Comprenant exactement une fille ?
I5 — Combinaison :
5.1 — Definition:
Soit E un ensemble non vide.

On appelle combinaison de k éléments de E, toute partie de E a k éléments.
n!

p!(n-p)!

On le note Ck =

Exemple :

De combien de fagons peut-on former un comité de trois personnes dans une assemblée de
10 hommes et 6 femmes ?

C’est une combinaison de 3 personnes sur un total de 16.

3 160
Ona: (i = PTerECTi 560

Il'y a donc 560 facons différentes de former un comité de 3 personnes dans cette assemblée.
Quelques valeurs particulieres :

a5 =1 Ch=Cr=1
Ay =n! Cl=ct1=n
Al =n

Propriété :

Pour tous entiers naturels n et p tel que p soit inférieur ou égal an, on a :
G '=C,

Si de plus 0 < p < n, alors : Cﬁ:i + CZ—1 = Cﬁ

Résume :

Types de (o teees Vers .
.yp Ordre Répétitions d'éléments | Dénombrement
tirages
Successifs Un élément peut étre
. . . . . nP ( p-uplets)
Avec remise | On tient compte | tiré plusieurs fois
Successifs de 'ordre k_ n
. . . o r = (arrangement)
Avec remise Un élément n'est tiré (n-p)!
L' u'une seule fois ! . .
Simultanés '(?rdre ) g ,"," == (Combinatoires)
n'intervient pas p!(n-p)!
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Chapitre 8 : Barycentre

Barycentre de deux points pondérés

I.1- Théoréme et définitions

1.1-Théoréme : soit A et B deux point du plan et « et 8 deux nombres réels. Si a + 8 # 0,

alors il existe un seul point G tel que : aGA +,BG—B) =0

Démonstration :
aGA + BGA =0
& aGA+ B(GA+ AB
& aGA + PGA + BAB =
& (a+ B)GA + BAB =
o (a + B)GA = —BAB
o —(a+ B)AG = —BAB

& AG=-L-2B,(a+p+0)

a+p

J

0

ol ol |l

Posons fj = LE
a+p

Etant donné un point A et un recteur U, il existe un point unique G telque : AG =0

Remarque :
Sia+p=0=p

= aGA — aGB

—aetaﬁ+ﬁﬁ=6

On distingue deux cas :
1¥ cas : Sia = Oou a@ = B, alors tout point G du plant vérifie I’ égalité aGA + [3@ =0
2°cas : Sia # 0 et a # f3, alors aucun point du plan ne vérifie cette égalité.
1.2-Définitions

# On appelle point pondéré tout couple(4, @) ou A est un point et & un nombre réel ;

a est appelé coefficient du point A.

+ Soit(4, a) et (B, ) deux points pondérés tels que @ + 8 # 0

On appelle barycentre des points pondérés (4, @) et (B, ), 1’unique point G telque :aGA +

BGE =0 —
On note G = bar{(4,a), (B,£)}ou G = bar 2T
Remarque :
a1~ B 7B T .
G = barl A E; e AG = o AB: Cette égalité permet de construire G.
a

- SiA # B, alors A, B, G sont alignés c’est-a-dire G € (AB)
- SiA=B = 4G = ﬁﬂ or AA=00AC=0A=G

axp
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Exemple : Construire le barycentre des points G suivants

1)
G = bar A | B | ouG est le barycentre de (4, 2) et (B, 3)
2 |3
AG =L 4B = 4G = 4B = 4G = >4B
<+ 2+3
. L =) B
1 1 1 1 1 1
| ] ] I:T: ] |
(2) G est le barycentre de (4, 2)et (B, —1),
—_ -1 —= —_ _—
G=bar| A _|B | © 4G =_—"4B = AG = —4B
2 -1
L=

>
w

®

G est le barycentre de (4, 1) et(B, 1),

G=bar|A |B| o4C = ﬁﬁ = 4G = %E, G est le milieu du segment[AB]
1 1

i
S
2

1.2-Propriété du barycentre de deux pondérés
2.1-Homogéniété du barycentre
G = bar{(4; a); (B; B)}=aGA + fGB = 0
Pour tout nombre k #0 kaGA + kﬁG—é =06 = bar{(A; ka); (B; kB)}
On a la propriété suivante :
2-2-Propriété :
Le barycentre de deux points pondérés est inchangé lorsqu’on multiplie tous les coefficients
par un méme nombre réel non nul
2-3-Ensemble de barycentre de deux points pondérés
Un point G est barycentre de deux points A et B s’il existe un couple (a, b) de nombre réel tels
que G soit I barycentre des points pondérés (a, ) et (b, )
2-4-Théoréme :
Soit A et B deux distinct du plan.
L’ensemble des barycentres des points A et B est la droite (AB)
Démonstration :
e SIG = bar{(4;a); (B;B)}alors G € (AB)

e Réciproquement, soit G un pont de la droite (AB).

o llexiste k € Rtelque: AG = kAB ou encore AG = 1_}:}(@
SAG =—LX_74B.
(1-K)+k

Donc: G = bar{(A; (1- k)); (B; k)}
2.5-Reduction de la somme aMA + BW
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e Sia+ B +0=13Gtel que G = bar{(4; a); (B;,B)}(:)aaél) + ,Bﬁ =0
On a: aMA + ﬁm = a(I\_/I_E + EZ) + ﬁ(l\_/l_é + G—B)), M est un point du plan.
= aMG + BMG + aGA + BGB
= (a + B)MG + aGA + BGB
©aMA + MB = (a + B)MG; car aGA + BGB = 0
e Sia+pf=0, alotsa=-
& aMA + BMB = —BMA + BMB
= BAM + BMB
& aMA + BMB = B(AM + MB)
& aMA + BMB = BAB
L’on conclut que le vecteur aMA + BW est indépendant du point M, d’ou la propriété
suivante :
2.6-Propriété :
Soit(A, a) et(B, B) deux points pondérés. Pour tout point M du plan :
-Sia+ p # 0,alors aMA + ,BW =(a+ ﬁ’)M—G> ou G = bar{(4; a); (B; B)}
-Sia + f = 0,alors le vecteur aMA + BW est independant du plan

2. 7- Cordonnées du barycentre de deux points
Le plan est muni du repére (O, L, J)

On considére le point A (;2) et B (;g)

G = bar{(4; a); (B; B)}=aGA + BGB = 0
& (GO + 04) + (GO + 0B) =0
& aGO + a0A + BGO + BOB = 0
& (a+ B)GO + aOA + BOB =0
(:)(a+ﬁ)a))=—am—ﬁ0_3)
@(a+ﬁ)ﬁ=am+ﬁﬁ

=06 =->04+-L 0B
a+p a+f
_ axa Bxp aya Bys
< X _a+ﬁ+a+ﬁ etye _a+,8+a+ﬁ
axa+Pxg aya+fys
@xa = ) tyG = atf
ax +Pxp
a+p
o6 <¢WA+BJ’B>
a+p

D’ou la propriété suivante :
2.8-Proprieté :

Dans le plan muni repére (O, 1, J), si A(;i) et B (ig ) et si G et le barycentre de

aya+ByB
a+f

axp+Pxpg
(4,a)et (B,B), alorsona: G ( “*p )

Exemple :
Calculons les coordonnées de G du point suivant

A(5) et B(),G = bar{(4,-2),(B,4)}
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) __ axa+Pxp _ ayatByg
Ona: xg = Tatp et yg =T

Sxg —Zzi—7etyc =$=2

(:)G(Z), d’ou les coordonnées du point G.

2.9-Conservation du barycentre par la projection

2.9.1-Theoréme :

Le projet du barycentre de deux points pondérés est le barycentre des projetés de ces deux

points affectés des mémes coefficients

Il. Barycentre de plus de deux points pondérés

I1.1-Théoréme et définition :

1.1-Théoréme :

Soit (4, a), (B, B)et (C,Y) trois points ponderes

Sia+p+Y=#0, alorsEI'aGA+,BGB+Yé

Preuve :

aGA + BGB + YGC =0
©aGA+ B(GA+AB) +Y(GA+AC) =0
©aGA + BGA + BAB + YGA + YAC =0
o(@+ B +Y)GA+ PAB +YAC =0
&-(a+ B +Y)GA = —(BAB + YAC)
&(a+ B +Y)GA = BAB + YAC

__B Y
SAG a+ﬁ+yAB+ +B+YAC

Cette dernicre égalité justifie I’existence de I'unicité de G

1.2-Définition :

Soit(A4, a), (B, B) et (C,Y)trois point pondérés telsque a + B +Y # 0

On appelle barycentre des points pondérés (4, a), (B, B) et (C,Y), 'unique point G tel que :

aGA + BGB + YGC =0

On note: G = bar{(4,a), (B,B),(C,Y)}

Remarque :

- SiI’un des coefficients est nul, par exemple @ = 0, alors G = bar{(B,B), (C,Y)}
- Cette définition et la remarque précédente se généralisent a 4 points (et plus)

Exemple :

Soit ABC un triangle.

Construire le point G barycentre des points pondérés (A,3), (B,-2) et (C,1)

G = bar{(4,3), (B, =2),(C,1)} ©3GA-2GB+GC=0
&3GA-2(GA+AB) +GA+AC =0
©3GA—2GA—2AB+GA+AC =0
©2GA—24B+AC =0
©-24G —2AB+AC =0
©—24G = 24B — AC
©AG = —AB +5AC

= —AB +-AC

3-2+1
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I1.2-Propriétés :
2.1-Homogeniété :
2.1.2-Proprieté :
Le barycentre de trois points pondérés (ou plus) est inchangé lorsqu’on multiple tous le
coefficient par un méme réel non nul.
Remarques :
Le barycentre de point pondérés affectés de coefficients égaux est appelé isobarycentre de ces
points.
- L’isobarycentre de deux points A et B est le milieu du segment [AB]
- L’isobarycentre de trois points A,B et C est le centre de gravité du triangle ABC.
- L’isobarycentre des sommets d’un parallélogramme est le centre de ce
parallélogramme.

2.3-Reduction de la somme aMA + MB + YMC
2.3.1-Propriété :
Soit (4, ), (B, B) et (C,Y) des points pondérés. Pour tout point M du plan, on a :
- Sia+pB+Y+# O,alorsam+ﬁm+ymz (a+B+Y)mouGestle
barycentre de (4, a), (B, B) et(C,Y).
- Sia+p+Y=0,alors le vecteur aMA + fMB + YMC est indépendant du point M.
Preuve :

- Sia+pB+Y#0=3'G =bar{(4,a),(B,B),(C,Y)} telque :
aMA + BMB + YMC = a(MG + GA) + (MG + GB) + Y(MG + GC)
= aMG + aGA + BMG + BGE + YMG + YGC
= (a + B +Y)MG + aGA + BGB + YGC,
Or aGA + BGB + YGC
D’ot aMA + BMB + YMC = (a + B + Y)MG
Sia+f+Y=0=>a=—-B-Y.
Alorsona:am+ﬁm+ymz(—B—Y)W+BW+YW
= (=B ~ Y)MA + B(MA + AB)Y(MA + AC)
= (B — Y)MA + BMA + BAB + YMA + YAC
= (=B - Y+ B +Y)MA + BAB + YAC
= 0+ BAB + YAC = BAB + YAC
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Donc aMA + ,BW + YW = BE + Yﬁ. D’ou le vecteur aMA + FMB + YMC est
indépendant du point M.

2.4- Coordonnées du barycentre de trois points pondérés

2.4.1-Propriété :

Dans le plan muni d’un repéré orthonormé (O, I, J),on a :

. . . xA xB xC .
Si donne trois points A (yA) ,B (yB) et C (yc) et si G est le barycentre de
axp+Pxp+Yxc
(A, @), (B, B) et(C,Y), alors GG (ayAfEf;fwya)
T aHpry
2.5-Barycentre parties :

2.5.1-Theoréme :
Soit (4, a), (B, B) et(C,Y) trois points pondéréstelsque :a + B+ Y #0eta+ B #0
Si H est le barycentre (4, a) et(B, B), alors :
G = bar{(4,a), (B, ), (C,¥)} = bar{(H, (a + p)), (C,¥)}

H est appelé barycentre partiel.
Exemple :
Soit ABC un triangle
Construisons le barycentre G des points pondérés (A, 3), (B,-2) et (C,1) en utilisant le
théoréme des barycentre partiels.
Soit H le barycentre de (A,3) et (B,-2)
H = bar{(4,3), (B, —2)} ©A4H = gﬁ & AH = —2AB
EtG = bar{(A, 3); (B; _2); (C; 1)}

= bar{(H,1),(C,1)} SHG = %TC, alors G est le milieu de [HC].

On en déduit, une construction du point H et le point G

NB : Pour déterminer le barycentre de plusieurs points pondérés, on peut remplacer certains
d’entre eux par leur barycentre partiel, affecté de la somme de leurs coefficients, a condition
que cette somme soit différent de zéro. (C’est-a-dire non nulle).
Remarque :
Soit un triangle ABC et G le barycentre de(4, a), (B, B) et(CY).
Lorsque a + B # 0, H est le barycentre de (4, a) et (B, B) si et seulement si H est le point
d’intersection des droites (AB) et (CG)

I1l. Utilisation du barycentre :
III.1 Probléme d’alignement et de concours
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On peut utiliser le barycentre pour démontrer 1’alignement de trois points ou le concours de
trois droites. Dans certains cas, cet outil permet de conclure rapidement. Nous allons en faire
usage a travers quelques applications.

1.1-Alignement de points :
Application :
Soit ABC un triangle et M le milieu du segment[AC]. Placer les points I et J tels que :
Al =24 et C = =CI.
Démontrer que les points B, J, M sont alignés.
NB : Pour démontrer que trois points sont alignés, il suffit de démontrer que I’un est le
barycentre des deux autres.
Solution :
e Al =24B =4l =2 4B.
3 142
Donc I = bar{(4,1), (B, 2)}
— 3= — 3 —
e (J=.Cl=(]=_5CIL
Donc | = bar{(C, 1), (I, 3)}
J = bar{(C,1),,3)}
= bar{(C,1),(4,1),(B,2)}
=] = bar{(M, 2),(B,2)} Car M est milicu de[AC], donc isobarycentre de points A et C.
J est le barycentre des points M et J d’ou les points B, J et M sont alignés.

1.2-Concours de droites :

Application :

Soit ABC un triangle. On désigne par P, Q et R les points tels que :
AP = 145,00 = 1CB et CR = 204

Démontrer que les droites (AQ), (BR) et (CP) sont concourants.

Solution :
Démontrons que les droites (AQ), (BR) et (CP) sont concourants.

e AP =-AB = AP = —AB, donc P = bar{(4,2), (B, 1)}
e CQ=-CB=C( =5=CB, doncQ = bar{(B,1),(C,3)}
e CR =§C—A)zC—R> =32:C—A>, donc R = bar{(4, 2),(C,3)}

Posons G = bar{(4,2),(B,1),(C,3)} = bar{(P,3),(C, 3)}
e G =bar{(4,2),(B,1),(C,3)} = bar{(C,3),(P,3)} = G € (CP)
e G =bar{(4,2),(B,1),(C,3)} =bar{(4,2),(0,4)} = G € (4Q)
e G =bar{(4,2),(B,1),(C,3)} =bar{(B,1),(R,5)} = G € (BR)
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G appartient aux droites (CP), (AQ) et (BR), par conséquent, les droites (CP), (AQ) et (BR)
sont concourantes en G. Barycentre des points pondérés (A, 2), (B, 1) et (C,3).

II1.2-ligne de niveau
2.1-Définition :
Soit K un nombre réel et f une application du plan P dans R. f: P— R
M- f(M).
On appelle ligne de niveau K de f, I’ensemble (Ex) des points M tels que f(M) = k
2.2-Lignes de niveau de M— aMA? + BMB?
Soit A et B deux points distincts du plan S, a et § deux nombres réel non tous nuls et f
I’application de P dans R définie par: f: P—> R
M- f(M) = aMA? + BMB?
Pour tout nombre réel k, on se propose de de déterminer la ligne de niveau (E4) des points M
duplantels que: f(M) =k
e Sia+ [ # 0, désignons par G le barycentre des points
pondérés(A, a) et(B, B).si et seulement si aGA + ,BG_B) =0
Ona: (M) = aMA?* + BMB?, (Ek ) est tel que: f(M) = k et
aMA? + BMB? = a(MG + GA)? + B(MG + GB)?
= a(MG? + 2MG.GA + GA?) + B(MG? + 2MG.GB + GB?)
= aMG? + 2aMG. GA + aGA? + BGB? + 2BMG.GB + BGB>
= aMG? + 2MG (aGA + BGB) + BMG? + aGA* + BGB?
aMA? + BMB? = (a + B)MG? + aGA* + BGB?,
or f(M) =aMA+ fMB =k
Donc (a + B)MG? + aGA? + fGB? = keMG? =
k—aGA*’-BGB?
a+p
On envisage 3 cas suivants :
1% cas : si p < 0, (Eg) est ’ensemble vide ;
2° cas : si p = 0(Ey) se réduit au point G ;

k—aGA*-BGB?
a+p

On pose p =

3e cas :si p > 0, (Eg)est le cercle de centre G et de rayon \/E
e Sia+f=0=>F=-a
= aMA? + BMB? = aM A? — aMB?
= a(MA? — MB?)
= aMA? + BMB? = a(MA? — MB?),or aMA? + BMB? = k
& a(MA?2 — MB?) =k
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© MA? -~ MB? ==
On pose k' = g & MA2 —MB2 =¥
Le probléme revient a déterminer I’ensemble des points M du plan tels que :
MA? — MB? =k’
Soit I le milieu du segment [AB]

I
i B

On a: MA%> — MB? = MA + MB)(MA — MB)

= (M1 + 1A + Ml + IB)(MI + 1A — Mi — IB)

= (2MI + A+ 1B)(IA —1B),or IA+ 1B =0 et IA = —IB
SMA? — MB? = 2MI(14 — (—14)

= 2MI(214) A
= 2MI.214; or T4 = —%E @ﬁz%ﬁ : A
&MA? — MB? = 2MI.BA ;or MA? — MB% =k’ P AT
©2MI(—BA) = k' N
©24B.IM =k e TR

Désignons par H le projet orthogonal de sur la droite (AB). g
Ona: AB.IM =AB.IH
©2AB.IM =2AB.TH
©24B.1H = k' SIH =~
On en déduit que le point H est indépendant du point M ; (Ek) est donc la droite
perpendiculaire a (AB) passant par H.
Propriété :
Soit A et B deux points distincts du plan P,a et f deux nombres réel non tous nul et
f Papplication de P dans R définie par : f (M) = aMA* + BMB?
e Sia+ f # 0,ondésigne par G le barycentre de (A,a) et (B, ); la ligne de niveau k
de I’application f est (Ey) telle que :
- (Ey) estou bien I’ensemble vide ;
- (Ey) est ou bien le point G ;
- (Ey) est ou bien le cercle de centre G. et de rayon \/B
e Sia+ f =0,laligne de niveau k de I’application f est une droite perpendiculaire a
(AB)

. . MA
2.3-Ligne de niveau de M— T
Soit A et B deux points distincts du plan et k un nombre réel strictement positif. On se pose

propose de déterminer I’ensemble (Ex) des points M du plan tels que : % =k
e Sik=1, % =1 & MA = MB, alors (Ey) est la médiatrice de [AB]
e Sik+1lona: %zk@MaszB
SMA? = k*MB?
& MA?* — k*MB* =0
On se ramene au probleme précédent qui est de déterminer la ligne de niveau (Ej) de
’application M— aMA? + BMB? avec a = 1 et f = —k?

60



Soit G le barycentre (A,1) et (B, —k?)
G = bar{(4;1); (B;—k?)} ©GA — k*GB =0

©GA = k*GB
&GA? = k*GB?

M € (E) & MA? — k?MB? =0
(MG + GA)? — k?(MG + GB) =0
& MG? + 2MG.GA + GA* — k*(MG? + 2MG.GB + GB?) = 0
&MG? + 2MG.GA + GA — k2MGZ — 2k*MG.GB — k2GB% = 0
&(1 - k})MG? + 2MG(GA — k*GB) + GA* — k*GB* = 0
&(1 - k®)MG? + GA® - k2GB> = 0
20 12,R2
oMG? = GAli-:ZGB
ST or GA = K*GB & GA® = k*GB?

k*GB%-k?GB?
e MG: =—"———
k2-1

__ K*(kK*-1)GB?
k*-1
= k*GB?
MG? = k*GB*MG = kGB
(Ey) est le cercle de centre G et de rayons kGB
Remarque :
e G est extérieur au segment [AB]
e MG? = k*GB.GB,or k*GB = GA
=>MG* = GA.GB
Donc MG? = GA.GB

oMG? =
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Chapitre 9 : ANGLES ORIENTES ET TRIGONOMETRIE

I. Angles orientés :
I-1 Mesure d’un angle orienté

1.1 Définition : soit(u, ¥) un angle orienté et a sa mesure principale. On appelle mesure de

—_—

I’angle orienté (U ; ¥) tout nombre réel de la forme : a + k2w, ouk € Z
Remarque :
e Atout nombre réel x correspond un unique point M de (c), donc un unique orienté

(57,)0_1\/1)) donc x est 'une mesure des mesures

e Six est une mesure d’un angle orienté, les mesures de cet angle sont les nombres
réelsdela:x + k2m ou k € Z.

e Tous les nombres réels, mesure d’un méme angle orienté, ont le méme point image
sur le cercle trigonométrique. ce point sera noté, selon les besoins, M (x),
M(x + 2m), M(x — 2m), etc ......

e Deux angles orientés sont égaux si et seulement si une mesure de |'un est une
mesure de l'autre.

Notations :

» L’angle orienté (fﬁ) de mesure a sera noté &.
> L’angle orienté nul et I'angle orienté plat seront notés respectivement 0 et 7.
1.2. Congruence modulo 2nt
1.2.1- Définition : deux nombres réels x et y sont congrus modulo 2m. S’ils different d’'un
multiple entier de 2n
On note : x = y[2m]
On lit: « x est congru a y modulo 2w »
Retenons bien :
Ak €Z x =y + 2kn
x=yl2nlex—y=2kn,k€Z
S x=y+2kmn, keEZ
1.1.2- propriétés :
Pour tous nombres réels x,y,zet a,ona:
o x=y[2n]ex+a=y+al2n]
e x=y[2n] & —x = —y[2n]

x = y[2n]
S x=2z|2
{y = z[2m] x = z[2m]
1.2.3- Recherche de la mesure principale d’un angle.
Application :

. . .. . , 37m 71m
1) Déterminer la mesure principale des angles orientés e et— —

. 37 71 . .
2) Placer les points Ml(Tn )M, (— Tn) sur le cercle trigonométrie.

Résolution
. . . . , 371 711
1) Déterminons la mesure principale des angles orientés e et— =

Nous remarquons que :
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o =TT 46x(20)
3 3 3
Donc 2E==C [27]
3 3
37w s 4 N L. b4
= =37t 2(6m), avec k = 6; de plus ;€ |—m, ] donc la mére principale de cet angle est 3
_71_71' — =721+ — _127_[ _|_E
6 6 6
-2 127 =2 4+ 2(-6n)
6 6 6
- ZF=242(-6m), k=—6

. 71m T
Donc la mesure principale de — — est P

. 37 71 . .
2) Plagons les points Ml(Tn )M, (— T”) sur le cercle trigonométrie.

Méthode :

Pour déterminer la mesure principale 8 d’un angle orienté, dont une mesure a est connue,

on écrit :

O=a+k2nr ou—n<a<mm,k€Z

e (Cette écriture peut étre immédiate, sinon on détermine tout d’abord k a I'aide des
inégalités: —m<a+ k2n <m

e Puis on détermine O en utilisant I'égalité 6=a + k2m.

Remarque : (passage de degré en radian)

e Six est une mesure en radian d’un angle orienté, une mesure y en degré de cet angle
orienté est obtenue par suivante : % = 1%0

e Sauf mention contraire, si non l'unité I'égalité d’angle utilisé par la suite sera le radian.

e soit a la mesure principale (en radian) d’un angle orienté et M le point image de a sur le
cercle trigonométrique, la longueur IM est |a|

I, —Somme de deux angles orientés

2.1- définition :

Soit @ et 8 deux angles orientés de mesure respective a et 8,

On appelle somme des angles orientés & et [? etonnote: & + ,[>3 , 'angle orienté dont

I'une des mesureesta + f8
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Remarque :
e Deux angles orientés sont supposés lorsque leur somme est I'angle nul, I'opposé &
est noté —@.Ona: @ + (—&)=0
e La différence de deux angles orientés est la somme premier et de I'opposé de
lautre:@ — f = & + (—B)
e Les propriétés de I'addition des angles orientés sont celles de I'addition des nombres
réels, en particulier, @+ = f + @&
Il. Propriétés des angles orientés
11, — Relation de Charles
1.1 — Propriété :
Pour tous vecteurs non nuls i, U et w
(Tf,\ﬁ) + (13/,311) = (ﬁj\w). (Appelé la relation de Chasles)
1.2 —Cconséquences de la relation de Chasles
1.2.1- Propriété 1:
Soit W, U, w’ et T quatre vecteurs non nuls.
ona: (4,9) = (@, 7) & (&) = (v, 9)
Preuve :
() = (@) = (@7) + (T9) = (@9) + (5.9)
= (i) = (579)
1.2.2- Propriété 2
Soit U et ¥ deux vecteurs non nuls et k un nombre réel non nul.

Ona:
o (BuU)=-(@v
e sik>0,alors (m) = (m) = (17/,\17)
o sik<O, alors(k/l_i_,\ﬁ) = (1_7,_1{\13) = (17’,\17) + 7

. (KLD) = (@7

24

(k>0)

'

v

1.2.3- Propriété 3
Pour tous réels a et  d'images respectives A et B sur (C) (cercle trigonometrique), alors :

B — a est une mesure de I'angle orienté(O—A)O—B)) c'est-a-dire : mes(O—A:O—B))=ﬁ -a
D’ol mes (O—A,)O—B)) =f—-a
II, — Double d’un angle orienté

2.1- Définition
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Soit (z_f,\ﬁ) un angle orienté
On appelle double de ({Z\ﬁ) et on note a(t_f,\ﬁ), I'angle orienté défini par :
2(4,%) = (4, 9) + (4, 9)
Remarque :
e Le double d’un angle orienté de mesure a a pour mesure 2a
e Soit @ et f deux angles orientés etona: 2@ + 28 = 2(0? + B)
2.2- Propriété
Soit @ et 8 deux angles orientés et § I'angle orienté droit direct. On a :
e 2a=0oa=00ua="n.
e 208=2 @a=foud=F+1.
e 2= od=8oud=-6
2.3-Exemple de I'alignement de points

Trois points A,B et c distincts du plan sont alignés si et seulement si : 2 (TB,R) =0

Démonstration

2(AB;AC) =0 & (4B,AC) =0 ou (AB,AC) =
& AB et AC sont colénaires.
© A,B et C sont alignés.

2.3.1 Théoréeme :

J——

Pour démontrer que trois points A,B et C sont alignes, on peut établir que : 2 (TB,R) =0

113 — Angles orientés et cercle
3.1- Caractérisation d’un cercle
3.1.1- Propriété :
Soit (C) un cercle de centre O ; A et B deux points distincts de ce cercle.
Pour tout point M distinct de AetB,ona:
Me (C)  2.(MA MB) = (04 05B)
3.2- Points cocycliques
- Deux points situés sur un méme cercle sont cocycliques
- Par deux points distincts A et B, il passe une infinité de cercles
- Par trois points distincts et non alignes A, B et C, il passe un seul cercle : le cercle
circonscrit a ABC
3.2.1- Théoreme
Soit A, B, C, D quatre points distincts du plan tels que trois quelconques d’entre eux ne sont
pas alignés.

JEE—

Les points A, B, C et D sont cocycliques si et seulement 2 (C—A:C?) =2 (TA,ﬁ)
Démonstration

—

Démontrons que A, B, C, D sont cocycliques si et seulement 2 (TA,@) =2 (TA,D—B))
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=) Si A, B, C et D appartiennent a un méme cercle (C) de centre O, alors d’apres la
propriété précédente,ona: 2 (EZ\C—é) = (O—A,/)\O—B)) et 2 (ﬁﬁ) = (O_A/)\O—B))
Donc: 2 (Em) =2 (Hﬁ_ﬁ)

<) Réciproque si, 2 (?ﬁﬁ) =2 (ﬁm) désignons par (C) le cercle circonscrit au
triangle ABC et par O le centre de ce cercle.

Ona:2 (Em) = (m) , donc 2 (Hm) et le point D appartient au cercle (C).

Les points A,B,C et D sont cocycliques.
C

n

Exercice d’application :

Sur le cercle trigonométrique, on considere les points A et B images respectives des nombres
19991

, 31
réels — et ”

1) Placer les points Aet B

J—

2) Quelle est la mesure principale de I'angle orienté (O_A,)O_B))

lIl. Trigonométrie y
II1; — Lignes trigonométriques d’un angle orienté i
1.1 — Cosinus et sinus d’un angle orienté

Définition :

Soit (1, ¥) un angle orienté de mesure a et M I'image de a sur (C). I|
e Le cosinus de (1, ) ou de a est I'abscisse de M.
e Lesinusde (U, 7) ou a est 'ordonnée M

Remarque :

Dans le repere (0,1,J), ona: M({25%
Pour tout nombre réel a et pour tout entier relatif k,
On a: cos’a + sin*a =1
—1<cosa<1
—1<sina<1
cos(a + 2km) = cosa

sin(a + 2km) sina
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1.2- Tangente d’un angle orienté
1.2.1- Définition

Soit (ﬁ’f,\ﬁ) un angle orienté non droit de mesure a. La tangente de (fﬁ) oudeaestle

nombre réel, noté tan (u, ¥) ou tana défini par : tan(ﬁ,’ 17) = tana =

sina

cosa

1.3- Lignes trigonométriques des angles remarquables
Le tableau ci-dessous indique les lignes trigonométriques remarquables a retenir

p 1 T 3 T T
6 4 3 2
cosa 1 V3 V2 1 0
2 2 2
sina 0 1 V2 V3
2 2 2
tana 0 1 1 V3 ?
V3

1.4- Lignes trigonométriques d’angles associées

Soit @ un angle orienté de mesure a.

. , s TL’ .
Les angles orientés de mesure -a, m — a, T + a,- -aou - + a sont habituellement appels

angles associés a &

D

Les deux configurations géométriques ci-dessous, ainsi que les définitions des fonctions

sinus, cosinus et tangente, justifient les propriétés suivantes :

1.5- Propriétés :
Pour tous nombres réels a,

ona:

cos(—a) =

sin(—a) =

cos(m + a)

sin(m + a)

cosa cos(m — a) = —cosa

—sinasin(m — a) = sina

1 .
= —cosa cos (E - a) = sSina

. . Vi
—sinasin (E — a)=cosa
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Remarque :

Vi T , . .
Sta=m— (5 — ), donc on a également les relations suivantes :
T .
® (oS (E + a) = —sina
. V3

e sin (E + a) = cosa
Exemples :
Les lignes trigonométriques des associées permettent de calculer les lignes

trigonométriques, les nombres réels de I'intervalle]—m, [ representes sur la figure ci-
dessous, on a:

51 b b \/§ b
® (OS—=COS|\TT—=)=—COS—=——a =—
6 6 2 2
. 5m . T . T 1
¢ Sin—=SIM|\mT——)=Sn—-—=-—
6 6 6 2
2T 21 s s 1
o COS(——)=COS—=COS(T[——)=—COS—=——
3 3 3 3 2
. 2T . 2T . T . T V3
¢ sin(——)=-sin—=-sin|m — =) = —sin—- = ——
3 3 3 3 2

111, — Formule de trigonométrie :

2.1- Formules d’addition

2.1.1- Propriétés :

Pour tous nombres réelsa et b, on a:
e cos(a —b) = cosacosb + sinasinb
e sin(a — b) = cosacosb — sinbcosa
e cos(a+ b) = cosacosb — sinacosb
e sin(a + b) = sinacosb + sinbcosa

Exemple :
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51 . 5T 51
Calculer cos —,sin— et tan—
12 12 12

, 51 .
On peut décomposer 'y de la facon suivante :

51 2 T 2w . 2T T 2m w .
5 -5 L et calculer cos(? — Z)' sm(? - Z) et tan(? — Z) en utilisant les formules

12 3
d’addition.
51 2T T
Donc cos — = cos (— — —)
12 3 4
2T T ., 2T , T
= coS—coS—+ sin—sin-
3 4 3 4
_ 1,7, 8
27 2 2
5m 3 _
cos—=— V3-1)
_om (271 n)
sin 2= sin 372
. 2m /4 2 . m
= sin 3 cos4 cos 3 sm4
SO (2)
2 2 2 2
s5m V2
sin— T(\/? +1)
5 sinZ
T 12
t —_— =
R
12
_ Z(\341)
Z(V3-1)
_ V3+1
==
_(VB+1)(V3+1)
(V3+1)(V3-1)
_ 3+2V3+1
o341
_ 44243
T2
=2++3
57
tan— =2 3
an % + \/_

2.2- Formules de duplication et de linéarisation
2.2.1-Proprietes

Pour tout nombre réel a, on a:

cos2a = cos’*a — sin*a

sin2a = 2sinacosa
1+cos2a

2
1—cos2a

2

e Formule de duplication : {

cos’a =
e Formule de linéarisation :

sina =
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Exemple :
T . s oy « s . .
Calculons cos 5 et sin— en utilisant les formules de linéarisation.

On sait :

b3 T V3
ST 1+cosZ><E 1+cosg . 1+7 . 44243 . (W3+1)?

o Cos’— = = =
12 2 2 2 8 8
2
Cos? & = (B3+1).
12 8
COSn _ V3+1
12 2v2
T V3
o sim2E=1%%_ 1T _ 43 (a1
12 2 2 8 8
2
sin? & = (3-1)
12 8
sin® = Y1
12 2V2

2.3- Expression de cosa, sina et tana en fonction de tang
2.3.1- Propriétés :

/ a . spe . a
Pour tout nombre réel a tel que tan; soit défini, en passant = tan;, ona:

1-t?
e cosa=—,

1+t
e sina =

1+t2

Si, de plus, tana est infini,

2t
o tana =—
1+t

IV. Equations trigonométriques
IV, — Equation de types : cosx = a, sinx = a,tanx = a
1.1 — Equation du type : cos = a
cos = a ou x est I'inconnue et a un nombre réel donné, on distingue deux cas :
1% cas:sia < —1 ou a > 1, cette équation n’a pas de solution puis que Vx € R,on a :
—1<cosx <1
2° cas:sia € [—1,1], il existe un nombre réel a tel que cosa = a
cosx =0 cosx = cosa
ox=a+2knk€Zoux=—a+2kn,k€Z
On dit que x = a[27] ou x = —a[27]
L’ensemble de solution de cette équation est : S = {a + 2km, —a + 2km, k € 7}
Propriété :
Pour tous nombres x et a, on a:
cosx=aox=a+2kn,k€Zoux=—a+2kn, kel
Exemple :

. ) 2 . 3

Résoudre dans R I'’équation (E) : cos2x = \/2—_
5

Ona cos?n = —?, alors :

\/§ 51
CcoS2x = 5 S coS2x = cos —
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57 5n
S 2x=—+2km ou2x =——+2kn,k€Z

6 6
Tk T kK€L
= = — = — —
X =1 T oux 3 M,
5—{ T 2Tk kez}
B ORI

1.2 — Equation du type : sinx = a
Pour résoudre dans R I'équation : sinx = a, ou x est I'inconnue et a un nombre réel donné,
on distingue deux cas :
1% cas:sia < —1 ou a > 1, cette équation n’a pas de solution puisque Vx € R,on a:
—-1<sinx<1
2° cas :sia € [—1,1],il existe un nombre réel a tel que sina=a
sinx = a © sinx = sina
oSx=a+2knk€eZoux=n—a+2kn,k€Z
Onditque x = a[2n] ou x = — a[2mn]
L’ensemble de solution de cette équation est : S = {a + 2km; m — a + 2km, k € 7}
Propriété :
Pour tous nombres réelsx et a,on a:
sinx =sina @x=a+2kn,k€Zoux=m—a+ 2kn,k€Z
Exemple :

N |-

Résoudre dans R I"’équation (E) : sin(x — %)=

) T 1 ) r. 1
51n(x—Z)—§<=>51n(x—Z)—sm§

L okn ke
XT3 T A
[ ou
Vs Vs
LX_Z=H_E+2k7T’kEZ
(x=24+% ok ke
X=g Ty
=R ou
O LT dknkez
F T T
(= ok ken
X—12 TT,
[ ou
_ BT okmken
KT 12 o
5—{5”+2k 137 ok kez}
12 TN T

1.3 — Equation du type :tanx = a
Pour résoudre dans R I'’équation tanx = a, ou x est I'inconnue et a un nombre réel donné,
tout en sachant que la fonction tangente prend ses valeurs dans R, Va € R, il existe un
nombre réel a tel que tana = a

tanx = a & tanx = tana
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ox=a+2knoux =n+a+ 2kn

Cest-adire:x =a+ km,ke€Z

L’ensemble de solution de cette équation est : S = {a + km, k € Z}

Propriété :

Pour tous nombres réels x et a telsque tanx et tana sont définis, ona:
tanx =tana @ x=a+ km,k€Z

Exemple :

Résoudre dans R I'équation : tan3x = —/3 -

27T
Nous savons que tan = = -3

Alors I’équation devient : tan3x = tanz?7r

@3x=2§+kn,kez

ox=2+kZkez
9 3
2T

5—{ +kE kez}
) 3’

Les imagines des solutions sont des sommets d’un hexagone régulier inscrit dans le cercle

trigonométrique.

IV, — Equation du type : acosx + bsinx + c =0

Méthode de résolution :

Pour résoudre dans R une équation du type :acosx + bsinx +c =0

On distingue deux cas

1* cas:sia = 0oub = 0 on se raméne a une équation du type : cosx = a ou sinx = a
2°cas:sia#0eth # 0,alors a’? + b?> # 0etona :

v — [A2 7% _bP
acosx + bsinx a‘+b (m cosx + msmx
a 2 b 2 . . .
Or (\/a2+b2) + (\/a2+b2) = 1, donc il existe un nombre réel @ tel que:
¢ = et sing b
c0Sp = ———— et sin) = ———
va? + b2 Va2 + b2

Alors on en déduit que ;
acosx + bsinx = Va? + b?(cos@cosx + sin@sinx)
=/a? + b2 cos(@ — x)
Ainsi : acosx + bsinx = Va? + b2 cos(@ — x) , or acosx + bsinx = —c
Alors VaZ? + b2 cos(@ — x) = —¢ <=> cos(@ — x) = — —

va2+b2

(o
On est donc ramené a résoudre I'équation : cos(@ — x) = — —
9 ©-0)=-7Z

Application 1:
, . . 1 V3 . V2
Résolvons dans R I'équation : 5 COSX — —sinx = —

1 3 2
Ona:a=—,b=—£etc=—£
2 2 2

a# 0etb # 0,alors a? + b? =

+2=120=VaZ+b2=V1=1

1
4
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0 , 1 . V3
Donc il existe un nombre réel @ tel que : cos® = 3 et sin® = —

On en déduit que : @ = —g

1 NE , ,
= - C0sX — —sinx = cosPcosx + sin@sinx
T . s .
= CoS (— ;) cosx + sin(— ;)smx
T . T .

= CoS (E) coSx — sm(g)smx
1 V3 . b3 1 V3 . V2 3
-cosx ——sinx = cos|(=+ x),or =cosx — —sinx = — = cos—
2 2 3 2 2 2 4

T T

= cos (E + x) = cos

=>§+x=%+2kn ou §+x=—§+2kn,kEZ

=x=2-22km oux=-2-Z22kn
4 3 4 3
= x = —— + 2km oux=—7—”—E+2kn,kEZ
12 4 3
x=—Z[2n]lou x=-2

s = {—£+ 2kn,—7—”+ 2km, k € Z}
12 12
Application 2 :
Résoudre dans R I'équation : cosx + v/3sinx — /2

IV ; — Autres exemples d’équation trigonométrique
Application :
1) Résoudre dans R I'équation (E) : cos2x + v/3sin2x = —1 et représenter ses solutions
sur le cercle trigonométrique.

. < 3
2) Donner les solutions de (E) appartenant a l'intervalle ]— 7”; 27‘[[

V. Inéquations trigonométriques
Pour la résolution des inéquations trigonométriques, on se limitera aux inéquations simples
de types : cosx < b ou cosax < b ou(sinou tan).

Application :
1) Résoudre dans R I'inéquation (1) : sinx > —%sur chacun des intervalles suivants :
a) |-m;ml;
b) [0;2m [;
¢ R

2) Résoudre dans R I'inéquation (1) ; cos2x > s On représentera I'ensemble de

solutions appartenant a I'intervalle |—; ] sur le cercle trigonométrique.
3) Résoudre dans |—m; ], I'inéquation(l) : tan x < 1. Représenter I'ensemble de
solution sur le cercle trigonométrique.
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Chapitre 10 : GEOMETRIE ANALYTIQUE DU PLAN

I. Orthogonalité et droites du plan
I, — Droite définie par un point et un vecteur normal

On sait que pour tout A et tout vecteur non nul 71, il existe une et une seule droite passant
par A et de vecteur normal 7. Cette droite est I'ensemble des points M du plan tels que :
QM 17
1.1 —Equation cartésienne d’une droite.
Propriétés : soit a et b deux nombres réels tels que (a, b) # (o0,0)
e Pour tout nombre réel c, la droite (D)d’équation cartesienne ax + by + ¢ =0
admet ﬁ(‘;) pour vecteur normal.
e Réciproquement, toute droite de vecteur normal ‘r_i(‘;) admet une équation
cartesienne de laforme:ac+by+c= ouc €R
On note ﬁ(_ab) est un vecteur directeur de (D)
Exemples :
1) Soit (D) :2x — 3y + 4 = 0. Determiner une équation cartesienne de la droite (A)
perpendiculaire a (D) et passant par point A(-1,2) ;
2) On donne les points A(‘f) et B(;) Déterminer une équation cartésienne de la
médiatrice du segment [AB].
Résolution :

1) (D):2x — 3y + 4 = 0. Le vecteur directeur de (D) est #(3)
Déterminons une équation cartésienne de la droite (A)
Soit M(;) un point de la droite (A); ona: AM (i’:;)
Me(A) e AM.Uu=0
=(2)G) =0
&3(x+1)+2(y—-2)=0
©3x+2y—-1=0
D’ou la droite (A) a pour équation cartesienne : 3x + 2y — 1 = 0 de vecteur normal r_i(;)
2) On donne les points A(‘f) et B(;) Déterminons une équation cartésienne de la
médiatrice du segment [AB].
Soit (D) la mediatrice du segment [AB] de vecteur normal, le vecteur AB.
Ona :ﬁ(_‘}z), donc (D) admet une équation de laforme: 4x —2y+c¢ =0, c € R
Soit I milieu de [AB], alors I(‘;)
(D) Passe par I, milieu de [AB],donc on a :
4x —2y+c=04(-1)-2B)+c=0c=10
On n’en déduit que (D) a pour équation cartésienne suivante (D) : 4x — 2y + 10 = 0
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(17}

1.2 —Parallélisme et orthogonalité de droites.
Propriétés :
Soit (D) et (D) deux droites d’équations cartésiennes respectives ax + by + ¢ = 0 et
ax+by+c =0
1) D)// (D)< ab’'—ab=0
2) D) L (D)< aa +bb =0
I, — Equation normal d’une droite
2.1 —Propriété :

Soit(D) une droite, n un vecteur normal a (D) et O une mesure de I'angle orienté (7,77). On

—

n

considére le vecteur ¥ tel que : ¥ = —-. ¥ est un vecteur unitaire colinéaire a 71, donc
7l

5 (cos B\ - . . .

v sind )" v est un vecteur normal a (D), donc (D) admet une équation de la forme :

xcosO +ysinf+k=0

On écrit :(D): x cos 8 + g sin 8 + k = 0 appelée équation normale de (D)
Démonstration

Soit une droite (D) d’équation cartésienne :ax + by +c = 0;

Sia#oeth #0,alors a?+ b? = 0etn'(a,b)tel que: ||ii]| = Va2 + b2 # 0.

a b ¢
Ona:ax + by + ¢ =Va* + b? (WX + T +\/a2+b2)

2 b \? 0o .
Or (ﬁ) + (ﬁ) = 1, donc il existe un nombre réel 8 tel que :

cos 0 = — etsint9—L
"~ VaZ+b? "~ VaZ+p?
On en déduit que :

ax+by+c=\/a2+b2(xcost9+ysin9+

c

c
ax+by+c=0<:>\/a2+b2(xc050+ysin0+—)=0
va? + b?
(:)Xcos¢9+ysin9+ﬁ=0et\/a2+b2 * 0.
c

JaZ+57
D’ou (D):xcos 8 + ysin 6 + k = 0 appelée équation normale de (D).

En posant k = ona:xcosf +ysinf+k=0
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REMARQUE :
Toute droite (D) admet deux équations normales.
En effet, il existe deux vecteurs unitaires opposés, normaux a (D) qui font avec 7 des
angles de mesures respectives 6 et 6 + .
Les équations normales correspondantes a ces deux valeurs sont :
xcos @ +ysinf +k = 0etxcos(8 +m) +ysin(8+n)—k=0
Exemple :
Soit (D) la droite passante par le point A (-2 ; 3) et de vecteur directeur %(1 ;v/3)
Déterminer une équation normale de (D)
Résolution
A(-2;3) un pointde (D) et#(1;V3) un vecteur directeur de (D).
i(1;v3) & 7(-V3; 1) est un vecteur normal de (D) de norme || 7 ||= 2, donc le vecteur

o N = i = 3.1
unitaire normala (D) estV = ﬁ = V(- \/2——; E)
n

Soit M (x; y) €(D) & AM L1 ¥

& AM.v=0

-3
=()(7)=o0
2
o-La+n+ip-3=0

V3 1 2v/3 +3
S ——x+-y—
2 2 2

=0

. . 3 1 23 +3
Donc I’équation normale de (D) est :—\/2——x toy - \/?L =

METHODE :
Pour obtenir une équation normale d’une droite ayant pour équations cartésienne :
ax + by + ¢ = 0; il suffit de diviser les deux membres de cette équation par la norme du

vecteur normale ﬁ(‘;) S 7 I=Va? + b2
On obtient : <

0

=0

a
Jar2 + Nrrreid + Va2z+p2
2.2 —Distance d’un point a une droite
Soit (D) une droite, A un point du plan et H le projeté

orthogonal de A sur ( D)
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Pour tous point M et (D), on a AH<SAM.

AH est appelée distance de A a (D) noté d(4,D)

Propriété 1

Soit A(;C/g) un point du plan et (D) une droite d’équation normale : xcos8 + ysinf +k =0
Ona:d(A4,D) = |xycosf + y,sinf|

Propriété 2

Soit A(;‘,g) un point du plan et (D) une droite d’équation cartésienne :aax + by +¢c =0

. __ laxo+byg+c|
Ona:d(4,D) = o
Exemple :

On considéere les points A(_Zl), B(:ZZ) et C(g)
2

Calculons la distance du point A a la droite (BC).
Par définition d(A, (BC)) =

|axo+bye+c|

vaz+p?z '’

3 9
Déterminons BC.BC <Z+§> = BC <§>
+2 2

2

9 3
La droite (BC) a pour vecteur directeur BC <§> et donc pour vecteur normal ﬁ( 29>.
2

. X .
Soit M(y) un point du plan
M € (BC)det (CM, BC)=0

x—3
=) =0

y

N|JwN]|O

3 9
<=>E(X—3)—E_'y—0

= (xr=3y-3)=0

Donc une équation cartésienne de (BC) est : x — 3y —3 = 0 et ﬁ(_13)
Ona: A(-1,2) et ||Bll=y/12+ (=3)2= V10

|[1x(-1)-3%2-3] |-10] 10V10
AIors:d(A,(BC))z x\(/%_:)z === =410

Donc d(4, (BC)) = V10
Il. Cercle
I1;_Représentation paramétrique d’un cercle
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1.1- Cercle centre a I’origine
Soit (C) un cercle de centre O et de rayon r pour tout point M (g), ona:
Me (C) & OM =r
o x2+y?=r 7
o x?+y?=r? (e
-+ -

< J0€eR, §= cos Bet% =rsind

& 30eR, x=rcosf ety=rsind >M(” cos 8 B e

rcos@
1.2-  Définition
Soit (C)un cercle de centre 0 et de rayon r.
X =rcosf
y=rsinf’
repére (0; 7;7).

Le systéeme { (Be R), est appelé représentation paramétrique de (C) dans le

Exemple

r =cos6@

1) On considere une représentation paramétrique: {y — sing (6eR) d’un cercle

trigonométrique (C) .
Déterminons une équation de ce cercle.
Soit Me(C) & OM=r
X+ y* =r
& x* +y* = cos?6 + sin®6
e x?+y?=1.
C’est un cercle de centre O et de rayonr = 1.

2

2) L’ensemble des points M();) tels que x* + y* = 8 est le cercle de centre O et rayon
r =22

Déterminons une représentation paramétrique de (C)ona:

x=7rcos@ ety =2v2sin6

& x=2V2cos0 ety =2V2sin6

- {x = 2v/2cosf

y =2v2sin@

1.3- Cercle de centre quelconque

(@ € R) est cette représentation.

Soit (C) un cercle de centre Q(Z) et de rayon r pour tout point M(i), ona:
Me(C)e QM =1
e x—-a)+@y—-b?=r

- (5 (5 =

- -b _ .
e 396]1%,% = cos O et yT = sinf
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© 30eR, x=a+rcosBety=>b+rsinb

x=a+rcosb
{y=b+rsin9’9 €R

1.4- Définition

Soit (C) un cercle de centre Q(a, b) et de rayon r.

x=a+cos6

y=b+rsing’

repére (0; 7;7).

Le systéeme :{ (B€eR), est appelé représentation paramétrique (C) dans le

Exemple
1) Le cercle de centre A (—3,4) et de rayon 2 a pour représentation paramétrique :

x=-3+4+2cosf
{Y=4+25in9  OER)
2) Soit (E) 'ensemble des points dont les coordonnes (x, y) vérifient I'équation :

x> +y?—2x+y—1=0
Déterminons les éléments caractéristiques de (E)
Onarx?+y?—2x+y—1=x?>-2x+y2+y—1

=(x—1)2—1+(y+—)2———1

2 2 _ 2 1\% 9
x’+y*—2x+y—-1=(x—-1) +<y+5) -3
2 2 _ 2 1\ _ o
X+y’-2x+y—-1=0e(x—-1) +(y+;) =
Donc (E) est un cercle de centre Q (1, - %) et de rayon % et la représentation paramétrique

x=1+§cost9
de (E) est : 1 23 , B ER
y=—-+-=sin6
2 2
x = 3cos0
y=-1+3sin8’

cercle de centre Q(0; —1) et de rayon 3.

3) Le systeme { (BeR ) est une représentation paramétrique du
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Chapitre 11 : TRANSFORMATIONS DU PLAN

Translations et symétries orthogonales
I; — Translation
1.1 —Propriété
Soit f une application du plan dans lui-méme.
f est une translation si et seulement si pour tous points M et N d’images respectives M’ et
N’ ona:MN = M'N'.
m N'

M N

On note la translation de vecteur U par tg.

e Siu= 6, alors t est I'application identique (ou identité). Tous les points sont

invariants.

e Siu+ 6, alors aucun point n’est invariant.
1.2 — Composée de deux translations
Soit U et ¥ deux vecteurs.
La composée t; o t; des translations de vecteurs respectifs U et ¥ est la translation de
vecteurs U + 7.
Ona:tyoty = ty.p
Demonstration :
MM’ = MM, + M,M’

=
=

=u+v 2
= tgoly =ty
MM' = MM, + M,M’ .
M 7 M,

=Uu+v
=ty oty = liyyp
Nous avons pour tous vecteurs i etV , U+ v =7 + U
D'ou: ty oty =ty oty = tyyw, on dit que la composée de la translation est commutative.

Siu=—v,alorstyot_; =t_zoty=Id.
Cette relation caracterise les bijections reciproques.
Exemple :
D C
tapeotip = tA—C>
tsc ° tag = tpe ° Uap
_1 _
(tzs) =tes A A

1.3 — Expression analytique d’une translation
, . . . 5 xX'=x+a
L’expression analytique de la translation de vecteur v(a; b) est: Y =y+b
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I, — Symétrie orthogonale :
Toute symetrie définie par une droite est appelée symetrie orthogonale. La droite est dite
axe de symetrie. Sj, est la symetrie d’axe (D).

e SiMe(D),alorsM' =M

e SiM & (D), alors M’ est le point tel que la droite (D) est la médiatrice de [MM'].
L’ensemble des points invariants de S, est la droite (D).

2.1 — Composée de deux symétries orthogonales d’axes paralléles:
Propriété :
Soit (A) et (A") deux droites paralléles. O € (A), et O’ est le projeté orthogonal de O sur
(A"). La composée Sy, o S, des symétries orthogonales d’axes (A) et (A") est la translation
de vecteur 200"
Demonstration :
Soient S,(M) = M,

SAI(Ml) =M
H € (A) et H’ est le projeté orthogonal de H sur A" ; les points H et H’ sont les milieux
respectifs de [MM,] et [M;M']
Ona:MM = MM, + MM’

=2HM; + 2M,H' car MM, = 2HM, et M\M' = 2M,H'

=2(HM, + M;H')
=2HH;orHH =00' =1
= MM’ = 200’ ar .
D’ou SAI o SA = tzw,
%
H o'
F
%
2
M, %
%
: [ 1
y ©
*
1]
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Remarque :
e Si(A)= (A", alorsSy, 0S5, =1d
e Lareciproque de la transformation S, est S,.
e Lareciproque de Sy, o Sp est Sy o Sy = tyg5
2.2 — Décomposition d’une translation :
Soit t; une translation de vecteur non nul . Pour toute droite (A) de vecteur normal u, il
existe une droite (A") et une seule telle que S, ° S) = t3.
Il. Rotations:
Une rotation de centre O et d’angle 8 est 'application dans lui-méme noté r(0; 0) qui, a
tout point M associe un plan M.
e SiM=0,alorsM'=0
o SiM#0,alorsOM = OM' et (OM; OM) = 0
e Si0 =0, alors r est 'application identique du plan ;
e Sif =0, alors le seul point invariant est le centre O ;
e Sif =1, alors r est symétrie de centre O ;
Toute rotation est une transformation du plan. La transformation réciproque de r(0; ) est
r(0; —6).
1 — Composée de symétrie orthogonale d’axe sécants
Soit (A) et (A") deux droites sécantes en un point O, de vecteurs directeurs respectifs U et
u'. La composée Sy, o Sy des symétries orthogonales d’axes respectifs (A") et (A) est la

—

rotation de centre O et d’angle 2 (17; u’).

Sy 08, = r(O; 2 (ﬁ))
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